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Abstract

Pretrained language models are publicly avail-
able and constantly finetuned for various real-
life applications. As they become capable
of grasping complex contextual information,
harmful biases are likely increasingly inter-
twined with those models. This paper analyses
gender bias in BERT models with two main
contributions: First, a novel bias measure is
introduced, defining biases as the difference in
sentiment valuation of female and male sample
versions. Second, we comprehensively analyse
BERT’s biases on the example of a realistic
IMDB movie classifier. By systematically vary-
ing elements of the training pipeline, we can
conclude regarding their impact on the final
model bias. Seven different public BERT mod-
els in nine training conditions, i.e. 63 models
in total, are compared. Almost all conditions
yield significant gender biases. Results indicate
that reflected biases stem from public BERT
models rather than task-specific data, empha-
sising the weight of responsible usage.

1 Introduction

As complex Machine Learning (ML) based systems
are nowadays naturally intertwined with media,
technology and everyday life, it is increasingly im-
portant to understand their nature and be aware of
unwanted behaviour. This also applies to the Natu-
ral Language Processing (NLP) community, where
several recent breakthroughs promoted the applica-
tion of sophisticated data-driven models in various
tasks and applications. Only a decade ago, ML-
based vector space word embeddings as word2vec
(Mikolov et al.) or Glove (Pennington et al., 2014)
emerged and opened up new ways to extract infor-
mation and correlations from large amounts of text
data. In this context, it has widely been shown that
embeddings tend to reflect human biases and stereo-
types (Caliskan et al., 2017; Jentzsch et al., 2019)
and that unintended imbalances in text-embeddings

——0Original Review————————————_
He could not stand anymore the pressure of his
mother. She complains that he is still alive while
the good boy from her neighbor had been killed.

Then he gets a job as a policeman.
N _/

,—Female Masked
She could not stand anymore the pressure of her
mother. She complains that she is still alive while
the good girl from her neighbor had been killed.
S Then she gets a job as a policewoman.

Male Masked

He could not stand anymore the pressure of his
father. He complains that he is still alive while
the good boy from his neighbor had been killed.
Then he gets a job as a policeman.

Figure 1: Example Sample Masking. The original
review contains both male (orange) and female (green)
terms. In masked versions, all terms are homogeneously
male or female.

can lead to misbehaviour of systems (Bolukbasi
et al., 2016).

In recent years, however, these static word embed-
dings have rapidly been superseded by the next
generation of even more powerful NLP models,
which are transformer-based contextualised lan-
guage models (LMs). BERT (Devlin et al., 2019a)
and similar architectures established a new standard
and now form the basis for many real-life applica-
tions and downstream tasks. Unfortunately, previ-
ous bias measurement approaches do not seem to
be straightforwardly transferable (May et al., 2019;
Guo and Caliskan, 2021; Bao and Qiao, 2019).
Since the connection between input data and model
output is even more opaque, new measures are re-
quired to quantify encoded biases in LMs properly.
Moreover, with the increase in complexity, compu-
tational costs and required amount of data, it is of-
ten infeasible to train models from scratch. Instead,
pretrained models can be adapted to a wide vari-
ety of downstream tasks by finetuning them with a
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Figure 2: Illustration of experimental pipeline. (1) Data Preparation: removing/ balancing gender terms in
training data. Create experimental data by masking terms in test data to generate a male and a female version. (2)
Model Finetuning: finetune a pretrained BERT model with task-specific training data in different conditions. (3)
Sentiment Rating of experimental data; (4) Analysis and Bias calculation.

small amount of task-specific data (Qiu et al., 2020).
Although enabling easy access to state-of-the-art
NLP techniques, it comes with the risk of lacking
model diversity. Different models come with in-
dividual characteristics and limitations (Xia et al.,
2020), and there is a small number of well-trained
publicly available models that are extensively used,
often without even scrutinising the model. There
are ongoing endeavours to enhance a responsible
development and application of those models, e.g.
(Mitchell et al., 2019). However, it is still barely
understood to what extent biases are propagated
through ML pipelines and which training factors
enhance or counteract the adaption of discriminat-
ing concepts. To apply complex transformer LMs
reasonably, it is important to understand how much
bias they encode and how these are reflected in
downstream applications.

The present study presents a comprehensive anal-
ysis of gender bias in BERT models in a down-
stream sentiment classification task with IMDB
data. This task is a realistic scenario, as ML-based
recommendation systems are widely used, and re-
flected stereotypes could directly harm people, e.g.
by underrating certain movies or impairing their
visibility. The investigation comprises two main
contributions: First, we propose a novel method
to calculate biases in sentiment classification tasks.
Sentiment classifiers inherently possess valuation
abilities. We exploited these to rate ‘“female” and
“male” sample versions (see Fig. 1) and therefore
need no additional association dimension, e.g. oc-
cupation. The classifier is biased if one gender
is preferred over the other. Second, we analyse
the impact of different training factors on the final
classifier bias to better understand the origin of bi-
ases in NLP tasks. Seven different base models,
three different training data conditions and three
different bias implementations lead to a total num-

ber of 63 compared classifiers. Additional obser-
vations could be made regarding training hyper-
parameters and model accuracies. Results reveal
significant gender biases in almost all experimental
conditions. Compensating imbalances of gender
terms in finetuning training data did not show any
considerable effect. The size and architecture of
pretrained models, in contrast, correlate with the bi-
ases. These observations indicate that classifier bi-
ases are more likely to stem from the public BERT
models than from task-specific data and emphasise
the importance of selecting trustworthy resources.
The present work contributes to understanding bi-
ases in language models and how they propagate
through complex machine learning systems.

Bias Statement

We study how representational male and female
gender concepts are assessed differently in senti-
ment classification systems. In this concrete con-
text, we consider it harmful if a classifier that is
trained to distinguish positive and negative movie
reviews prefers performers and film characters of
one gender over another. This could not only re-
inforce existing imbalance in the film industry but
also lead to direct financial and social harm, e.g.
if a movie is less frequently recommended by an
automatic recommendation system.

Beyond that, this concrete task is meant to be only
one example case for an unlimited number of fine-
tuning scenarios. If we can measure a bias here, this
representational imbalance could similarly float
into other downstream applications of all kinds,
e.g. recruitment processes, hate speech crime de-
tection, news crawler, or computational assistants.
Generally spoken, it is problematic when freely
available and rapidly used models encode a gen-
eral preference of one gender over another. This is
especially critical if this imbalance is propagated
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through larger systems and unknowingly reflected
in gender-unrelated downstream tasks. To raise
awareness and mitigate stereotypical reflection, we
need to understand how biases emerge and how
they are reinforced.

