
Proceedings of the The 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP), pages 255 - 265
July 15, 2022 ©2022 Association for Computational Linguistics

What Changed?
Investigating Debiasing Methods using Causal Mediation Analysis

Sullam Jeoung Jana Diesner
University of Illinois-Urbana Champaign

{sjeoung2,jdiesner}@illinois.edu

Abstract

Previous work has examined how debiasing lan-
guage models affect downstream tasks, specifi-
cally, how debiasing techniques influence task
performance and whether debiased models also
make impartial predictions in downstream tasks
or not. However, what we don’t understand
well yet is why debiasing methods have varying
impacts on downstream tasks and how debias-
ing techniques affect internal components of
language models, i.e., neurons, layers, and at-
tentions. In this paper, we decompose the inter-
nal mechanisms of debiasing language models
with respect to gender by applying causal me-
diation analysis to understand the influence of
debiasing methods on toxicity detection as a
downstream task. Our findings suggest a need
to test the effectiveness of debiasing methods
with different bias metrics, and to focus on
changes in the behavior of certain components
of the models, e.g.,first two layers of language
models, and attention heads.

1 Introduction

Recent work has shown that pre-trained language
models encode social biases prevalent in the data
they are trained on (May et al., 2019; Nangia et al.,
2020; Nadeem et al., 2020). In response to that,
solutions to mitigate these biases have been de-
veloped (Liang et al., 2020; Webster et al., 2020;
Ravfogel et al., 2020). Some recent papers also
examined the impact of debiasing methods, e.g.,
reduction of gender bias, on the performance of
downstream tasks, e.g., classification. (Prost et al.,
2019; Meade et al., 2021; Babaeianjelodar et al.,
2020). For example,(Prost et al., 2019) showed
that debiasing techniques worsened gender bias of
a downstream classifier for occupation prediction.
(Meade et al., 2021) investigated how debiasing
methods affect the model’s language modeling abil-
ity. However, comparatively little work has been
done on exploring how debiasing methods impact
the internal components of language models, e.g.,

the models neurons, layers, and attention heads,
and what kind of changes in language models are
introduced when debiasing methods are applied to
downstream tasks. In this paper, we apply causal
mediation analysis, which investigates the infor-
mation flow in language models (Pearl, 2022; Vig
et al., 2020), to scrutinize the internal mechanisms
of mitigating gender debiasing methods and their
effects on toxicity analysis as a downstream task.

We first examine the efficacy of debiasing meth-
ods, namely, CDA and Dropout (Webster et al.,
2020), on 1) language models, namely, BERT
(Wang and Cho, 2019) and GPT2 (Salazar et al.,
2019), and 2) models (Jigsaw, and RtGender)
(Voigt et al., 2018) fine-tuned for downstream tasks.
The debiasing methods (CDA and Dropout) were
chosen because they had been shown to minimize
detrimental correlations in language models while
maintaining strong accuracy (Webster et al., 2020).
We then applied causal mediation analysis to un-
derstand how internal components of a model are
impacted by debiasing methods and fine-tuning.

In this study, we focus on gender bias as a type
of bias. We examine (1) stereotypical associations
between gender and professions in pre-trained lan-
guage models (SEAT) (May et al., 2019), (2) stereo-
types encoded in language models (CrowS-Pairs)
(Nangia et al., 2020), and (3) differences in systems
affecting users unequally based on gender (Wino-
Bias) (Zhao et al., 2018). These representational
harms can impact people negatively because they
contribute to exacerbating stereotypes inherent in
society. These harms may also result in unfavor-
able consequences when these language models
are deployed for practical purposes, e.g., when a
model behaves disproportionately against certain
demographics (Dixon et al., 2018).

1.1 Contributions

From our experiments, we learned the following
things about debiasing techniques and their impact
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on language models:
It is recommendable to test the efficacy of de-

biasing techniques on more than one bias metric.
Our results suggest that debiasing methods show
effectiveness when measured on some bias mea-
surements. However, this efficacy varies depending
on which bias metrics are used to measure the bias
of language models. This may due to different
definitions and operationalizations of bias in these
metrics, which result in varying degree of effective-
ness. This suggests that in order to make claims
about the generalizability of the effectiveness of
debiasing methods, these methods need to be tested
on more than one bias metrics.

