
Proceedings of the 3rd Workshop on Figurative Language Processing (FLP), pages 154 - 159
December 8, 2022 ©2022 Association for Computational Linguistics

Adversarial Perturbations Augmented Language Models for Euphemism
Identification

Guneet Singh Kohli
Thapar University, Patiala, India
guneetsk99@gmail.com

Prabsimran Kaur
Thapar University, Patiala, India
pkaur_be18@thapar.edu

Jatin Bedi
Thapar University, Patiala, India
jatin.bedi@thapar.edu

Abstract

Euphemisms are mild words or expressions
used instead of harsh or direct words while
talking to someone to avoid discussing some-
thing unpleasant, embarrassing, or offensive.
However, they are often ambiguous, thus mak-
ing it a challenging task. The Third Work-
shop on Figurative Language Processing co-
located with EMNLP 2022 organized a shared
task on Euphemism Detection to better under-
stand euphemisms. We have used the adver-
sarial augmentation technique to construct new
data. This augmented data was then trained
using two language models, namely, BERT and
Longformer. To further enhance the overall
performance, various combinations of the re-
sults obtained using Longformer and BERT
were passed through a voting ensembler. We
were able to achieve an F1 score of 71.5 using
the combination of two adversarial Longform-
ers, two ad- versarial BERT, 1 non adversarial
BERT.

1 Introduction

Euphemisms are mild words or expressions used
instead of harsh or direct words while talking to
someone to avoid discussing something unpleas-
ant, embarrassing, or offensive. They are often
used as a sign of politeness while discussing sensi-
tive or taboo topics (Bakhriddionova, 2021), for in-
stance, using the term "Let go" instead of the word
"Fired," using "Put down" instead of "euthanized,"
or any similar phrase that would make it sound
less unappealing or unpleasant (Karam, 2011). Eu-
phemism can also be employed to disguise the truth
(Rababah, 2014) to minimize a threatening situa-
tion to create a favorable image. For instance, when
the phrase "enhanced interrogation techniques" is
used, they mean "torture" or use "armed conflict"
instead of "war". This figurative behavior of eu-
phemisms makes it ambiguous and challenging for
natural language processing techniques to handle
these words since they can be interpreted literally

in some situations. Moreover, humans might dis-
agree with what constitutes a euphemism (Gavidia
et al., 2022).

In the past, many computational approaches
for processing have been employed. A sentiment
analysis-based approach was used by (Felt and
Riloff, 2020) to handle x-phemisms (a term used
to refer to both euphemisms and dysphemisms).
In their work, they found synonym pairs and used
a weakly supervised bootstrapping algorithm to
generate semantic lexicon. These lexicons were
then used to classify phrases as euphemistic, dys-
phemistic, or neutral. (Zhu et al., 2021) worked
on detecting euphemisms used for dug names on
the internet and identifying the terms these eu-
phemisms refer to. Similarly, (Magu and Luo,
2018) also worked on a similar problem state-
ment. However, (Zhu et al., 2021) and (Magu and
Luo, 2018) interpreted euphemisms as code words,
which is different from those of the shared task
organizers. Both (Zhu and Bhat, 2021) and (Zhu
et al., 2021) considered the detection and identifi-
cation of euphemism as a masked language model
(MLM) problem where they filtered out words that
did not fit their list of euphemisms.

This paper defines our participation in the Eu-
phemism Detection shared task (Lee et al., 2022) or-
ganized for the Third Workshop on Figurative Lan-
guage Processing co-located with EMNLP 2022.
We have used the adversarial augmentation tech-
nique in combination with transformers to detect
euphemisms. A detailed explanation of our pro-
posed approach is given in Section 3.

2 Task & Data Description

Euphemism Detection is a binary classification
shared task that focuses on detecting euphemisms
in a given input statement. This shared task aims to
study the performance of Natural Language Models
on euphemisms. The data provided in the shared
task comprised a Euphemism Corpus created by

154



Preprocessing Attack Module Adversarial
Perturbation

User Module

Augmentation
Longformer 

TL: 600

BERT 
TL: 450

Longformer 
TL: 600

BERT 
TL: 450 

BERT 
TL: 500

EN
SEM

BLER

Not Euphemism

Euphemism

Input

Non-Augmented Data

Non-Augmented Data

Figure 1: Architecture of the proposed pipeline. Here TL indicates the Token length used for training.

(Gavidia et al., 2022). The raw data used for the
creation of this dataset is extracted from the Corpus
of Global Web-Based English (GloWbE) (Davies
and Fuchs, 2015), which contains text data from
websites, blogs, and forums of twenty different
English-speaking countries. The training data pro-
vided to the participants comprised 1572 sentences,
of which 466 were labeled "0," and the rest were
labeled "1". The testing data consists of 393 data
points. The participants were expected to classify
the sentences into "0" (not euphemistic) and "1" (is
euphemistic) classes.

