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Abstract

Although differential privacy (DP) can protect
language models from leaking privacy, its in-
discriminative protection on all data points re-
duces its practical utility. Previous works im-
prove DP training by discriminating private
and non-private data. But these works rely on
datasets with prior privacy information, which
is not available in real-world scenarios. In this
paper, we propose an Adaptive Differential
Privacy (ADP) framework for language model-
ing without resorting to prior privacy informa-
tion. We estimate the probability that a linguis-
tic item contains privacy based on a language
model. We further propose a new Adam al-
gorithm that adjusts the degree of differential
privacy noise injected to the language model
according to the estimated privacy probabili-
ties. Experiments demonstrate that our ADP
improves differentially private language mod-
eling to achieve good protection from canary
attackers.

1 Introduction

Language modeling is a foundation problem in nat-
ural language processing (Bommasani et al., 2021).
Recent large language models (Brown et al., 2020;
Zeng et al., 2021) are usually trained at scale. Un-
fortunately, large language models have a tendency
to remember training data in the absence of ap-
propriate privacy protection mechanisms (Carlini
et al., 2019, 2021). Since data, which are usually
collected from public sources, e.g., tweets, blogs,
may contain sensitive information (personal ad-
dress, SSN numbers, and so on) learning a safe
large language model has become increasingly im-
portant.

In recent years, differential privacy (Dwork,
2008; Dwork et al., 2014) has become a key pri-
vacy preservation method, which attempts to ran-
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domize the training algorithm so that the model
does not rely too much on any single training in-
stances. Abadi et al. (2016) propose Differential
Private Stochastic Gradient Descent (DP-SGD) to
protect deep learning models by adding random
noise to gradients. However, traditional differen-
tial privacy ignores individual attributes of data
(McMahan et al., 2018). This overly pessimistic
privacy protection results in poor performance or
even mis-convergence of training for differentially
private language models (Anil et al., 2021). There-
fore, approaches are proposed to mitigate this prob-
lem by treating private and non-private data sep-
arately during the DP training process, such as
selective differential privacy (Shi et al., 2021) and
sensory-based privacy-χ (Qu et al., 2021). These
methods require training data to provide privacy
information as a hard label. Unfortunately, it is
usually difficult and expensive to manually anno-
tate privacy labels to data. Other studies (Xu et al.,
2019; Tesfay et al., 2019) learn to detect privacy
information in unstructured texts. However, the pre-
requisite is knowing keywords or reference texts
of privacy information (Neerbek, 2020). Therefore,
learning differentially private language models on
data without prior privacy information is an open
problem yet to be investigated.

In this paper, we propose an Adaptive Differen-
tial Privacy (ADP) framework without resorting
to prior privacy information. The basic assump-
tion behind ADP is that linguistic items containing
private information do not occur frequently in real-
world texts. Hence, the probability that a linguistic
item contains privacy information (hereinafter pri-
vacy probability) is inversely proportional to the
frequency of the linguistic item occurring in the
dataset. With this assumption, we can estimate the
privacy probability of a linguistic item based on
a language model. After estimating these proba-
bilities, we relax the constraint of differential pri-
vacy, and propose an adaptive differential privacy
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method, which adjusts the Guassian noise of dif-
ferential privacy based on privacy probabilities. To
enable this adaptive differential privacy strategy,
we further present Adaptive-DP-Adam Algorithm
to train differentially private language models.

To evaluate our approach, we train transformer-
based language models, and compare the perfor-
mance of adaptive differential privacy against tra-
ditional differential privacy methods. Additionally,
we verify the protection effectiveness of ADP mod-
els with canary attackers (Carlini et al., 2019). The
results suggest that our adaptive differential pri-
vacy method can achieve good performance and
protection from canary attackers.

The main contributions of this paper are three-
fold.

• We propose a method to automatically esti-
mate the probability that a linguistic item con-
tains privacy information, relaxing the require-
ment of prior privacy information of previous
methods.

