Detecting Euphemisms with Literal Descriptions and Visual Imagery
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Abstract

This paper describes our two-stage system! for
the Euphemism Detection shared task hosted
by the 3rd Workshop on Figurative Language
Processing in conjunction with EMNLP 2022.
Euphemisms tone down expressions about sen-
sitive or unpleasant issues like addiction and
death. The ambiguous nature of euphemistic
words or expressions makes it challenging to
detect their actual meaning within a context. In
the first stage, we seek to mitigate this ambi-
guity by incorporating literal descriptions into
input text prompts to our baseline model. It
turns out that this kind of direct supervision
yields remarkable performance improvement.
In the second stage, we integrate visual super-
vision into our system using visual imageries,
two sets of images generated by a text-to-image
model by taking terms and descriptions as in-
put. Our experiments demonstrate that visual
supervision also gives a statistically significant
performance boost. Our system achieved the
second place with an F1 score of 87.2%, only
about 0.9% worse than the best submission.

1 Introduction

Recent advances in large pretrained language mod-
els allowed the computational linguistics com-
munity to tackle more knowledge-intensive tasks
which require commonsense reasoning (Talmor
et al., 2019; Bisk et al., 2020; Lin et al., 2021),
and figurative language understanding (Pedinotti
et al., 2021; Liu et al., 2022). In this work, we
focus on a figurative language understanding task
called euphemism detection. Euphemisms attempt
to smooth harsh, impolite, or blunt expressions
about taboo or sensitive topics like death and un-
employment (Holder, 2008). For instance, when
we speak of older people we often refer to senior
citizens instead of a direct expression that can be
seen as offensive.

!Code is available at github.com/ilkerkesen/euphemism
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Identifying euphemisms is challenging due to
their natural ambiguity, i.e., the meaning of the
term shifts depending on the context: ‘Over the
hill’ could either mean someone or something is
physically over some hill (literal), or someone or
something is old, past one’s prime (figurative) (Lee
et al., 2022). One cannot distinguish these two
different senses without sufficient context. Thus,
these terms are referred as potentially euphemistic
terms (PETs) (Gavidia et al., 2022). Here, we pro-
pose a two-stage method for the Euphemism De-
tection shared task hosted by the 3rd Workshop on
Figurative Language Processing at EMNLP 2022.

In the first stage, we manually collect literal de-
scriptions for each PET. We then incorporate these
descriptions into input text prompts to help the
model distinguish figurative from literal usage. We
demonstrate that this kind of extraneous linguis-
tic supervision improves a strong baseline by a
large margin. In the second stage, we attempt to
answer the question, “Is visual supervision also
useful to infer the meaning behind a PET?” To
answer this question, we use a text-to-image model
which takes terms and descriptions as input, and we
generate two sets of images, which we denote as
visual imageries. Our experiments show that using
visual imagery provides the best results. A paired
t-test points out that the improvement is statistically
significant. Our qualitative analysis also suggests
visual imageries are beneficial for analyzing PETs.

The rest of this paper is organized as follows.
Section 2 describes our proposed solution. In Sec-
tion 3, we share the details of our evaluation setup
and design choices. Section 4 reports our experi-
mental results. In Section 5, we briefly review the
relevant literature. Section 6 outlines our conclu-
sions and discuss the limitations of our approach.

2 Approach

In this section, we first formulate the euphemism
detection task by describing a simple baseline
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model, and then explain how we extend it with
the literal term descriptions and visual imagery.

2.1 Vanilla Baseline

Given a textual context C' with a potentially eu-
phemistic term (PET) 7', the aim of euphemism
detection is to decide whether the candidate term
T is euphemistic (y = 1) or not (y = 0). Here, we
only pick a sentence S = [wy, wa, ..., wy,] Which
contains a candidate term 7', and ignore the rest of
the context C' at first. We use a pretrained language
model LM as our initial baseline as below.

{

e; denotes the word embedding of the i™" token w;,
p is the probability that the candidate term 7' is eu-
phemistic, and g is the predicted label. EMBED is
the embedding layer and LM denotes the language
model that produces the probability p.

€;

b

— EMBED(w;),
=LM(ey, €2, ..., ),

1 p>0.5,
0 otherwise.

2.2 Literal Descriptions

We extend the baseline model by supplying extra
supervision with literal descriptions D for each
candidate term 7" (which we collect manually). To
make use of the literal descriptions, we create a tex-
tual prompt X = [z1, 22, ..., 2] for each sentence
S, term 1" and description D as below.

X = [Term: T, Description: D, Sentence: S].
Then, we change the formulation,

€; — EMBED(a;i)
p =LM(eq, e, ..., e,),

where e; is the embedding for the i token of the
input prompt X.