The impact of debiasing concentrates on cer-
tain components of language models. The results
from the causal mediation analysis suggest that the
neurons located in the first two layers (including
the word embedding layers) showed the biggest
difference in debiased and fine-tuned models when
compared to the baseline model. This suggests two
things. First, the detrimental associations between
words that cause gender bias in language models
may originally be situated in those layers. Second,
the role of those layers may be crucial in mitigating
gender biases in language models. We recommend
future work to focus on those components.

Debiasing and fine-tuning methods change
the behaviors of attention heads. Our results
show that applying debiasing and fine-tuning meth-
ods to language models changes the weight that
attention heads assign to gender-associated terms.
This indicates that attention heads may play a cru-
cial role in representing gender bias in language
models.

In summary, our findings suggest that debiasing
methods can be effective in reducing gender bias
in language models, but the degree of this effective-
ness depends on how debiasing success is assessed
upon. Also, the results of the causal mediation
analysis suggest that impact of debiasing is concen-
trated in certain components of the language mod-
els. Overall, our findings suggest a need to test the
effectiveness of debiasing methods with different
bias metrics, and to focus on changes in the behav-
ior of certain components of the models. This work
further supports prior research that has shown how
making small, systematic improvements to input
data and research design can reduce major flaws
in research results and policy implications (Hilbert
et al., 2019; Kim et al., 2014; Diesner and Carley,

2009; Diesner, 2015) in society, and changes in
research results and policy implications, and how
improving the quality of lexical resources can in-
crease the prediction accuracy of more and less
related downstream tasks (Rezapour et al., 2019).

2 Related Work

2.1 Debiasing methods and their effect on
downstream tasks

Prior work has examined the effects of debiasing
methods on downstream tasks from mainly two
perspectives: 1) examining the impact of debiasing
methods on the performance of downstreams tasks,
mainly in terms of accuracy, and 2) testing whether
debiased models actually lead to debiased results of
downstream tasks. As an example for perspectives
1), (Meade et al., 2021) explored how a number of
techniques for debiasing pre-trained language mod-
els affect the performance on various downstream
tasks, tested on the GLUE benchmark. As an exam-
ple for perspective 2), (Prost et al., 2019) demon-
strated how gender-debiased word embeddings per-
form poorly in for occupation classification and
can even exacerbated gender biases, since gender-
debiasing technique obscured gender related infor-
mation. In a similar vein, (Babaeianjelodar et al.,
2020) showed how a pre-trained BERT exhibits
gender bias when fine-tuned on different corpora.
Specifically, they fine-tuned the model on toxic-
ity detection datasets (Jigsaw and RtGender), and
showed that the model learned biases to some ex-
tent. Following (Babaeianjelodar et al., 2020), we
use toxicity detection as a downstream task since
it has been shown to correlate with gender biases
(Dixon et al., 2018). Overall, while a considerable
body of research has shown that debiasing tech-
niques impact downstream tasks, comparatively
little work has been done to answer why debias-
ing methods have varying impacts on downstream
tasks, and how debiasing methods affect the inter-
nal components of the language models. In this
work, we apply causal mediation analysis to exam-
ine how debiasing methods make changes to the
internal components of language models.

2.2 Bias Metrics

CROWS-PAIRS is a benchmark dataset for mea-
suring social biases in language models (Nangia
et al., 2020). The dataset is constructed of sen-
tence pairs that entail one stereotypical and one
anti-stereotypical sentence. This benchmark also
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measures how a given model prefers stereotypical
sentences over anti-stereotypical sentences. For
instance, for the ‘gender’ stereotype, two sentences
are given ‘The man was highly skilled in CAD en-
gineering. He was considered one of the best engi-
neers in his field (stereotypical)’ and ‘The woman
was highly skilled in CAD engineering. She was
considered one of the best engineers in her field’
(anti-stereotypical). Then the pseudo-likelihood
(Wang and Cho, 2019; Salazar et al., 2019) of
a model given these sentences is calculated. A
model is considered to present biased behavior if
more than half of the examples have higher pseudo-
likelihood for stereotypical sentences than anti-
stereotypical sentences.

The Sentence Encoder Association Test
(SEAT) extends the Word Embedding Association
Test (WEAT) (Caliskan et al., 2017) to sentence-
level representations by measuring the implicit as-
sociation between target concepts and attributes
(May et al., 2019). For this research, we only use
the test sets relevant to gender bias (SEAT 6, 6b,
7, 7b, 8, and 8b). Specifically, we measure the
implicit association between the target concepts
of male and female names, and the following sets
of attributions: career and family, math, science,
and arts. The attribute sentences of a family and
career, for instance, are respectively {‘This is a
home’, ‘They are parents’...} and {‘This is an ex-
ecutive’, ‘This is a corporation. . . }. The target
sentences of Male Names and Female Names are
{This is John, That is John, Kevin is here . . . } and
{This is Amy, This is Sarah, Diana is here..}. It
calculates the proximity between those target con-
cepts and attributes, and also the effect size. The
small effect size is considered as an indication of
the less biased model. See (May et al., 2019) for
details of calculating these associations.