• A new Adaptive-DP-Adam algorithm is pro-
posed, which adaptively adjusts the magnitude
of differential privacy noise to be injected into
language models according to privacy proba-
bilities.1

• We conduct experiments to validate the ef-
fectiveness of the proposed adaptive differen-
tial privacy in improving the performance of
differentially private models and protecting
sensitive information.

2 Related Work

Large language models (Brown et al., 2020; Zhang
et al., 2020) have been attracting growing atten-
tion. Powerful large language models can achieve
substantial improvements on a wide range of down-
stream NLP tasks. Unfortunately, large language
models have a tendency to memorize training data
(Carlini et al., 2019). Carlini et al. (2021) have
successfully induced GPT-2 (Radford et al., 2019)
to output sensitive information in its training data.

Differential privacy (Dwork, 2008; Dwork et al.,
2014) is widely used to protect private information
of data. Abadi et al. (2016) propose the DP-SGD
algorithm to train deep learning models, and apply
moment accounting to calculate cumulative pri-
vacy loss during training. Although DP-SGD can

1Code is available at https://github.com/
flamewei123/ADP.

limit the risk of leaking information from training
data, random noise on gradients usually degrades
corresponding models (Li et al., 2021), and even
cause training to not converge when a large model
is trained.

To improve DP-SGD, one way is to change train-
ing settings (Li et al., 2021; Hoory et al., 2021),
e.g., increasing the batch size or decreasing clip-
ping norm. However, these methods are usually
at a higher cost. Other attempts to improve the
utilization of dataset information by relaxing the
constraints of differential privacy. For example,
Ebadi et al. (2015) propose personalized differenti-
ated privacy to provide different levels of privacy
protection for different users. Kotsogiannis et al.
(2020) develop one-sided differential privacy that
only protects sensitive users. Shi et al. (2021) in-
troduce Selective Differential Privacy to add noise
only into private data. These methods all need
to know which items in the dataset contain pri-
vate information, which is prohibitively expensive
for large-scale datasets. There are some previous
works (Xu et al., 2019; Tesfay et al., 2019) detect-
ing sensitive information in unstructured texts, but
relying on labeled keywords or reference texts.

3 Preliminary

We will introduce differential privacy (Dwork,
2008; Dwork et al., 2014), and the DP-SGD al-
gorithm (Abadi et al., 2016) as preliminaries in this
section.

3.1 Differential Privacy

Intuitively, an algorithm is (ϵ; δ)-DP if the output
of the algorithm cannot be used to probabilistically
determine the presence of a single record in the
dataset by a factor of eϵ. Formally, an algorithm
A satisfies (ϵ; δ)-DP if for all datasets (D1;D2)
that differ from each other by at least one instance,
and for any set S, we have P{A(D1) ∈ S} ≤
eϵP{A(D2) ∈ S} + δ, where smaller ϵ values
indicate a stronger privacy protection.

3.2 DP-SGD Optimization

The basic idea of DP-SGD is to clip each example
gradients and add noise during model training.

Specifically, for a batch of size L, the loss func-
tion is L(θ) = 1

L

∑
xi
L(xi; θ). For each sample xi

in the batch, the gradient of g(xi) is first cut us-
ing the l2 norm according to the gradient clipping
level C, so that the maximum value of loss does
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not exceed C:

g(xi) =
1

max{1, ∥∇θL(xi; θ)∥2 /C}
∇θL(xi; θ).

(1)
For a batch Lt, after the sum of clipping gradients
of all samples in Lt is calculated, the Gaussian
noise z ∼ N (0, σ2C2I) is added to the sum of
gradients. Hence a new gradient ˜gLt required for
back propagation is computed as follows:

˜gLt =
1

L
(
∑

xi
g(xi) + zt). (2)

The smaller C can lead to more stable training.
And a smaller value of σ indicates smaller noise z.