The concepts female and male are represented by
sets of terms that are grammatically connected to
that gender. One major limitation of that imple-
mentation is that it assumes a binary gender clas-
sification and does not reflect real-world diversity.
Up to now, concepts of a gender-neutral or gender-
diverse language are not sufficiently established to
consider them for data-driven model training. Nev-
ertheless, we believe that the binary reflection of
gender in natural language is worth analysing as it
is already connected to real-life discrimination.

2 Methodology

This investigation analyses to what extent BERT
gender biases are present in an IMDB sentiment
classification task. We aim to observe what por-
tion of bias emerges in which experimental step
by systematically varying conditions in each step.
63 different classifiers and their biases are finally
reported in this paper. Many more were trained to
observe different training aspects. This section pro-
vides a detailed description of experimental steps
and how different conditions are achieved.

The experimental pipeline can be divided into four
major steps, as illustrated in Fig. 2. The struc-
ture of this section roughly follows these steps.
First, the preparation of training data is described
in Sec. 2.1. We compare seven training conditions
where gender information in training data is re-
moved or balanced. By that means, it can be mea-
sured how much bias is induced during the task-
specific finetuning. Second, the sentiment clas-
sifiers were trained by finetuning seven different
common BERT models, as can be read in Sec. 2.2.
By observing whether the choice of model affects
the bias magnitude, we can infer how much bias
stems from the pretrained BERT model. Also, we
compare different sizes of the same architecture. In
the third step, the trained classifiers were applied
to rate the manipulated test data, which is here
referred to as experimental data. The setup is de-
scribed in Sec. 2.3. Finally, these ratings are used
to calculate the model bias that is defined contextu-
ally in Sec. 1 and mathematically in Sec. 2.4. Three
different sets of gender terms were considered in
the experiments.

2.1 Sentiment Data and Data Preparation

Experiments were conducted in a typical sentiment
classification task on movie reviews. The Internet
Movie Database, which is generally referred to as
IMDB, is a free platform to rate movies, TV-series
and more. We used the publicly available IMDB
Large Movie Review Dataset (Maas et al., 2011),
which consists of 50,000 real user movie reviews
from that platform. Each sample is provided with
the original review texts, the awarded stars as nu-
merical values, and a binary sentiment label derived
from the star rating. Reviews with ratings of 4 or
lower are labelled as negative, and those rated as
7 or higher are labelled as positive. Reviews with
star ratings of 5 and 6 are not added to the labelled
set. The data is already split equally in training and
test data, which was not modified in this investi-
gation. We prepared all samples to be free from
punctuation and lower-case. The test data was used
for model evaluation and also used to create the
experimental data as described in Sec. 2.3.

First, each model was trained on the cleaned but
unmodified data. This condition is referred to as
original condition. To see if the occurrence of
gender terms in the training data has any effect
on the final model biases, we created further con-
ditions. Defined gender terms, which are used
for bias definition, were fully removed from the
training data. This conditions are referred to as
removed, or specifically R-pro, R-weat, and R-all,
for the three different sets of gender terms (see
Section 2.3). While removing gender terms is a
straightforward step to eliminate them during train-
ing, it might lead to incomplete sentences. To see
if that affects the results, we defined a third cat-
egory of training data using Counterfactual Data
Augmentation (Lu et al., 2020). In that approach,
a male and a female version of each sample were
created by replacing all occurring gender terms
(similar to Fig. 1). Both version are included in
the mixed training data. This way, each review’s
structure and completeness are maintained, but the
distribution of male and female terms is perfectly
balanced. These training conditions are hereafter
referred to as mix-pro, mix-weat, and mix-all, re-
spectively.

We are aware that neither removing nor mixing
gender terms is a mature debiasing technique, as
the reflection of gender constructs is much deeper
embedded in the language and the content of the
text. However, gender bias is here operationalised
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Figure 3: Positive and negative biases for dilstilBERT
based classifiers. Blue: trained on original data (orig.);
red: trained with removed gender terms (R); green:
trained with mixed gender terms (mix). The x-axis is
grouped by applied term set (either Pronouns, WEAT,
or All). Black lines show the mean total bias symmetri-
cally in both directions to provide an orientation mark
for the balance of positive and negative biases.

through different word sets, and by removing those
words from training, we aim to avoid changing the
learnt associations of the BERT model. By that
means, we expect to learn whether the positive or
negative valuation that is connected to these words
stems from the finetuning classifier training or from
the previous training of the BERT.

2.2 Classifier Training

Another main variation between experimental con-
ditions is the selection of a pretrained BERT model.
Each classifier is trained by finetuning a pretrained,
publicly available BERT model. Seven different
BERT-based models that differ in architecture and
size were selected to examine the effect of model
choice on the final bias. The models were provided
by HuggingFace ! and accessed via Transform-
ers Python package (Wolf et al.). All models are
trained in a self-supervised fashion without human
labelling and on similar training data, which is the
Bookscorpus (Zhu et al., 2015) and the Englisch
Wikipedia®. The following models are considered
models in the present analysis:

"HuggingFace models, accessed: April 2022. Available at:
https://huggingface.co/models.

2Wikimedia Foundation, Wikimedia Downloads. Avail-
able at: https://dumps.wikimedia.org

DistilBERT (distbase): A smaller and faster ver-
sion of BERT, 6 layers, 3072 hidden, 12 heads,
66M parameters, vocabulary size: 30522, uncased
(Sanh et al., 2019).

BERT base (bertbase): 12 layers, 768 hidden, 12
heads, 110M parameters, vocabulary size: 30522,
uncased (Devlin et al., 2019b).

BERT large (bertlarge): 24 layers, 1024 hid-
den, 16 heads, 340M parameters, vocabulary size:
30522, uncased (Devlin et al., 2019b).

RoBERTa base (robertbase): 12 layers, 768 hid-
den, 12 heads, 125M parameters, vocabulary size:
50265, case-sensitive (Liu et al., 2019).
RoBERTa large (robertlarge): 24 layers, 1024 hid-
den, 16 heads, 355M parameters, vocabulary size:
50265, case-sensitive (Liu et al., 2019).

AIBERT base (albertbase): 12 layers, 768 hidden,
12 heads, 11M parameters, vocabulary size: 30000,
uncased (Lan et al., 2019).