2.3 Debiasing Methods

Counterfactual Data Augmentation (CDA) is a
technique that uses a rebalanced corpus to debias
a given language model (Webster et al., 2020).
For example, the sentence ‘Her most significant
piece of work is considered to be her study of
the development of the.. ’ from the Wikipedia
dataset was rebalanced into ‘His most significant
piece of work is considered to be his study of
the development of the..’. (Webster et al., 2020)
demonstrated that CDA minimizes correlations
between words while maintaining strong accuracy.

Originally developed to reduce over-fitting
when training large models, the Dropout Debias-
ing Method has been adopted to mitigate biases
(Webster et al., 2020). More specifically, dropout
regularization mitigates biases as it intervenes in
internal associations between words in a sentence.

2.4 Causal Mediation Analysis
We chose to apply causal mediation analysis to
inspect the change in output following a counter-
factual intervention in intermediate components
(e.g., neurons, layers, attentions)(Pearl, 2022; Vig
et al., 2020). Through such interventions, we mea-
sure the degree to which inputs influence outputs
directly (direct effect), or indirectly through the
intermediate components (indirect effect). In the
context of gender bias, this method allows us to de-
couple how the discrepancies arise from different
model components given gender associated inputs.

Following (Vig et al., 2020), we define the mea-
surement of gender bias as

y(u) =
pθ(anti-stereotypical|u)
pθ(stereotypical|u)

where u is a prompt, for instance, "The engineer
said that", and y(u) can be denoted as

y(u) =
pθ(she | The engineer said that )
pθ(he | The engineer said that )

If y(u) < 1, the prediction is stereotypical; if
y(u) > 1, the prediction is anti stereotypical. We
make an intervention, setting gender, in order to
investigate the effect on gender bias as defined
above. To be specific, we set "profession" with
an anti-stereotypical gender-specific word. For
instance, "The engineer said that" to "The woman
said that". We define the measure of y under the
intervention x = x on template u = u as yx(u)

Total Effect measures the proportional dif-
ference between the bias measure y of a gendered
input and a profession input.

Total Effect(set-gender, null; y) =
yset-gender(u)− ynull(u)

ynull(u)

(1)

where ynull refers to no intervention prompt, an
example of this formulation is represented as

yset-gender(u) =
p(she | The woman said that)
p(he | The woman said that
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ynull(u) =
p(she | The engineer said that)
p(he | The engineer said that)

We average the total effect of each prompt u to
analyze the total effect.

Direct Effect measures the change in the
model’s outcome, in our case gender bias y(u),
when an intervention is made, while holding the
component of interest z (e.g. specific neuron,
attention heads, layers) fixed to the original
value. The direct effect indicates the change
in the model’s outcome while controlling the
component of interest. Here, we apply a set-gender
intervention, as explained above.

Indirect Effect measures the change in the model’s
outcome, intervening in the component of interest z
while holding the other parts of the model constant.
In other words, indirect effect measures the indirect
change in the model’s outcome, i.e., the gender bias
y(u) that arises from the component of interest z.

3 Experimental Setup

Models The experiment was conducted on two
pre-trained language models: GPT2 (small) (Rad-
ford et al., 2019) and BERT (bert-base-uncased)
(Devlin et al., 2018). The configuration of the
debiasing models is detailed below.

CDA WikiText-2 (Merity et al., 2016), and the
gendered word pairs 1 proposed by (Zhao et al.,
2018) is used in the pre-training phase.