4 Adaptive Differential Privacy

In this section, we will elaborate the proposed
Adaptive Differential Privacy. First, we intro-
duce a method to evaluate the privacy probability
of a linguistic item. Second, we propose an adap-
tive noise method, which adjusts the noise magni-
tude according to the privacy probability of an item
in DP-SGD process. Finally, an Adam gradient
optimization algorithm based on adaptive noise is
proposed.

4.1 Privacy Probability Evaluation
The range of privacy is not fixed but relying on its
owner, which makes it hard to judge the privacy.
To solve this problem, we introduce the following
assumption.

Assumption 1: Texts containing privacy infor-
mation do not occur frequently in a large dataset.

We assume that the probability of texts contain-
ing private information is related to the frequency
of texts appearing in dataset. Hence, the judgment
of privacy can be transformed into the evaluation of
the text frequency, which means the privacy proba-
bility of a token sequence is in direct proportion to
the frequency of this sequence.

We then introduce a simple yet effective method
to measure the frequency of text based on large-
scale pre-trained language models. Giving a token
sequence s = x1, x2, ..., xn, the perplexity of the
sequence is computed as follows:

P(s) = exp(− 1

n

n∑

i=1

log fθ(xi|x1, ..., xi−1)).

(3)
When the perplexity is low, it indicates that the
average probability of text prediction is high. Large

language models like GPT use a huge amount of
text data for training. Hence, we consider such a
large language model to be a trustworthy estimator.

The perplexity from a trustworthy language
model is inversely proportional to the occurrence
frequence of the text o(s) ∝ 1

P(s) , and the privacy
probability of s is proportional to the perplexity
of s: ρ(s) ∝ P(s). Based on this, we propose a
formula for calculating the privacy probability:

ρ(s) = normalize(P(s)), (4)

where s ∈ D and normalize is a normalization op-
erator that transforms values into probability values
(i.e., falling between 0 and 1).

The above method that estimates the privacy
probability is not precise enough, which will in-
evitably cause some non-private and long-tail in-
stances to be identified as private samples. How-
ever, from the perspective of privacy protection,
such a cost is still acceptable.

4.2 Adaptive Noise
During differential privacy training, in the batch
B = s1, s2, ..., sL of size L, the privacy probability
of a token sequence si ∈ B is ρ(si), and the Gaus-
sian noise of B is zB = N (0, C2σ2I2), where σ is
a noise multiplier, and C is the clipping norm. To
improve the target model performance, we intro-
duce the privacy weight to change the magnitude
of Gaussian noise

γB =

∑L
i ρ(si)

L
. (5)

The privacy weight denotes a privacy probability
averaged over batch B. We incorporate it to the
Gaussian noise:

zBadp = γB · N (0, C2σ2I2). (6)

Through this method, we adaptively change the
noise of every batch according to its privacy weight.

4.3 Adaptive DP Optimization
With the adaptive noise, we further develop a pri-
vacy mechanism to train models. Abadi et al.
(2016) propose DP-SGD that adds Gaussian noise
to gradients and applies stochastic gradient descent
(SGD) to train private deep learning models. We
incorporate our proposed adaptive noise into DP-
SGD.

Such adapted framework is also suitable for
other optimization algorithms such as Adam. The
whole procedure of Adaptive-DP-Adam is de-
scribed in Algorithm 1.

23



Algorithm 1: Adaptive-DP-Adam

1 Input: dataset D = {xi}Ni=1, a large
language model fLM , loss function L(θ)

2 Parameters: learning rate η, noise level σ,
batch B of size L, clipping norm C, step
E, Adam parameters {θ0,m0,m1, δ1, δ2}
1: Let G(φ) = 0
2: for all t ∈ T do
3: Sample a batch Bt, with sampling

probability L/N
4: Calculate γBt based on Eq. (5)
5: for all xi ∈ Bt do
6: Clip gradients

g̃t(xi)← gt(xi) ·min(1, C/ ∥gt(xi)∥2)
7: end for
8: Generate adaptive noise zt based on Eq. (6)
9: Calculate average gradients

ḡt(xi) =
1
L(zt +

∑L
i=1 g̃t(xi))

10: Update parameters θ using usual Adam
11: end for
12: return θT

5 Experiments

5.1 Settings

Dataset We used Wikitext-103 (Merity et al.,
2016) to train our model, which is a widely used
dataset for language modeling from a set of verified
Good and Featured articles on Wikipedia.