3 Methodology

This section gives a detailed description of the
pipeline proposed. Section 3.1 and Section 3.2 pro-
vides a detailed overview of the preprocessing per-
formed on the data and the augmentation technique
used before passing the data through the models.
Section 3.4 details the models used for the training.

3.1 Data Pre-Processing
The data in its raw form is often unstructured and
comprises punctuations, unusual text, and symbols,
which make it unfit for the distillation of correct
features causing the model to underperform. Thus,
it is essential to preprocess the data before using it.
In this paper, we have performed basic preprocess-
ing involving tokenization (splitting the sentences
into words), conversion of words into lowercase,
removal of stopwords (such as a, the, an), and re-
moval of punctuation and emojis using the NLTK
library (Loper and Bird, 2002).

3.2 Augmentation
Deep learning models require a large dataset to pro-
duce higher accuracy. However, the training data
for the task comprised merely 1572 data points.
Moreover, the data was imbalanced (as mentioned

in Section 2, which could cause the model to overfit
on the predominant label ("1"). Thus, data augmen-
tation was performed for the label "0" of the dataset
using the Adversarial attack technique available
in TextAttack1 (Morris et al., 2020). TextAttack
iterates through the dataset and generates an adver-
sarial perturbation (changes in the input that causes
the model to misclassify) for each correct predic-
tion that the model makes. There are two ways to
generate adversarial perturbation:

1. Visual: is the method in which a text sequence
similar to the original sequence is generated
by changing a few characters or introducing
realistic "typos" that humans would make.

2. Semantic: is the method in which the gen-
erated sentence is semantically similar to the
original. This is done by paraphrasing the
sentence or using synonyms.

TextAttack supports both of these adversarial per-
turbation techniques. Each attack by TextAttack is
built using these four components. The first com-
ponent is Goal Function that determines whether
the attack was successful. Constraints component
checks whether the perturbation made preserves
the semantics or not.Transformations component
generates a set of potential perturbations through
deletion, insertion, or substitution of words, char-
acters, and phrases.The Search Method component
explores the transformation space to select the best
perturbation. The augmentation of the data was
done in two steps:

1. Class Imbalance Removal : We augment
466 instances of ’0’ labels with their adver-
sarial representation, which brought the final

1https://github.com/QData/TextAttackaugmenting-text-
textattack-augment

155



instance of non-euphemism instances to 932
and total data instances to 2038

2. Adversarial Augmentation: We test the dual
context training setup discussed in section 3.3.
and generate the adversarial version of all the
2038 instances.

3.3 Dual Context training setup

Inspired by the Siamese BERT(Reimers and
Gurevych, 2019) , we tried using a dual context
setup in which the input given to the language
model was as follows:
Input text: Original instance [SEP ] Adversarial
augmented instance

Here the input to the language model is the orig-
inal instance from the training data and the adver-
sarial augmented text instance from the text attack
separated by a token [SEP ]. The following setup
aims at leveraging two different perspectives of the
same instance to make the model more robust to
the other contextual representations of Euphemism.
The following structure increased the input length
of the system.

In the case of unaugmented data the input text
can be understood as follows:
Input text: Original instance [SEP ] Original in-
stance

3.4 Modeling

In this paper, we have used BERT(Devlin et al.,
2018) and Longformer (Beltagy et al., 2020) lan-
guage models to detect euphemisms. This section
gives a detailed explanation of their respective ar-
chitectures.

3.4.1 BERT
Bidirectional Encoder Representations from Trans-
formers (BERT) is used for pre-training deep bi-
directional transformers on unlabeled data to de-
velop a language understanding. The sentences
are passed through BERT as a sequence of tokens.
Before feeding the word sequences, 15% of the
words are replaced by [MASK] in each sequence.
A [CLS] is appended at the beginning of the first
line, and a [SEP] is appended at the end of each
sentence. A token, sentence, and positional embed-
ding are added to each token, as shown in Figure 2.
The truncation or padding of the sequence is done
based on the maximum sequence length used.The
maximum sequence length used for each case was
determined by finding the average length of the

Figure 2: BERT input representations

text in the dataset. These encoded sentences are
then passed through the transformer model. This
pre-trained can then be fine-tuned d by adding the
output layer depending on the task at hand.

3.4.2 Longformer
The major drawback of transformer models like
BERT is that they cannot attend to sequence lengths
longer than 512. This is because the memory
and computational requirements of self-attention
grow quadratically. Thus Longformer: The Long-
Document Transformer, a transformer whose atten-
tion pattern rises linearly with the input sequence,
was proposed. To achieve this reduced complexity
Longformer combines several attention patterns:

1. Sliding Window: Each token in the sequence
will only attend to tokens that fall under an
arbitrary window whose size is assumed to be
"w" (w/2 tokens on the right and w/2 tokens
on the left). If this is done for "l" layers, each
token would have attended to (l ∗w) adjacent
tokens. This is the reach of the attention for
a given token and is known as the receptive
field.