Dropout Debiasing We applied dropout debi-
asing in the pre-training phase on WikiText-2
corpus (Merity et al., 2016). In GPT2, we
specifically set the dropout probability for all
fully connected layers in the embeddings, en-
coder, and pooler to (resid_pdrop=0.15),
the dropout ratio for the embeddings to
(embedding_pdrop=0.15), and the dropout
ratio for the attention (attn_pdrop) to 0.15.
For BERT, we set the dropout probability for all
fully connected layers in the embeddings, encoder,
and pooler (hidden_dropout_prob) to 0.2
and the dropout ratio for attention probabilities
(attention_probs_dropout_prob) to
0.15, following (Meade et al., 2021)

1Neutral pronouns such as they, the person, were not in-
cluded in this work. The direction of future research is to
include the neutral pronouns

Neuron Interventions For experimenting with
neuron interventions, we use a template from
(Lu et al., 2020) and a list of professions from
(Bolukbasi et al., 2016).The template has a
format of ‘The [profession][verb](because/that)’.
Experimenting with GPT2 (small) resulted in 4
templates and 169 professions.

Attention Interventions We focus on how atten-
tion heads assign weights for our attention inter-
ventions experiments. Following (Vig et al., 2020),
we used the Winobias (Zhao et al., 2018) dataset,
which consists of co-reference resolution examples.
As opposed to calculating the probability of pro-
nouns (e.g., he, she) given a prompt, we calculate
the probability of a typical continuation. For in-
stance, the given prompt "[The mechanic] fixed
the problem for the editor and [he]", the stereotypi-
cal candidate is "charged a thousand dollars", the
anti-stereotypical candidate is "is grateful". The
stereotypical candidate associates ‘he’ with the me-
chanic, while the anti-stereotypical candidate asso-
ciates ‘he’ with the ‘editor’. We calculate the y(u),
gender bias, given an prompt u, as

y(u) =
pθ(charged a thousand dollars | u)

pθ(is grateful | u)

For the intervention here, we change gender,
for example, the last word in the prompt from he
to she.

Jigsaw Toxicity Detection The toxicity de-
tection task basically means to distinguish whether
the given comment is toxic or not. The publicly
available corpus can be found at Kaggle2. It
includes comments from Wikipedia that are
offensive and biased in terms of race, gender, and
disability.

The RtGender dataset contains 25M comments
from sources such as Facebook, TED, and Reddit.
The dataset was developed by (Voigt et al., 2018).
Specifically, the posts are labeled with the gender
of the author. The responses to posts were also
collected. This dataset was meant to help with pre-
dicting the gender of an author given the comments.
This allows us to investigate gender biases in social
media.

2https://www.kaggle.com/c/jigsaw- unintended- bias- in-
toxicity- classification

258



Finetune - Jigsaw RtGender

Method
Baseline
(None)

CDA Dropout None CDA Dropout None CDA Dropout

BERT 57.25 55.34 55.73 51.91 42.37 48.09 56.11 47.71 41.98
GPT2 56.87 54.96 57.63 47.71 50.00 52.67 46.18 51.53 47.33

Table 1: Stereotype scores tested on Crow-S. The lower the value, the more debiased the model is. The table
represents the scores of models not fine-tuned, and of models fine-tuned on the downstream task of toxicity detection,
on Jigsaw and RtGender corpus respectively

Model BERT
Finetuned None Jigsaw RtGender
Debiasing method None CDA Dropout None CDA Dropout None CDA Dropout
SEAT 6 0.931* 0.785* 0.889* 0.558* 0.597* 0.515* -0.268 1.963* 0.912*
SEAT 6b 0.089 0.083 0.277 0.169 -0.104 0.400* 0.227 1.895* 0.391*
SEAT 7 -0.124 -0.512 0.171 1.035* -0.626 1.223* 0.060 0.396* 0.351
SEAT 7b 0.936* 1.238* 0.849* 0.711* 0.663* 1.135* -0.085 0.506* 0.310
SEAT 8 0.782* 0.025 0.594* 0.539* -0.729 0.551* -0.091 0.786* 0.930*
SEAT 8b 0.858* 0.673* 0.945* 0.286 0.586* 0.600* -0.205 0.817* 0.929*
Model GPT2
SEAT 6 0.137 0.287 0.288 0.451* 0.029 0.667* 1.359* 1.516* 1.554*
SEAT 6b 0.003 0.012 0.032 0.554* 0.247 0.418* 0.893* 1.242* 0.976*
SEAT 7 -0.023 0.862* 0.850* 0.129 0.700* 0.751* 1.044* -0.337 0.693*
SEAT 7b 0.001 0.933* 0.819* 0.645* 1.172* 1.041* 1.060* -0.205 1.017*
SEAT 8 -0.223 0.501* 0.486* -0.057 0.545* 0.321 0.867* -0.213 0.700*
SEAT 8b -0.286 0.278 0.092 0.059 0.222 0.197 0.783* -0.288 0.984*