Baselines We have two baselines, one without
DP (denoted by “No-DP”), and the other trained
with DP-SGD (denoted by “DP-SGD”). We refer
to our models trained with ADP-SGD as “ADP”.

Hyper-parameters We used a 12-layer trans-
former decoder to train the language model with
hidden size of 1024 and batch size of 4096, training
20 epoches with inital learning rate of 5 × 10−5.
The clipping norm C was set to 0.001, and the
noise multiplier σ was 1 or 5.

5.2 Canary Attacker

Canary insertion is proposed by Carlini et al.
(2019), which inserts random sequences called ca-
naries into the training dataset and calculates the
exposure for the inserted canaries during testing
to measure whether the model memorizes these
canaries. In our setting, we injected “My ID is
955320” into the Wikitext-103 dataset for 10, 100,
and 1000 times to make the differences between

model test loss test PPL sigma epsilon
No-DP 7.08 256.66 - -
DP-SGD 13.08 7582.65 1.0 4.22
ADP 12.65 4426.05 1.0 6.35
No-DP 7.08 256.66 - -
DP-SGD 17.65 20815.23 5.0 0.1
ADP 14.85 8635.66 5.0 2.47

Table 1: The performance of language models trained
by our method and baselines. We compare results by
varying the noise level σ.

models more salient. Given a canary s[r], and a
model with parameters θ, the exposure of s[r] is
calculated as:

exposure = log2 |R| − log2 rankθ(s[r]), (7)

where R is the set of all possible results, and
rank(s[r]) is the position of s[r] inR. The lower
the exposure, the safer the model is.

5.3 Results
Model Performance We first evaluated models
trained by different privacy settings on language
modeling task. Both models were trained using
a transformer decoder architecture. As shown in
Table 1, DP-SGD performs poorly, and larger noise
σ further worses the model. In contrast, our ADP
helps model to alleviate the decaying performance,
and the utility grows when the noise multiplier σ
is large. Although the privacy guarantee ϵ of ADP
increases compared to DP-SGD when the noise
multiplier σ is 1 and 5, the privacy guarantee of
ADP is within the acceptable range. It suggests that
our ADP can improve the performance of differen-
tially private language models with tight privacy
guarantee.

Protection Against Attacker Our second group
of experiments, described in section 5.2, is to test
the model memorization of private information.
We evaluated models trained on the Wikitext-103
dataset injected canaries. We used text generation
to evaluate the exposure of canaries from differ-
ent language models. As can be seen from Fig-
ure 1, even when private item appears as many as
1000 times in the data, the ADP model performs
significantly better than the non-DP model. How-
ever, exposures of the ADP model are larger than
the DP-SGD model. It suggests that ADP method
can protect privacy information from leaking from
training data, but the protection performance is
slightly worse than DP-SGD.
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Figure 1: The exposure of canaries from different lan-
guage models. All models were trained for 20 epoches.

6 Conclusion

We have presented a new method to estimate the
privacy probability of a linguistic item when the
privacy information of the dataset is not known.
With estimated privacy probabilities, we propose
adaptive differential privacy (ADP), to improve the
model utility. We also present a privacy optimiza-
tion algorithm, Adaptive-DP-Adam, to train differ-
entially private models. Our experiments show that
models trained with ADP achieve better utilities
than traditional DP and are capable of protecting
sensitive information from being leaked.
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