2.3 Visual Imagery

We subsequently move beyond the text-only base-
lines by integrating visual modality into the Lit-
eral Descriptions baseline in the form of visual
imagery. To accomplish this, we generate two
sets of images I = [Ij(}), Ij(?), ey Ij(ﬂk)] and Ip =
[IS), Ig), ey Ig)], for each term and description
pair, respectively. We denote these set of images
as visual imageries. To obtain the visual imageries,
we feed a text-to-image model T2I with terms and
descriptions as input language,

i ~rtar), 1% ~T2A(D).
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Next, we use a pretrained visual encoder (VE)
to embed visual imageries.

K
1
S OVE(Y), wp = VE(R))
k=1

where vt denotes the visual imagery embedding
of the candidate term 71" and vp denotes the visual
imagery embedding of the corresponding literal
description D. K is the number of images per term
T and description D. Thus, we reformulate the
literal descriptions baseline as follows,

€; = EMBED(.’El)

ﬁ = LM(fp(UT)) fp(vD)a €1,€2, ..., en)

We make sure visual imagery embeddings are com-
patible with the word embeddings and language
model LM by applying a linear projection layer
fp- We train each baseline using the negative log-
likelihood objective.

3 Data and Implementation

Data. The euphemism detection dataset consists
of two separate splits for training and testing pur-
poses with 1573 and 394 examples, respectively.
The test split is unlabeled. The whole data includes
131 different PETs. Since there is no data sup-
plied for validation, we reserve 20% of the training
data for this purpose. We only select the sentences
with PETs and remove repetitive patterns of punc-
tuation "@ @ @ ..." to decrease computational
requirements by shortening the input language. We
manually collect literal descriptions within 6 hours,
and try to avoid impolite expressions like insults or
slang phrases.

Implementation. We use DeBERTa-v3 base and
large as our language model (He et al., 2021a,b).
We generate the visual imageries It and Ip
by using an open-source DALL-E implementa-
tion (Ramesh et al., 2021; Dayma et al., 2021).2
The number of images per visual imagery K is set
to 9. We extract visual imagery embeddings v and
vp using CLIP’s ViT-L/14 as our visual encoder
(Radford et al., 2021). f, is a single linear layer,
and we randomly initialize its weights. We use
Adam optimizer with weight decay (Kingma and
Ba, 2015; Loshchilov and Hutter, 2018). The learn-
ing rate is set to 5e ~® and 3e~° for the experiments

https://github.com/kuprel/min-dalle


https://github.com/kuprel/min-dalle

Model LM validation test
Vanilla Baseline Base 79.84 +2.23 -

+ Desc. Base 86.39 +1.05 83.58
+ Desc. Large 88.89+1.35 85.74
+ Desc. + Imag. Large 90.11+1.59 87.16

Table 1: Quantitative results on the labeled data using F1
as evaluation metric. The last two columns respectively
show the average score over different validation splits,
and the ensemble performance achieved on the fest split.

with DeBERTa-v3-base and DeBERTa-v3-large, re-
spectively. We train our models for a maximum
of 50 epochs using Tesla V100s and mixed preci-
sion. A typical experiment takes less than one hour
with a batch size of 16. Due to the small dataset
size, we perform multiple experiments and reserve
a different portion of the labeled data for validation
in each experiment. We report mean and standard
deviation over all experiments, and use ensembling
to evaluate our system on the test set.

4 Experimental Analysis

4.1 Quantitative Results

Table 1 presents the quantitative results of our ex-
periments as ablation studies. We perform several
experiments in a curriculum, where each following
experiment activates a different feature (e.g. literal
descriptions). We first implement a vanilla baseline
using DeBERTa-v3-base, which lacks descriptions
and imagery.

Using Literal Descriptions. In our first ablative
analysis, we incorporate the literal term descrip-
tions into the vanilla baseline described in Section
2.2. Integrating this supervision results in substan-
tial performance improvement, i.e. ~ 6.5 points
using F1 as evaluation metric.

Larger Language Model. We implement the lit-
eral descriptions model using a larger language
model which is the large architecture of the
DeBERTa-v3 model. Using a bigger LM gives
2 points performance improvement.

Visual Imagery. We now report on the visual im-
agery model explained in Section 2.3. This model
additionally uses two different visual embedding
vectors, denoted as visual imageries, which are gen-
erated by a text-to-image model using terms and
descriptions. By using this extra visual supervision,
we obtain 1.22 and 1.42 F1 score increments in val-
idation and testing phases. A paired t-test is applied
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to determine the significance of the results: We ob-
tained a p-value of 0.032, which points out that this
improvement is statistically significant (p < 0.05).