Table 2: The effect size of SEAT. The small effect size is an indication of the less biased model. * denotes the
significance of p-value<0.01

4 Results

4.1 Testing the efficacy of debiasing
techniques

CrowS Table 1 shows the debias stereotype
scores across for debiasing methods on the CrowS
dataset. We tested CrowS on two different models,
BERT (bert-base-uncased) and GPT2 (gpt2-small).
The first three columns show the stereotype scores
of models that are not fine-tuned on any corpus.
We consider these models as baseline models.
The debiasing techniques led to a decrease in
stereotype scores for both BERT and GPT2, except
for the GPT2 Dropout debiased model. The next
three columns show the stereotype scores of the
BERT and GPT2 fine-tuned for our downstream
task (toxicity detection), and applied to the Jigsaw
and RtGender corpora, respectively. Surprisingly,
the stereotype scores are lower than those of
the baseline models. This indicates that the
models exhibit robustness even after fine-tuning
on the corpus which contains offensive and
harmful comments. In fact, the results confirm

the findings in (Webster et al., 2020), where
CDA and Dropout debiasing methods showed
resilience to fine-tuning. However, this result
needs extra investigation, as (Babaeianjelodar
et al., 2020) suggesting that the BERT model
fine-tuned on Jigsaw toxicity and RtGender,
especially the latter, show an increase in direct gen-
der bias measures compared to the baseline models.

SEAT In order to check the generalizability of
the debiasing effects, we calculated a different bias
measure, SEAT (May et al., 2019). Table 2 shows
the effect size of SEAT. We only used the test sets
relevant to the gender associations (SEAT6, 6b, 7,
7b, 8, 8b). The debiasing effectiveness of none-fine
tuned BERT models varies depending on which
dataset the models are tested on. For example, for
SEAT-6, all tested debiasing methods show a sig-
nificant decrease in effect size, which means that
the debiasing methods did what they are supposed
to do. However, for tests on SEAT 6b and 8b, the
results show no decrease in effect size and no sig-
nificance of the results. Interestingly, the degree
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Model BERT GPT2
Methods None CDA Dropout None CDA Dropout
Jigsaw 0.944 0.919 0.949 0.950 0.929 0.947
RtGender 0.570 0.747 0.558 0.698 0.716 0.703

Table 3: Accuracy score of toxicity detection task Jigsaw and RtGender respectively

Baseline CDA Dropout Jigsaw
Jigsaw
CDA

Jigsaw
Dropout

Total effect 2.865 2.046 1.858 0.122 0.116 0.092
Male total effect 3.964 2.792 2.514 0.122 0.116 0.092
Female total effect 30.227 25.953 23.550 0.752 0.979 0.502

Table 4: Total effect statistics.

of effectiveness varies based on which corpus a
model is fine-tuned. For example, looking at the
scores of SEAT 6, the Jigsaw models showed a sig-
nificant decrease in effect size compared to those
of the not fine-tuned models, however, Rtgender
fine-tuned models showed a significant increase
in effect size. These outcomes further support the
findings by (Babaeianjelodar et al., 2020), i.e., that
because the Jigsaw dataset involves comments re-
lated to race and sexuality rather than gender, the
gender bias learned from the corpus is less severe
than for RtGender.

The results are less clear for GPT2. Overall, it
is hard to conclude that the debiasing technique
demonstrates effectiveness when tested with the
SEAT benchmark. Looking only at the results that
show significance (p-value<0.01), the debiasing
methods do not necessarily show effectiveness,
but rather exacerbate the bias measures. For
example, SEAT 7b with debiasing methods applied
to Jigsaw finetune, leads to an increase in effect
size, and SEAT 6 with debiasing applied to
RtGender finetuned, also shows increase. One
of the reasons for this observation could be that
SEAT measures association of gendered names
with professions, while debiasing methods focus
on gendered pronouns, not on the gender of a
name. Overall, our results suggest that testing the
bias of language models on a single bias measure
may not be reliable enough as measures may differ
across models and corpora on which language
models are fine-tuned. This may be in part due to
the fact that gender bias is an inherently complex
concept that furthermore depends on contexts of
text production and use, and how "gender" it is
defined and measured. Thus, evaluation on two or
more benchmark datasets is desirable.

Figure 1: The indirect effect of the top neurons by layer
index.