2. Dilated Sliding Window: To further improve
the performance of the sliding window atten-
tion a dilatation of size "d" is taken. Here "d"
represents the number of gaps between each
token in the window. The reception field of
this dilated sliding window will be (l ∗w ∗ d).

3. Global Attention (full self-attention): To en-
sure support for long-term dependencies, the
model utilizes global self-attention where, in-
stead of using three different hidden vectors
query (Q), key (K), and value (V), two sepa-
rate sets of vectors Q_s, K_s, V_s (for sliding
window), and Q_g, K_g, V_g (for global at-
tention) are used.

3.5 Ensembler

To enhance the overall performance of the proposed
pipeline, the results obtained by training:

156



Figure 3: Comparison of transformer self attention and
Longformer attention patterns

• Longformer on augmented data with the max-
imum sequence length of 600

• Longformer on augmented data with the max-
imum sequence length of 650

• BERT on augmented data with the maximum
sequence length of 450

• BERT on the preprocessed data with a maxi-
mum sequence length of 450

• BERT on the preprocessed data with a maxi-
mum sequence length of 500

are passed through a voting ensembler, and the
label with highest frequency is selected as the final
label for that sentence, as depicted in Figure 1.

4 Results and Discussion

Euphemism in speech is generally difficult to iden-
tify semantically for human beings and thus makes
it even more challenging task for the AI to map the
understanding and undergo right identification. Our
submission aims to handle the task of identifying
the Euphemism in a given sentence by modelling
Longformer and BERT in an adversarial setup.

4.1 Experimental Setting
To train the language models, we used an 80:10:10
split. We use the default hyperparameters to train
BERT and Longformers. We use a learning rate
of 1e-5 and an LR scheduler with Polynomial De-
cay and train the model for three epochs. We use
the AdamW optimizer and set the batch size to 4.
We trained the models on Tesla P100-PCIE-16GB
GPU. The experimentations using the dual context
setup yielded lower scores than the other submis-
sions to the leaderboard. We aim to focus more on
this proposed methodology and refine our approach
for further research into the idea of making a model
robust through multiple representation learning.

4.2 BERT Results Analysis
In this section we report our evaluations for the Ad-
versarial Bert and Vanilla BERT. The BERT (TL:
450, UA))2 yielded the lowest F1 score of 0.667

2’TL’ refers to token length, ’UA’ refers to Unaugmented
Data, ’A’ refers to adversarial augmented data

among all the experimentation. The main aim of
our evaluation was to highlight the performance
improvement using adversarial augmentation. On
close observation in Table 1, it can be noticed that
use of augmented data improved the F1 score for
BERT to 0.671 (TL:450) and 0.681 (TL:500). The
improvement in the F1 scores can be attributed to
the robustness introduced by fine tuning the lan-
guage model on the adversarial examples. It is to
be noted that with better hyper parameter tuning
the results could have been improved.

4.3 Longformer Results Analysis
The introduction of adversarial augmentation,
along with dual context input, increases the aver-
age token length of the sentences in the given data
set. This increase in average token size highlighted
the shortcoming of the BERT model, which can
only work up to 512 tokens, and brought about the
requirement for Longformers. The results in Table
1 highlight the improvement in the performance
of the Longformers. We achieved an F1 score of
0.689 with TL:600 and 0.704 with TL:650. The ad-
versarial examples helped create a more dynamic,
robust embedding space for the Longformer to ex-
ploit and make better predictions than the BERT.
Though Longformer has been known to perform
less than BERT in many of the Natural Language
Inference tasks in our case, they take the lead and
leverage the dual context adversarial setup quite
well.

4.4 Ensemble Modelling Results Analysis
We leveraged the individual performance of Long-
formers3 and BERT4 in a combined way by prepar-
ing three different variations of Voting Ensemble
to report our results.

1. B(TL:450, UA)+ B(TL:450, A)+B(TL:500,
A): The following ensemble yielded a F1
Score of 0.709 which was comparable to
the individual performance of the Long-
former(TL:650). The ensemble of B perform
significantly better than individual B varia-
tions by minimum of 4%

2. LF (TL:600, A)+ LF(TL:650, A)+B(TL:500,
A): Ensemble of 2 LF and the best individual
B variation reported the F1 score of 0.713
which was a slight gain from the LF(TL: 650,
A).