AIBERT large (albertlarge): 24 layers, 1024 hid-
den, 16 heads, 17M parameters, vocabulary size:
30000, uncased (Lan et al., 2019).

The models were trained with a Pytorch framework
(Paszke et al., 2019) on an NVIDIA Tesla V100-
SXM3-32GB-H. Hyperparameters were inspired
by previous literature and kept as constant as pos-
sible. However, factors such as different model ar-
chitectures or the doubled amount of training data
in the mix conditions required slight adaptions. We
used a dropout rate of 0.5, which proved to work
well in avoiding overfitting. Batch sizes were set to
be as large as possible, either 32 or 16 depending
on the model size. The correlation between model
accuracy, biases and training batch size was exam-
ined and is also elucidated in the results section.
Learning rates were set between 2e — 5 and 5e — 6
and optimised with Adam. As already observed by
de Souza Nascimento et al. (2019), BERT finetun-
ing tends to overfit quickly. Therefore the authors
suggest training for only 2 to 4 epochs. Due to
extensive hyperparameter optimisation, the present
classifiers were trained by finetuning the pretrained
models in up to 20 epochs without overfitting. A
comprehensive list of all test accuracies and F1
scores can be found in the Appendix. The source
code of data preparation, model training and ex-
perimental analysis will be publicly available on
GitHub".

*https://github.com/sciphie/bias-bert
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Figure 4: Positive and negative biases for classifiers based on different BERT models. Blue: trained on original data
(orig.); red: trained with removed gender terms (R); green: trained with mixed gender terms (mix). The x-axis is
grouped by applied term set (either Pronouns, WEAT, or All). Black lines show the mean total bias symmetrically
in both directions to provide an orientation mark for the balance of positive and negative biases.

2.3 Data Masking in Experimental Data

The analysed bias dimension in this work is the
person being spoken about (Dinan et al., 2020b),
in contrast to, e.g., Excell and Al Moubayed (2021)
where the bias concerns the author of a comment.
We generated a male (M) and a female version
(F) of each review by turning all included gender
terms into the male or female version of that term,
respectively. Thus, regardless of whether the terms
in the original review were male, female or mixed,
the gender of all target terms in each review is ho-
mogeneous afterwards (see Fig. 1). Gender terms
were defined in fixed pairs, and only words that
occur in the list were masked by their counterpart.
The concept of defining and analysing complex con-
struct as the sum of related target and association
terms stems originally from the field of psychol-
ogy (Greenwald et al., 1998). This approach has
frequently been adapted to computer science and
NLP already in the form of the Word Embedding
Association Test (WEAT) (Caliskan et al., 2017;
Jentzsch et al., 2019) or similar tasks.

The measured bias and the observations in this
investigation are likely to depend on the implemen-
tation of these target sets to a large extent. Even
though many studies apply that approach, the selec-
tion of terms is not discussed much. To this end, we
created three different sets of target terms to exam-
ine the influence of different bias definitions. The
largest set comprises all collected gender terms,
which is a total number of 341 pairs. In this set, we

aimed to collect as many evident gender-specific
words as possible. It is named all hereafter. A de-
tailed description of the construction of the term
set and a list of included words can be found in
the Appendix. In literature (e.g. WEAT), term lists
are usually more compact and restricted to family
relations. The second target set is inspired by those
resources and consists of 17 word pairs. It is a sub-
set of all. We refer to this set as weat. The third and
smallest set, hereafter named pro, only covers pro-
nouns, which are five pairs of terms. This term set
is included as pronouns often play a special role in
bias research, e.g., in coreference resolution (Zhao
et al., 2018). We seek to understand if pronouns
are an adequate bias measure compared to nouns.

2.4 Bias Measure

The model bias of a sentiment classifier is deter-
mined as follows: Two opposite conditions of the
bias concept, X and Y, are defined and repre-
sented by a set of target words, as explained in
Sec. 2.3. For gender bias, these conditions are fe-
male X = F and male Y = M. Test samples,
which are a set of natural user comments, are then
modified with respect to the bias construct. All
naturally included target terms, regardless if they
belong to X or Y, are replaced by the correspond-
ing terms of either X or Y. A male and a female
version of each sample are created by that means.
The bias for a sample ¢ with X version ¢x and Y
version 7y is defined to be the difference between
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sentiment ratings sent(i) of each version:

Asent (1)
= sent(iy) — sent(ix). (2)

Biasxy (i) =

The overall model bias for the sentiment classifica-
tion system SC' is defined to be the mean bias of
all N experimental samples:

Asent
N

N
Biasxy(SC) =) 3)

1=0

As the data classification is binary, the sentiment
prediction sent (i) is a scalar value between 0 and
1, where 0 represents the most negative and 1 the
most positive sentiment. Consequently, the sample
bias is in the range of —1 and 1, where a high bias
value can be interpreted as a bias towards Y, i.e. Y
is closer associated with positive sentiments than
X. Analogously, a lower bias value indicates a
bias towards X, i.e. X being closer associated
with positive sentiments. Here, with conditions M
and F', the total model bias Biasy;r — 1 would
indicate a preference for male samples over female
ones and Biaspy; — —1 accordingly the other
way round. Besides the total model bias in Eq. 3,
we also consider the absolute model bias, which is
defined as the mean of all absolute biases:

|Asent|
N

N
AbsBiasxy (SC) = Z
=0

4

Analogously, biases will hereafter be referred to as
total bias or absolute bias. While the total bias is
capable of reflecting the direction of bias, it entails
the drawback that contrary sample biases cancel out
each other. Therefore the values of absolute biases
are stated additionally and quantify the magnitude
of bias in the model.

We formulated the null and alternative hypotheses
for statistical hypothesis testing. Given sample
groups X and Y with the medians m x and my

Hy : mx = my: medians are equal; The model
is not biased

Hy: mx # my: medians are not equal; The
model is considered to be biased

As there are two paired sample groups, which can-
not be assumed to be normally distributed, statis-
tics were determined with the Wilcoxon Signed-
Rank test. This test has already been applied in

similar investigations before, e.g. by Guo and
Caliskan (2021)). Significance levels are defined
as p < 0.05, p < 0.01 and p < 0.001 and are
hereafter indicated by one, two and three starlets,
respectively. Significance levels were corrected for
multiple testing by means of the Bonferroni correc-
tion The sample standard deviation normalised by
N — 11is given by std. We also state the number of
samples below zero, equal to zero and greater than
zero to indicate effect sizes.

