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Abstract

With the recent surge of NLP technologies in
the financial domain, banks and other finan-
cial entities have adopted virtual agents (VA)
to assist customers. A challenging problem
for VAs in this domain is determining a user’s
reason or intent for contacting the VA, espe-
cially when the intent was unseen or open dur-
ing the VA’s training. One method for handling
open intents is adaptive decision boundary
(ADB) post-processing, which learns tight de-
cision boundaries from intent representations
to separate known and open intents. We pro-
pose incorporating two methods for supervised
pre-training of intent representations: prefix-
tuning and fine-tuning just the last layer of a
large language model (LLM). With this pro-
posal, our accuracy is 1.63% - 2.07% higher
than the prior state-of-the-art ADB method
for open intent classification on the bank-
ing77 benchmark amongst others. Notably, we
only supplement the original ADB model with
0.1% additional trainable parameters. Abla-
tion studies also determine that our method
yields better results than full fine-tuning the
entire model. We hypothesize that our find-
ings could stimulate a new optimal method
of downstream tuning that combines parame-
ter efficient tuning modules with fine-tuning a
subset of the base model’s layers.

1 Introduction

As the popularity of virtual agent (VA) dialogue
systems increases and their application in the fi-
nance domain is explored, the problem of in-
tent classification demands greater attention. Sev-
eral recent finance-specific VAs leverage techni-
cal advancements to respond to natural language
queries (Galitsky and Ilvovsky, 2019; Khan and
Rabbani, 2020). Determining the user’s intent en-
sures that the VA can appropriately tailor its re-
sponses and/or perform relevant actions. Initial
works in intent classification limited the task to
classifying utterances as one of N known intents
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Utterance Label
When will I get my card? Card Arrival
What exchange rates do you offer? Exchange Rate
My card hasn’t arrived yet. Card Arrival

Is it a good time to exchange? Exchange Rates

Open
Open

Is it possible to get a refund?
Why has my withdrawal not posted?

Table 1: Example user utterances and associated in-
tent labels from banking77 dataset (Casanueva et al.,
2020). In this example, only Card Arrival and Ex-
change Rate intents were known in training and thus re-
fund and withdrawal related requests are Open intents
in this context.

and achieved high accuracy (Weld et al., 2021).
However, as depicted in Table 1, real-world appli-
cations often encounter intents unseen in training
data that can be considered as open in the current
context. Accounting for the open class establishes
an (N + 1)-class classification task (Shu et al.,
2017), where the open class is used as a label for
any unidentified intent.

An optimal classifier for this problem must bal-
ance correctly labelling known-class utterances
while avoiding mistakenly classifying open ut-
terances as one of the known classes. (Zhang
et al., 2021a) addresses this problem by proposing
a novel loss function to learn an adaptive decision
boundary (ADB) for each known intent. At in-
ference, samples that do not fall within any ADB
are classified as open. Compact intent represen-
tations are required as input for the ADB post-
processing learning step and in the case of (Zhang
et al,, 2021a) the representations are learnt by
fine-tuning the last layer of BERT (Devlin et al.,
2019). Since most intent classification methods
require post-processing on intent representations,
our work focuses on deriving richer representa-
tions by leveraging large language models (LLM)
in an efficacious manner while still minimizing
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trainable parameters.

Following the introduction of the transformer in
(Vaswani et al., 2017a), an influx of LLM archi-
tectures have continually progressed state-of-the-
art (SOTA) performance on many natural language
processing (NLP) tasks (Otter et al., 2021). Usu-
ally these models are pre-trained on a general self-
supervised learning task, after which they are fine-
tuned for a specific task. Fine-tuning such a model
can be computationally prohibitive due to the im-
mense number of trainable parameters. Further-
more, (Kaplan et al., 2020) found that the most
important factor for LLM performance is likely
model size, indicating that development of even
larger models is probable. Inspired by in-context
prompting, (Li and Liang, 2021) proposed prefix
tuning as a parameter efficient alternative to fine-
tuning for natural language generation (NLG). The
LLM’s parameters are frozen and trainable pre-
fix tokens are prepended to the input sequence.
Prefix-tuning has been adapted to natural language
understanding (NLU) and performs comparably to
full fine-tuning across scales and tasks (Liu et al.,
2022).

We achieve SOTA results by augmenting the
pre-training architecture of ADB open intent clas-
sification (Zhang et al., 2021a) with prefix-tuning.
The combination of prefix-tuning with fine-tuning
only the last transformer layer was motivated by
(Kumar et al., 2022), which discovered that fine-
tuning the entire model can distort pre-trained
features. We find that alone, both prefix-tuning
or fine-tuning the last layer under-performs fine-
tuning all of BERT but when trained in tandem,
exceeds full fine-tuning.

The rest of this paper is structured as follows:
Section 2 summarizes prior works in both in-
tent classification and parameter efficient tuning
(PET). Our methodology and model architecture
are defined in Section 3. In Sections 4 and 5 re-
spectively, we provide our experimentation struc-
ture and corresponding results as well as several
ablations. We finish with a conclusion and brief
discussion regarding limitations and ethics.

2 Related Works

2.1 Financial Virtual Agents

The effectiveness of VAs has led to their adoption
in the financial domain. (Galitsky and Ilvovsky,
2019) demonstrated an exemplary session with a
financial VA where the user queried for invest-
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ment advice. CalFE leverages commercial chatbot
frameworks to train a finance-specific VA (Khan
and Rabbani, 2020). (Ng et al., 2020) evaluates
the impact of a VA’s social presence on usage in-
tention in VAs for finance. All of these works re-
quire extracting intent from user utterances.