Accuracy Table 3 shows the accuracy scores of
the models on downstream task, toxicity detection.
Overall, the performance of debiasing methods dif-
fers between tasks and depends on context. This
supports the findings in (Meade et al., 2021). For
BERT, the Dropout debiasing method performed
better than the baseline model, however, this im-
provement didn’t hold across different datasets. For
GPT2, only the debiasing models when applied to
RtGender showed improvement in performance.

4.2 Causal Mediation Analysis

Total Effect Table 4 shows the total effect across
models. Interestingly, the fine-tuned models
exhibit a decrease in total effect when compared
to the baseline model. This indicates that their
sensitivity to gender bias is mitigated even after the
fine-tuning process. This aligns with the CrowS
stereotype scores, where the fine-tuned models
showed robustness in stereotype measures. Besides
the total effect, the male and female total effect
was measured by splitting the profession dataset
(Bolukbasi et al., 2016) based on stereotypical
male and female professions, respectively. The
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Figure 2: Weights distribution of the top attention heads of the models on two different prompts. The labels indicate
the layer-attention head index. For example, Head 0-2 refers to attention head index 2, in layer 0.

results show that the effect size is higher for female
cases, which means that the language model
exhibits more sensitivity for female professions.
According to (Vig et al., 2020), this may be in
part due to the fact the stereotypes related to
professions of females are stronger than those
related to males.

Neurons interventions Figure 1 shows the
indirect effect distribution of the top 2.5% of
the neurons. The pattern shows that the gender
bias effects are concentrated on the first two
layers, including the word embedding layer (layer
index 0). Notably, the indirect effect of the
fine-tuned models is mitigated compared to the
none-fine-tuned ones. This suggests that besides
debiasing methods, fine-tuning itself may function
as an additional debiasing phase. Also, when the
models are fine-tuned, the neurons in the first two
layers display the largest change in their behavior.

Attention head interventions Figure 2 shows
a qualitative analysis of the attention head inter-
ventions. The figure presents the distribution of

the attention weights of the top 3 attention heads,
given the two different sentences ‘The driver
transported the housekeeper to job because she’
and ‘The driver transported the housekeeper to job
because he’. First, we notice that the top attention
heads did not show consistency between models.
For example, the top attention heads were located
on different layers between models. For GPT2 and
Jigsaw CDA GPT2, the top attention heads were
located on layer 0, while those of CDA GPT2 were
located on layers 1 and 5, and for Jigsaw GPT2,
they were located on layer 10. This indicates that
applying debiasing methods and fine-tuning may
change the behavior of the attention heads.

Second, the debiased models (e.g., CDA GPT2,
Jigsaw CDA GPT2) assign the weights signifi-
cantly differently to gender-associated professions
(e.g., driver, housekeeper). For example, in CDA
GPT2, the head 5-10 (which indicates the 10th
attention head in layer 5) assigns around 0.5 to
the word ‘keeper’ in the first plot, while it attends
around 0.2 to that of the second plot. The head
5-10 in CDA GPT2 also attends around 0.1 to
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the word ‘driver’ in the first plot, while assigning
more than 0.1 to the ‘driver’ in the second plot.
This tendency stands in contrast to the distribution
of the attention weights of the GPT2 baseline
model, which is not debiased. Such changes in
attention weights in gender-associated terms may
indicate that debiasing and fine-tuning methods
may modify the behavior of the attention heads,
suggesting the model what to be aware of.

5 Conclusion

In this work, we have investigated how debiasing
methods impact language models, along with the
downstream tasks. We found that (1) debiasing
methods are robust after fine-tuning on downstream
tasks. In fact, after the fine-tuning, the debiasing
effects strengthened. However, this effect is not
supported across another bias measure. This indi-
cates the need for both debiasing techniques and
bias benchmarks to ensure generalizability. The
causal mediation analysis suggests that (2) The neu-
rons that showed a large change in behavior were
located in the first two layers of language models
(including the word embedding layers). This sug-
gests that careful inspection of certain components
of the language models is recommended when ap-
plying debiasing methods. (3) Applying debias-
ing and fine-tuning methods to language models
changes the weight that attention heads assign to
gender-associated terms. This indicates that atten-
tion heads may play a crucial role in representing
gender bias in language models.
Several limitations apply to this work. We only
tested these effects on one downstream task,
namely, toxicity detection. In order to check the
generalizability of these findings, experiments with
other downstream tasks are necessary.
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Figure 3: Attention weights of Dropout debiased models
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Figure 4: Main indirect Effect of attention intervention.

Figure 5: Main direct Effect of Attention Intervention
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