3 Results

A condensed list of absolute and total biases is
reported in Tab. 1. Out of 63 reported experimen-
tal models, 57 showed highly significant biases.
Exceptions are distbase mix-all, bertbase mix-pro,
robertbase mix-weat, robertbase mix-all, and al-
bertlarge mix-weat. 16 classifiers prefer female
terms over male terms, and 41 prefer male terms
over female terms. Thus, even though more clas-
sifiers are in our definition discriminating against
women than against men, biases are directed dif-
ferently. The sizes and especially the directions
of biases are visualised in Fig. 3 for distilBERT
classifiers, in Fig. 4 for all other architectures.

Is bias induced by model finetuning? In fine-
tuning systems like this, biases in models can have
different origins. We aimed to analyse how much
bias was introduced during further training by the
task-specific data. To this end, we removed (R) or
balanced (mix) gender terms in the task-specific
data to reduce the modification of their represen-
tations by finetuning. Both conditions are repre-
sented in Fig. 3 and Fig. 4 by red and green bars,
respectively.

Although biases are decreasing by removing gen-
der information from IMDB data in some cases,
e.g. albertalarge pro , there are likewise exam-
ples where it seems to have the opposite effect,
such as bertlarge weat mix. However, for most
conditions, these preprocessing measures do not
change the magnitude of biases considerably. Es-
pecially, removing the gender terms from data does
not significantly affect the biases. For some mod-
els, although the behaviour of the mix conditions is
different from the other settings, there is no clear
pattern observable. Observed differences in that
category might also be related to the doubled size
of training sets (N = 50000), which is likely to
reinforce effects.
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pro weat all
condition orig. R mix orig. R mix orig. R mix
dist abs | .0021 .0022 .0022 .0035 .0037 .0027 .0047 .0045 (.0052)
tot | .0009 .0010 -.0012 .0004 -.0015 -.0008 .0016  .0008 (-.0003)
bert B abs | .0025 .0036 (.0023) | .0037 .0038 .0027 0056  .0060 .0055
tot | .0013 .0031 (-.0000) | .0015 .0020  -.0002 .0035 .0041 .0005
bert L abs | .0031 .0050 .0035 0069  .0048 .0056 .0082  .0095 .0101
tot | -.0016 .0046 .0011 -.0032 -.0011 .0034 .0009  .0042 .0015
robB abs | .0024 .0024 .0021 .0031 .0028 (.0023) | .0036 .0038 (.0027)
tot | .0016  .0009 -.0002 .0016 .0007 (.0002) | .0020 .0010 (.0000)
robL abs | .0024 .0025 .0020 .0039  .0039 .0028 .0044  .0043 .0041
tot | .0015 .0015 .0004 .0025 .0023 .0004 .0023  .0021 .0018
albB abs | .0037 .0029 .0054 .0093  .0082 0131 .0089  .0080 .0071
tot | .0011 -.0004 .0021 0002 -.0044 -.0034 | -.0023 .0009 -.0014
albL abs | .0086 .0049 .0016 0155 .0074 (.0091) | .0172 .0114 .0101
tot | .0086 .0034  -.0008 .0130 -.0032 (-.0009) | .0137 -.0032 .0034

Table 1: Absolute (abs) and total (tot) model biases of all main experimental classifiers. Positive values indicate a
model preference of male samples over female, negative values a preference of female samples over male ones. All
biases, except the ones in brackets, are highly significant. Significance levels were Bonferroni corrected for multipe
testing. pro, weat and all specify the applied term set for training data preprocessing and bias calculation. Terms in
training data were either removed (R), balanced (mix), or neither of both (orig.). Columns are the different pretrained
BERT models used for classifier training. Base models are abbreviated as dist (distbase), bert B (bertbase), bert L

(bertlarge), rob B (robertabase), rob L (robertalarge), alb B (albertbase), and alb L (albertlarge).

Is bias induced by pretrained models? We ap-
plied models with different architectures and sizes
to observe how measured biases depend on the un-
derlying pretrained model. We compare three dif-
ferent sizes of BERT models, which are distbase,
bertbase and bertlarge. Moreover, we consider
models with RoBERTa architecture in the sizes
robertabase and robertalarge and AIBERT in al-
bertbase and albertlarge. This comparison leads to
two major observations: First, biases differ steadily
between considered architectures. As can be well
observed in Fig. 3 and Fig. 4, DistilBERt’s biases
are about half as big as BERT’s and RoBERTa’s
biases. AIBERTa’s biases, again, are about twice
as big as those of BERT and RoBERTa. This ob-
servation does not only hold among all training
conditions but also for both base and large variants.
Thus, the architecture of a selected model has an
essential impact on the biases of downstream sys-
tems.

Second, we observe increasing biases depending
on model sizes within one architecture. distbase
again yielded the smallest biases, followed by bert-
base, and bertlarge. Simultaneously, robertalarge

yielded much bigger biases than robertabase, and
albertalarge yielded much bigger biases than al-
bertbase. Thus, we observe a correlation between
bias and model size, i.e. the number of layers. This
indicates that larger models tend to encode greater
gender biases.

Is bias dependent on applied term sets? As
mentioned before, we defined three sets of target
terms for the implementation of bias, of which the
largest comprises more than a three hundred term
pairs and the smallest only five. Analogously to
term set sizes, the absolute biases are the smallest
for the pronoun set and the largest for the all set
in almost all conditions. In other words, the more
terms are included, the bigger the measured bias.
The only exception is bertlarge R and some con-
ditions on albertbase. Despite the differences in
bias magnitude, measured values in all categories
were similarly significant. Also, the patterns of
effects of training data manipulation or base model
comparison could similarly be observed in all three
bias definitions. We conclude from these observa-
tions that all types of included vocabulary encode
biases, i.e. pronouns, weat-terms and other nouns.
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bias abs bias tot accuracy f-score (f1)
bias abs 0.373  -0.481%** -0.497***
bias tot 0.373 0.044 -0.085
accuracy -0.481%* 0.044 0.886%**
f-score (f1) -0.497*** -0.085 0.886***

Table 2: Correlation (Pearsons) of biases and training details of all 63 classifiers. bias abs: absolute bias, bias tot:
total bias. Starlets indicate levels of significance for p < 0.001, p < 0.01 and p < 0.05, which were Bonferroni

corrected for multiple testing.