3Longformer has been referred to as ’LF’ in section 4.3
4BERT has been referred to as ’B’ is section 4.3

157



Model and Technique Precision Recall F1 Score
BERT (TL: 450, UA) 0.655 0.702 0.667
BERT (TL: 450, A) 0.660 0.701 0.671
BERT (TL : 500, A) 0.674 0.693 0.681
Longformer (TL : 600, A) 0.681 0.701 0.689
Longformer (TL : 650, A) 0.714 0.699 0.704
Ensemble (Longformer (TL : 600, A)+Longformer (TL : 650, A)+
BERT (TL: 450, UA)+BERT (TL: 450, A)+BERT (TL: 500, UA) 0.716 0.714 0.715

Ensemble (Longformer (TL : 600, A)+Longformer (TL : 650, A)+
BERT (TL: 500, A)

0.708 0.719 0.713

Ensemble (Longformer (TL : 600, A)+BERT (TL: 450, A)+
BERT (TL: 500, A)

0.723 0.702 0.709

Table 1: Experimentation results of model variations. Here ’TL’ is maximum token length. ’A’ represents that the
model was trained on the adversarial augmented data, and ’UA’ indicates the model trained on unaugmented data

3. LF (TL:600, A)+ LF(TL :650, A)+ B(TL:450,
UA)+ B(TL:450, A)+ B(TL: 500, UA): This
ensemble was the best performing submis-
sion in this task for our team. The ensem-
ble reported F1 score of 0.715. The results
are comparable to the previous ensemble thus
highlighting the dominance of LF in ensemble
setup

5 Conclusion

In this paper, we proposed an Adversarial Pertur-
bated (TextAttack) BERT and Longformer model,
which aims to create a robust model capable of iden-
tifying the Euphemism in text. We experimented
with different token lengths and eventually created
a voting ensemble model that combined our other
experiments into a single encapsulation. The en-
semble of two adversarial Longformers, two adver-
sarial BERT, and one non-adversarial produced an
F1 score of 0.715, which was our best submission.
The use of dual context input to the models falls
short of the expected performance boost and mo-
tivates us to look further into the concept of using
multiple representations. We aim to experiment
with different methods to combine these represen-
tations into a single exemplary representation that
can pass into these language models to solve the
downstream tasks.

6 Limitations

In this paper, we propose using dual context input
with an adversarial training set up to approach the
challenge of Euphemism Detection. The approach
currently failed to make a significant impact, as
reflected by our system performance on the leader-

board. On further analysis, the lack of high per-
formance can be attributed to a selection non ideal
set of hyperparameters while training the system.
Combining two different contextual representations
requires introducing an Attention module or exper-
imenting with other methods to that can result in a
better pair encoding of the input.

References
Dildora Oktamovna Bakhriddionova. 2021. The

needs of using euphemisms. Mental Enlightenment
Scientific-Methodological Journal, 2021(06):55–64.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Mark Davies and Robert Fuchs. 2015. Expanding hori-
zons in the study of world englishes with the 1.9 bil-
lion word global web-based english corpus (glowbe).
English World-Wide, 36(1):1–28.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Christian Felt and Ellen Riloff. 2020. Recognizing
euphemisms and dysphemisms using sentiment anal-
ysis. In Proceedings of the Second Workshop on
Figurative Language Processing, pages 136–145.

Martha Gavidia, Patrick Lee, Anna Feldman, and Jing
Peng. 2022. Cats are fuzzy pets: A corpus and analy-
sis of potentially euphemistic terms. arXiv preprint
arXiv:2205.02728.

Savo Karam. 2011. Truths and euphemisms: How eu-
phemisms are used in the political arena. 3L, Lan-
guage, Linguistics, Literature, 17(1).

158



Patrick Lee, Martha Gavidia, Anna Feldman, and Jing
Peng. 2022. Searching for pets: Using distributional
and sentiment-based methods to find potentially eu-
phemistic terms. arXiv preprint arXiv:2205.10451.

Edward Loper and Steven Bird. 2002. Nltk: The natural
language toolkit. arXiv preprint cs/0205028.

Rijul Magu and Jiebo Luo. 2018. Determining code
words in euphemistic hate speech using word embed-
ding networks. In Proceedings of the 2nd workshop
on abusive language online (ALW2), pages 93–100.

John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation,
and adversarial training in nlp. arXiv preprint
arXiv:2005.05909.

Hussein Abdo Rababah. 2014. The translatability and
use of x-phemism expressions (x-phemization): Eu-
phemisms, dysphemisms and orthophemisms) in the
medical discourse. Studies in Literature and Lan-
guage, 9(3):229–240.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Wanzheng Zhu and Suma Bhat. 2021. Euphemistic
phrase detection by masked language model. arXiv
preprint arXiv:2109.04666.

Wanzheng Zhu, Hongyu Gong, Rohan Bansal, Zachary
Weinberg, Nicolas Christin, Giulia Fanti, and Suma
Bhat. 2021. Self-supervised euphemism detection
and identification for content moderation. In 2021
IEEE Symposium on Security and Privacy (SP),
pages 229–246. IEEE.

159