4.2 Qualitative Analysis

Figure 1 wraps up our qualitative analysis, where
we share the collected descriptions and the gener-
ated visual imageries for some euphemistic terms.
The first two examples show that if a term has a
dominant literal meaning, the text-to-image V2I
model produces images conveying the literal mean-
ing instead of the figurative one. V2I can also pro-
duce visuals based upon individual word meanings
as a consequence of being completely unconscious
to the figurative meaning. This can be seen on the
third example, where the model generates lunch
images instead of vomiting for phrase ‘lose one’s
lunch’. Moreover, V2I can generate unrelated im-
ages for some terms as one can see on the pro-life
and able-body examples. On the other hand, the
text-to-image model V2I is well aware of some eu-
phemism candidates as in the case with the last two
examples. This phenomenon arises when the term
has just one single meaning which is euphemistic.

In summary, a text-to-image model can be a com-
plementary tool for analyzing figurative language:
one can observe how models process these expres-
sions. By looking at the produced images, we can
recognize the terms with dominant literal mean-
ings (e.g. late) or single euphemistic meaning (e.g.
lavatory).

5 Related Work

Euphemisms. Recently, euphemisms have at-
tracted the attention of the natural language pro-
cessing community. Zhu et al. (2021) and Zhu and
Bhat (2021) extract euphemistic phrases by using
masked language modeling. A few work practices
sentiment-oriented methods to recognize candidate
euphemism phrases (Felt and Riloff, 2020; Gavidia
et al., 2022; Lee et al., 2022). Most notably, Ga-
vidia et al. (2022) replace PETs with their literal
meanings and observe how the sentiment scores
change. They demonstrate that using literal mean-
ings produces higher scores for offensive speech
and negative sentiment. Similarly, we also put lit-
eral meanings to use, but differently, by creating a
textual input prompt. In this work, we also use the
euphemism dataset they created.

Knowledge-augmented Language Understand-



Term Description

old person,
late elderly
pass on death, dying
lose one’s vom}tz
lunch vomiting,
throwing up
a person
pro-life opposes
abortion
ﬁ];l(; not disabled
lavator restroom,
Y toilet
senior old person,
citizen elderly

Figure 1: Examples of collected literal descriptions for
euphemistic terms and their visual imageries.

ing. External knowledge® can be either unstruc-
tured (i.e. text) or structured (i.e. graph). To
benefit from unstructured knowledge, a text re-
triever collects related entries from an external
corpus (Karpukhin et al., 2020; Guu et al., 2020).
Conversely, structured knowledge integration may
happen in two ways: explicit methods prefer to
use knowledge in their input (Weijie Liu, 2020;
Zhang et al., 2019), and implicit methods try to
learn knowledge in their objective (Xiong et al.,
2019; Shen et al., 2020). Some exceptions (Yu

3Please check Zhu et al. (2022) for a comprehensive review
of the related literature.
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et al., 2022a; Shangwen Lv and Hu, 2020) com-
bines both: they learn to predict graph embeddings
and use these embeddings as input in their model
concurrently. Similar to us, Yu et al. (2022b); Xu
et al. (2021); Chakrabarty et al. (2021) also insert
descriptions into their textual inputs.
Visually-aided Language Understanding. Sev-
eral methods have been proposed to aid language
learning with external visual knowledge. Most of
these methods experiment on machine translation
(MT). Calixto et al. (2019) propose a latent variable
model for multi-modal MT, to learn an association
between an image and its target language descrip-
tion. Long et al. (2021); Li et al. (2022) first synthe-
size an image conditioned on the source sentence,
then use both the source sentence and the synthe-
sized image to produce translation. Caglayan et al.
(2020) obtain a lower latency in simultaneous MT
by supplying visual context. Differently, Vokeniza-
tion (Tan and Bansal, 2020) extend BERT (Devlin
et al., 2019) by implementing visual token predic-
tion objective to learn a mapping between tokens
and associated images. Most relevantly, Lu et al.
(2022) improve text-only language understanding
performance in low-resource settings by using gen-
erated imagination as visual supervision.

6 Conclusion

In this paper, we described our two-stage method
for the euphemism detection task. We first col-
lected literal descriptions for PETs, inserted these
descriptions into the model input, and showed that
such linguistic supervision greatly boosts perfor-
mance. We then supplied extra visual supervi-
sion using a text-to-image model, where we de-
note this kind of supervision as visual imageries.
We achieved a statistically significant performance
increase by using visual imageries in addition to
the term descriptions. Our qualitative analysis on
visual imageries also suggests that a text-to-image
model can be a functional tool to break down how
models interpret figures of speech.

Limitations. Due to working with a small-scale
dataset, we were able to manually collect descrip-
tions for the PETs. Collecting these descriptions
using an automatic retrieval system would be more
sophisticated. We also did not perform a detailed
analyses of the results, which could help shed light
on the contribution of each model component.
Acknowledgements. This work was supported in
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