The more terms are included, the higher the mea-
sured bias. For the presented results, the term set
of training data manipulating and the term set for
bias measure were always the same. For instance,
if we applied the pro set to measure biases, we also
only removed/ balanced terms of pro in the train-
ing data. We also tested whether biases vary when
mixing term sets between different experimental
steps. However, that did not reveal any consider-
able effect, as bias values differed marginally.

Do hyperparameter settings affect biases? Due
to computational capacity, some larger models
needed to be trained with smaller batch sizes. To
see if that affects the final biased, we performed
additional experiments where we only varied the
batch size while fixing all other parameters. For
21 different experimental conditions, models were
retrained with batch sizes 32, 16 and 8. Naturally,
this affected the course of loss and accuracy during
training, but only to a limited extent. All settings
led to stable classifiers with convenient model ac-
curacy. The biases of all tested classifiers did not
show any indication to be different among the train-
ing batch sizes. These results reveal that the batch
size does not immediately cause the measured cor-
relation.

Tab. 2 reports correlations between further basic
training details and biases to examine whether there
are observable connections. The F-score naturally
correlates with accuracy, which is the highest value
in the table. F1 and accuracy yield a medium nega-
tive correlation with absolute biases. In contrast to
absolute biases, total biases barely show significant
correlations with training values. All considered
classifiers showed good performance in the model
evaluation. Test accuracies lie between 77% and
84%, which is comparable to baseline values. The
evaluation details of all classifiers are attached to
the Appendix.

4 Discussion

We observed highly significant gender biases in al-
most all tested conditions. Thus, the present results
verify the hypothesis that downstream sentiment
classification tasks reflect gender biases. Although
most considered classifiers prefer male samples
over female ones, this direction is not consistent:
About thirty per cent of classifiers prefer female
over male samples. The high significance values
are likely to be facilitated by the large sample num-
ber and do not necessarily correspond to the effect
size. It might be insightful to analyse the contexts
and types of individual samples to understand how
these contrary directions occur. The rating of male
and female presence likely depends on the scenario,
rather than one gender being strictly advantaged.
We could not observe any effect of removing gen-
der information from task-specific training data.
Thus, in the present case, the biases associated
with gender terms are most likely not learnt during
finetuning. In contrast, results showed significant
differences in downstream classifier biases depend-
ing on the selection of pretrained models. This is
true for both the size and the architecture of the
model. It is reasonable that the pretrained BERT
models, which comprise information from a train-
ing set much larger than the IMDB set, are more
capable of reflecting complex constructs such as
gender stereotypes. It is, therefore, all the more
important to develop these models carefully and re-
sponsibly and to respect risks and limitations in the
application. As a small number of provided base
models form the basis for a large portion of applica-
tions in NLP, it is especially critical to understand
included risks and facilitate debiasing. Although
the results of the present investigation indicate the
origin of biases in pretrained BERT models, that
does not preclude the risk to generate biases dur-
ing finetuning. All elements of the development
pipeline need to be audited adequately.
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We showed that all of the compared term sets are
generally appropriate to measure gender bias. How-
ever, term sets yielded large differences in bias
sizes, showing how crucial the experimental setup
is for the validity of measured results. The fact that
biases increase relative to the number of gender
terms strengthens the conclusion that the majority
of these terms reflect biases. It also needs to be
further investigated whether the sentiment rating
of individual gender terms might be affected by
other factors than gender. Nevertheless, the applied
definition of male and female biases is a rudimen-
tary implementation of real-world circumstances.
First, there is a large number of facets that possi-
bly encode gender (Doughman et al., 2021), e.g.
names or topics. Second, gender is much more di-
verse in reality than this implementation can reflect.
Especially since modern language models are con-
textual, conceptual stereotypes and biases are likely
to be deeply encoded in the embeddings. Automati-
cally learnt models likely cover a large variety of la-
tent biases that contemporary research cannot grasp
(Gonzélez et al., 2020). This investigation under-
lines the complexity of bias formation in real-life
multi-level systems. Results verify the existence
of gender biases in BERT’s downstream sentiment
classification tasks. In order to further analyse
how much of the final system bias stems from the
pretrained model, similar experiments could be
conducted on debiased BERT models. This way,
whether the bias can be further reduced could be
tested. Another exciting direction might be to ex-
amine how the suggested measurement approach
could be transferred to non-binary classification
tasks. As a next step, we plan to expand the present
experiments to further downstream applications.

5 Related Work

Language models as BERT (Devlin et al., 2019a)
recently became the new standard in a wide variety
of different tasks and superseded static embeddings,
as Word2Vec (Mikolov et al.) or GloVe (Penning-
ton et al., 2014). For these older embeddings, there
already is a huge body of empirical research on bias
measuring and mitigation (Caliskan et al., 2017;
Jentzsch et al., 2019; Schramowski et al., 2020;
Bolukbasi et al., 2016), which unfortunately seem
to be not straightforwardly tailorable to the new
setting (May et al., 2019; Tan and Celis, 2019).
However, recent research finds that BERT also en-
codes unwanted human biases, such as gender bias

(Bartl et al., 2020; Kurita et al., 2019; Guo and
Caliskan, 2021).

Downstream task analyses mostly consider short-
comings in dialogue-systems (Stalitinaité and Ia-
cobacci, 2020; Dinan et al., 2020a). In the context
of sentiment analysis, Kiritchenko and Moham-
mad (2018) introduced a data set that is designed
to measure gender-occupation biases. Although
the reported results across 219 tested systems are
ambiguous, the framework has been frequently
applied ever since (Bhardwaj et al., 2021; Gupta
et al., 2021). (Huang et al.) measure biases in
text-generation systems, i.e. GPT. While the gen-
eral experimental setting is fundamentally different
from the present investigation, they apply a similar
idea of measuring biases via sentiment classifica-
tion. To the best of our knowledge, we are the first
to utilise sentiment classification to learn about
the origin of biases in BERT. We contribute to a
growing body of exploratory literature regarding
bias measure (Zhao and Chang, 2020; Munro and
Morrison, 2020; Field and Tsvetkov, 2020) and
bias mitigation (Liu et al., 2020) in contextualised
language models.

6 Conclusion

Contextualised language models such as BERT
form the backbone of many everyday applications.
We introduced a novel approach to measuring bias
sentiment classification systems and comprehen-
sively analysed the reflection of gender bias in a
realistic downstream sentiment classification task.
We compared 63 classifier settings, covering mul-
tiple pretrained models and different training con-
ditions. All trained classifiers showed highly sig-
nificant gender biases. Results indicate that biases
are rather propagated from underlying pretrained
BERT models than learnt in task-specific training.
Pretrained models should not be applied blindly for
downstream tasks as they indeed reflect harmful
imbalances and stereotypes. Just as gender-neutral
language is important to mitigate everyday discrim-
ination holistically, it is critical to avoid encoded
biases in automated systems. We hope that the
present work contributes to raising awareness of
hidden biases and motivates further research on the
propagation of unwanted biases through complex
systems. To the best of our knowledge, there is no
similar work so far that utilises the valuation capac-
ity of sentiment classifiers to measure downstream
biases.
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A Appendix

The following sections supplement presented re-
sults with further details. Sec. A.1 provides all in-
cluded gender terms and their frequency. Sec. A.2
presents comprehensive tables with measured bi-
ases or all experimental conditions. Sec. A.3 states
test accuracies and other evaluation parameters of
included classifiers.

A.1 Target Word Sets

Masked Terms The following list presents all gen-
der terms that were, first, removed and masked
to create the training conditions R and mix and,
second, masked with an equivalent term of the op-
posite gender for experimental data. The list was
carefully constructed, incorporating previous litera-
ture. Bolukbasi et al. (2016) state a comprehensive
list of 218 gender-specific words already. We used
that as a root and added further terms that we found
in the data itself or other sources and that we con-
sidered being missing. Our final list comprises 685
terms in total.

In general, if possible, terms were masked by their
exact equivalent of the other gender, e.g. man by
woman, and similarly woman by man. Yet, lan-
guage and the meaning and connotation of words
are highly complex and ambiguous. Thus, the list
of terms is not clear-cut, and for some terms, it
is disputable whether they should be included or
not. These are the four main concerns and how we
handled each of them:

First, some mappings are not definite, i.e. there
are multiple options to transfer the term into the
opposite gender. One example is lady, which could
be the female version of gentleman or lord. In these
cases, we either selected the most likely translation
or randomly.

Second, some terms do not have an appropriate
translation like, among others, the term guy, or the
term does exist in the other gender but is not used
(as much), like for the term feminism. In these
cases, we tried to find any translation that reflects
the meaning as accurate as possible, like gal for
guy or applied the rarely used counterpart, e.g. mas-
culism.

Third, in some cases, there is a female version
of the term, but the male version is usually used
for all genders. This is, for example, the case for
manageress or lesbianism. These terms exist and
are possibly used, but one could still say ’she is a
manager’ or ’she is gay’. In these cases, we only
translated the term in one direction. This is, when-
ever the term lesbian occurs, it is translated into
gay for the male version, but when the original rat-
ing includes the term gay, it is not transformed into
lesbian for the female version.
Finally, it can have other meanings that are not
gender-related, e.g. Miss as an appellation can also
be the verb to miss. We decided to interpret these
terms as the more frequent meaning or to leave the
term out if it was unclear.
Similar to many other resources, Bolukbasi et al.
(2016) also include terms from the animal realm,
such as stud or lion(Bolukbasi et al., 2016). We de-
cided not to do so because the present investigation
focuses on human gender bias, which might not be
similarly present for animals. The list includes all
masked terms that occurred at least ten times in the
entire experimental data in decreasing order. Fur-
ther 404 terms were included in the analysis that
occurred fewer than ten times. 221 of these terms
were not counted even once and did not affect the
analysis. A comprehensive list of all considered
terms and their frequency can be found in the cor-
responding repository.
The full list corresponds to the all term set. Due
to the above-discussed concerns, we also applied
the weat term set, which consists of mostly unam-
biguous terms. Terms that are included in weat are
marked in bold. The third term set, pro, only in-
cludes pronouns which are he, she, his, her, him and
hers. This term set is relatively small, but pronouns
are more frequent than most other terms.
Pronouns are marked in bold.

he (46634), his (34475), her (31303), she (26377),
him (17863), man (11656), guys (8070), girl
(7433), guy (5862), god (5324), mom (4456), ac-
tors (4349), boy (3802), girls (3509), mother
(3424), dad (3274), woman (3235), wife (2858),
brother (2810), sister (2726), men (2662), fa-
ther (2468), mr (2439), boys (2377), actor (2369),
son (2226), women (2212), himself (2194), dude
(2089), daughter (1995), lady (1948), husband
(1658), boyfriend (1544), brothers (1474), hero
(1427), actress (1167), female (1158), girlfriend
(1087), king (1012), mothers (1009), hubby (994),
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count (932), herself (878), male (821), daddy (792),
ladies (766), ms (725), giant (725), mommy (721),
master (708), sisters (701), lord (697), ma (671),
sir (626), queen (621), mama (596), uncle (587),
chick (567), moms (556), grandma (529), aunt
(521), fathers (444), heroes (434), princess (432),
pa (411), host (405), niece (373), prince (350),
dads (341), actresses (341), priest (328), nephew
(328), hunter (303), bride (284), witch (281), les-
bian (277), heroine (261), kings (239), grandpa
(239), daughters (234), grandfather (223), grand-
mother (222), chicks (193), masters (187), cowboy
(185), counts (177), dudes (174), sons (169), gods
(166), gal (159), papa (158), wifey (156), girly
(156), queens (152), bachelor (149), housewives
(148), hers (148), maid (145), girlfriends (145),
beard (141), emperor (136), gentleman (129), su-
perman (128), duke (127), girlie (125), mayor
(123), wives (122), gentlemen (116), playboy (114),
mister (113), mistress (111), giants (109), females
(107), wizard (105), widow (98), nun (98), penis
(96), fiance (95), lad (92), gals (92), boyfriends
(91), girlies (90), bloke (90), bachelorette (88),
aunts (87), policeman (84), males (84), fella (79),
diva (79), macho (78), goddess (78), lads (77), land-
lord (75), fiancé (75), patron (74), waitress (73),
husbands (70), hosts (70), fiancée (70), feminist
(70), cowboys (70), nephews (68), mermaid (68),
sorority (66), grandmas (66), chap (65), manly (64),
businessman (63), monk (62), baron (62), witches
(61), bachelor (61), nieces (59), housewife (59),
feminine (58), cameraman (58), shepherd (57), les-
bians (55), vagina (53), uncles (53), wizards (52),
henchmen (49), salesman (48), postman (48), ma-
mas (48), grandson (48), brotherhood (47), lords
(44), henchman (44), waiter (43), dukes (42), mom-
mies (41), fellas (41), granddaughter (40), traitor
(39), groom (39), duchess (39), madman (36), po-
licemen (35), conductor (35), sisterhood (34), fra-
ternity (34), monks (33), masculine (33), nuns
(32), fiancee (32), lass (30), tailor (29), priests
(29), maternity (29), butch (29), stepfather (28),
hostess (28), ancestors (28), heiress (27), countess
(27), congressman (27), bridesmaid (27), protec-
tor (26), divas (26), ambassador (26), damsel (25),
steward (24), madam (24), homeboy (24), landlady
(23), grandmothers (23), fireman (23), empress
(23), chairman (23), widower (22), sorcerer (22),
patrons (22), masculinity (22), firemen (22), en-
glishman (22), businessmen (22), testosterone (21),
manhood (21), chaps (21), widows (20), lesbian-

ism (20), blokes (20), beards (20), barbershop (20),
anchorman (20), sperm (19), heroines (19), heir
(19), stepmother (18), princesses (18), princes (18),
handyman (18), patriarch (17), monastery (17),
mailman (17), homegirl (17), headmistress (17),
fisherman (17), czar (17), brotherly (17), brides
(17), uterus (16), maternal (16), abbot (16), prophet
(15), boyish (15), adventurer (15), testicles (14),
temptress (14), schoolgirl (14), penises (14), maids
(14), barmaid (14), waiters (13), traitors (13), stunt-
man (13), priestess (13), seductress (12), school-
boy (12), motherhood (12), daddies (12), cowgirls
(12), cameramen (12), bachelors (12), adventur-
ers (12), sculptor (11), schoolgirls (11), proprietor
(11), paternal (11), homeboys (11), foreman (11),
feminism (11), doorman (11), bachelors (11), wom-
anhood (10), testicle (10), mistresses (10), merman
(10), grandfathers (10), girlish (10)

A.2 Biases

Tab. 3 and Tab. 4 provide an overview of the model
biases of all considered classifiers. For the calcula-
tion of biases, the same gender term set was applied
to the experimental data masking as for the training
data condition. This means, for instance, in the ex-
perimental data for all R-weat and mix-weat trained
classifiers, only weat terms were masked. Thus, the
training condition is in line with the experimental
bias calculation for all N and mix training condi-
tions. For original training conditions, however, no
term set was applied to the training data. This is
why biases of all three term groups are compared,
which are original-N, original-pro, and original-
weat.

Wilcoxon signed-rank-test yielded highly signifi-
cant p-values for almost all conditions. Exceptions
are distbert mix-all,bertbase mix-pro, robertbase
mix-weat, robertbase mix-all, and albertlarge mix-
weat. Out of 63 reported experimental models, 57
showed highly significant biases, of which 16 pre-
fer female terms over male terms, and 41 prefer
male terms over female terms.
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non zero all
Condition bias abs bias tot | biasabs biastot | N< 0 N=0 N>O0 | sign.
distbert
original-pro 0.0021  0.0009 | 0.0014 0.0006 | 6085 10216 8699 ok
R-pro 0.0022  0.0010 | 0.0014 0.0007 | 7116 9183 8701 ok
mix-pro 0.0022 -0.0012 | 0.0012 -0.0007 | 6922 7309 10769 | ***
original-weat | 0.0035  0.0004 | 0.0026  0.0003 8098 10214 6688 oAk
R-weat 0.0037 -0.0015 | 0.0027 -0.0011 | 10773 7532 6695 ok
mix-weat 0.0027 -0.0008 | 0.0018 -0.0006 | 8332 8428 8240 ok
original-all 0.0047 0.0016 | 0.0039 0.0013 | 7817 12941 4242 ok
R-all 0.0045  0.0008 | 0.0037 0.0007 | 10022 10734 4244 ko
mix-all 0.0052 -0.0003 | 0.0042 -0.0003 | 10080 10177 4743 -
bertbase
original-pro 0.0025 0.0013 | 0.0016 0.0008 | 5430 10874 8696 ok
R-pro 0.0036  0.0031 | 0.0024 0.0020 | 3234 13061 8705 o
mix-pro 0.0023  -0.0000 | 0.0014 -0.0000 | 7505 7794 9701 -
original-weat | 0.0037  0.0015 | 0.0027  0.0011 6187 12128 6685 ok
R-weat 0.0038  0.002 | 0.0028 0.0015 | 6204 12098 6698 ok
mix-weat 0.0027 -0.0002 | 0.0015 -0.0001 | 6421 7135 11444 | ***
original-all 0.0056  0.0035 | 0.0046 0.0029 | 5233 15527 4240 o
R-all 0.0060  0.0041 | 0.0049 0.0034 | 4319 16431 4250 ok
mix-all 0.0055 0.0005 | 0.0035 0.0003 | 6838 9001 9161 o
bertlarge
original-pro 0.0031 -0.0016 | 0.0021 -0.0011 | 10287 6020 8693 ok
R-pro 0.0050 0.0046 | 0.0032 0.0030 | 2697 13610 8693 ok
mix-pro 0.0035 0.0011 | 0.0014 0.0004 | 4961 5228 14811 *
original-weat | 0.0069 -0.0032 | 0.0051 -0.0023 | 10329 7986 6685 o
R-weat 0.0048 -0.0011 | 0.0035 -0.0008 | 10172 8142 6686 o
mix-weat 0.0056  0.0034 | 0.0029 0.0018 | 4581 8195 12224 | ***
original-all 0.0082  0.0009 | 0.0068 0.0007 | 9128 11633 4239 ok
R-all 0.0095 0.0042 | 0.0079 0.0035 | 7314 13443 4243 ko
mix-all 0.0101  0.0015 | 0.0078 0.0012 | 8848 10455 5697 ok

Table 3: Total biases of all experimental classifiers (part 1). The bias is the mean bias over all experimental samples.
While the absolute bias (bias abs) is the mean of absolute values, the total bias (bias tot) is based on the directed
sample biases. For “non zero" values, samples with a bias= 0 are excluded. “all" includes all 25000 sample biases.
The numbers of samples with negative, no, and positive bias are given by N < 0, N = 0, or N > 0, respectively.
Significance levels for Wilcoxon signed-rank-test were defined as p > 0.05 :*, p > 0.01 :** and p > 0.001 :¥**,
Reported significance levels were corrected for multiple testing with the Bonferroni correction.
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non zero all
Condition bias abs bias tot | biasabs biastot | N< 0 N=0 N>0 | sign.
robertabase
original-pro 0.0024  0.0016 | 0.0015 0.0010 | 5448 10840 8712 | *%**
R-pro 0.0024  0.0009 | 0.0015 0.0006 | 6822 9472 8706 | ***
mix-pro 0.0021  -0.0002 | 0.0013 -0.0001 | 8682 7612 8706 | ***
original-weat | 0.0031  0.0016 | 0.0023  0.0011 6470 11832 6698 | ***
R-weat 0.0028  0.0007 | 0.0021 0.0005 | 7722 10581 6697 | ***
mix-weat 0.0023  0.0002 | 0.0017 0.0002 | 9396 8894 6710 -
original-all 0.0036  0.0020 | 0.0030 0.0016 | 7165 13585 4250 | ***
R-all 0.0038  0.0010 | 0.0032 0.0008 | 9294 11464 4242 | ***
mix-all 0.0027  0.0000 | 0.0023 0.0000 | 10520 10206 4274 -
robertalarge
original-pro 0.0024  0.0015 | 0.0016 0.0010 | 5235 11055 8710 | ***
R-pro 0.0025 0.0015 | 0.0016 0.0010 | 5216 11072 8712 | ***
mix-pro 0.0020  0.0004 | 0.0013  0.0003 6679 9606 8715 | ***
original-weat | 0.0039  0.0025 | 0.0029 0.0018 | 5894 12411 6695 | ***
R-weat 0.0039  0.0023 | 0.0029 0.0017 | 6109 12193 6698 | ***
mix-weat 0.0028  0.0004 | 0.0021  0.0003 8071 10220 6709 | ***
original-all 0.0044  0.0023 | 0.0036 0.0019 | 7105 13653 4242 | *%**
R-all 0.0043  0.0021 | 0.0035 0.0017 | 7045 13712 4243 | *%**
mix-all 0.0041  0.0018 | 0.0034 0.0015 6971 13783 4246 | ***
albertbase
original-pro 0.0037  0.0011 | 0.0024 0.0007 | 5481 10811 8708 | ***
R-pro 0.0029 -0.0004 | 0.0019 -0.0003 | 9305 6986 8709 | ***
mix-pro 0.0054 0.0021 | 0.0035 0.0014 | 7244 8968 8788 | ***
original-weat | 0.0093  0.0002 | 0.0068 0.0001 7710 10600 6690 | ***
R-weat 0.0082 -0.0044 | 0.006 -0.0032 | 10346 7942 6712 | ***
mix-weat 0.0131 -0.0034 | 0.0093 -0.0024 | 9426 8263 7311 | *%**
original-all 0.0089  -0.0023 | 0.0074 -0.0019 | 9112 11645 4243 | ***
R-all 0.0080  0.0009 | 0.0067  0.0008 8979 11769 4252 | ***
mix-all 0.0071 -0.0014 | 0.0058 -0.0012 | 9481 11030 4489 | ***
albertlarge
original-pro 0.0086  0.0086 | 0.0056 0.0056 | 2120 14075 8805 | ***
R-pro 0.0049  0.0034 | 0.0032 0.0022 | 6407 9869 8724 | ***
mix-pro 0.0016 -0.0008 | 0.0010 -0.0005 | 10121 6136 8743 | ***
original-weat | 0.0155 0.0130 | 0.0113 0.0095 | 4058 14191 6751 | ***
R-weat 0.0074  -0.0032 | 0.0054 -0.0023 | 9936 8373 6691 | ***
mix-weat 0.0091 -0.0009 | 0.0066 -0.0006 | 9186 8998 6816 -
original-all 0.0172  0.0137 | 0.0143 0.0114 | 5095 15594 4311 | *%**
R-all 0.0114  -0.0032 | 0.0095 -0.0026 | 12573 8180 4247 | *%**
mix-all 0.0101  0.0034 | 0.0084 0.0028 8777 11875 4348 | ***

Table 4: Total biases of all experimental classifiers (part 2). Extension of Tab. 3
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Model / Spec acc. rec. prec. fl
distbase
original 812 778 835 .805
R-all 817 789 836 812
R-weat 820 789 .840 814
R-pro 818 780 .844 811
mix-all 822 795 840 817
mix-weat  .822 783 .849 815
mix-pro 822 784 848 815
bertbase
original 818 787 .838 812
R-all 821 781 .849 813
R-pro 820 776 .851 812
R-weat .821 .803 .833 818
mix-all 836 791 .868 .828
mix-pro 835 816 849 832
mix-weat  .835 .812 .852 .832
bertlarge
original 805 787 816 .801
R-all 797 734 839 783
R-pro 79 .660 867 749
R-weat 803 739 847 789
mix-all 795 723 845 780
mix-pro 797 738 836 784

789 710 843 771

mix-weat

Table 5: Test accuracy (acc.), recall (rec.), precision
(prec.), and F1-Score (f1) for the models that are used
in the experiments - part 1

A.3 Evaluation of Models

Tab. 5 and Tab. 6 show the accuracies, recalls, pre-
cisions and F1-Score of all experimental models
calculated on the test data. For the calculation of
reported values, the test data set has been treated
analogously to the training condition. That means
for instance, since we removed all pronouns from
training data in the R-all condition, we did the same
in the test data before evaluating the models in that
condition.

Model / Spec acc. rec. prec. fl
robertabase
original 818 744 874 804
R-all .823 770 .862 813
R-weat .820 739 881 .804
R-pro 818 733 883 .801
mix-all .833 780 .873 .824

mix-weat  .830 .781 .867 .821

mix-pro .823 760 .870 811
robertalarge

original 820 .748 .873 .806

R-all 820 765 .859 810
R-weat .820 761 .862 .809
R-pro .818 751 .868 .805
mix-all 815 749 862 801
mix-weat  .816 .761 .855 .805
mix-pro 814 728 879 797
albertbase
original .693 932 .630 .752
R-all J71 711 809 756
R-weat J72 7749 785 767
R-pro J57 748 764 756
mix-all 82 791 777 784
mix-weat .778 818 757 .786
mix-pro 780 813 762 787
albertlarge
original 184 762 797 779
R-all 762 847 724 781
R-weat 67 .802 750 775
R-pro 763 832 732 779
mix-all J74 803 759 781
mix-weat 784 788 .781 .785
mix-pro 82 752 801 776

Table 6: Test accuracy (acc.), recall (rec.), precision
(prec.), and F1-Score (f1) for the models that are used
in the experiments - part 2
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