2.2 Intent Detection

Intent classification is a well-established NLU task
but most research limits the problem to known
classes (Zhang et al., 2019; E et al., 2019; Qin
et al.,, 2019; Zhang et al., 2021b). While hav-
ing prior knowledge of all expected intents is
ideal, this is rarely possible in a production en-
vironment, especially for new dialogue systems.
More realistically, a subset of intents are antici-
pated and new intents are discovered after deploy-
ment. (Brychcin and Kral, 2017) recognized the
challenge of identifying intents prior to training
and proposed an unsupervised method to group
intents, but by doing so, likely ignored informa-
tion available in the already identified intents. (Xia
et al., 2018) employed zero-shot learning to iden-
tify emerging intents but used an LSTM which
is hindered by non-parallelized learning and chal-
lenges in propagating long-range dependencies.
The same issue is present in DeepUnk, a BILSTM-
based intent classification method using margin
loss (Lin and Xu, 2019). (Zhan et al., 2021) shared
our open intent classification problem formulation
but synthetically generated out-of-domain sam-
ples for training which may not be as realistic as a
fine-grained open class representation.

Our work directly extends the ADB approach to
establishing an open class representation (Zhang
et al.,, 2021a). The novelty of our adaptation is
in leveraging prefix tuning in combination with
partial fine-tuning to improve the pre-training of
known intent representations without drastically
increasing the number of trainable parameters.
In parallel with our work, (Zhang et al., 2022)
extended their ADB approach to learn distance-
aware intent representations. Doing so resulted
in comparable performance to our modification
of their original approach. However, our tuning
method is model-agnostic and can easily be incor-
porated with their distance-aware representation
learning, likely improving the SOTA further.

2.3 Parameter Efficient Tuning

The desire for PET quickly emerged following
the introduction of LLMs. Adapter modules in-



sert task-specific parameters sequentially between
transformer layers while the rest of the model
remains frozen (Houlsby et al., 2019). (Li and
Liang, 2021) and (Lester et al., 2021) simultane-
ously substantiated the efficacy of prepending to-
kens to attention mechanisms as a means of ef-
ficient tuning. In (Li and Liang, 2021), the pre-
fixes are applied at each layer of the transformer
while (Lester et al., 2021) only prepends to the
input sequence. (Liu et al., 2022) applied the
same method to NLU tasks using deep prefixes
with optional reparameterization. Without repa-
rameterization, simple embeddings are learnt for
the prefixes. Reparameterization inserts a multi-
layer perceptron (MLP) between the embeddings
and prefix tokens which allows for more complex
embeddings.

Recently, (He et al., 2022) determined the the-
oretical impact of various PET methods and de-
duced that they are all modifications of a simi-
lar function. Allocating additional parameters to
other PET modules as suggested by (He et al.,
2022) could optimize intent representation beyond
what is possible with prefixes alone. For now we
limit our work to the most efficient method for low
resource settings, prefix-tuning. To the best of our
knowledge, this is the first PET work to combine
partial fine-tuning with prefix-tuning.

3 Methodology

In this section we explain our procedure for open
intent classification. Section 3.1 describes prefix-
tuning, the method we supplement partial fine-
tuning with. Section 3.2 provides a brief summary
of training the original ADB method that we have
extended (Zhang et al., 2021a).

3.1 Prefix-Tuning

Prefix-tuning prepends trainable prefix tokens
Py, P, in front of Key and Value vectors of multi-
head attention in each transformer layer. The at-
tention mechanism is applied to the concatenation
of prefix and original tokens. Equation 1 details
the computation.

head = Softmaz(Q * Concat(Py, K)T)

(1
x Concat(P,, V)

Where Q, K, and V are the Query, Key and Value
matrices from the original transformer (Vaswani
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Figure 1: Pre-training architecture for learning intent
representations. Orange blocks denote trainable param-
eters while blue are fixed. For this concrete example,
the prefix length has been set to two, but this value is a
tunable hyperparameter.

et al., 2017b). P, and P, are the additional pre-
fix tokens and are prepended to the Key and Value
matrices.

Often, prefix-tuning methods use a MLP to
reparameterize the prefix since directly embedding
can lead to unstable training and performance de-
crease (Li and Liang, 2021). However, (Liu et al.,
2022) found that for NLU tasks, the efficacy of
reparameterization is dependent on the task. From
our experiments, we determine that reparameteriz-
ing the prefixes is crucial for intent classification.
Following training, the MLP weights and biases
from reparameterization are dropped and only pre-
fixes are kept.

3.2 Training

Figure 1 illustrates our pre-training architecture of
prefix-tuning plus tuning the last transformer layer
to extract intent representations. The orange com-
ponents of the diagram are trainable and the blue
are frozen. This example shows a prefix length
of two, but the length is a flexible hyperparame-
ter. We detail our entire hyperparameter settings in
Section 4.2. The outputs of BERT are first fed into
a mean-pooling function to aggregate the sequence
into a single vector z; as described by Equation 2:



BANKING 00S StackOverflow

KIR Method Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score
DeepUnk 64.21 61.36 81.43 71.16 47.84 52.05
250 (K + 1)-way 74.11 69.93 / / 68.74 65.64
? ADB 78.85 71.62 87.59 77.19 86.72 80.83
PFT-ADB 80.14 72.86 88.03 78.85 87.60 80.78
DeepUnk 72.73 77.53 83.35 82.16 58.98 68.01
509 (K + 1)-way 72.69 79.21 / / 75.08 78.55
7 ADB 78.86 80.90 86.54 85.05 86.40 85.83
PFT-ADB 80.40 82.44 87.60 86.87 87.06 86.22
DeepUnk 78.52 84.31 83.71 86.23 72.33 78.28
750 (K + 1)-way 81.07 86.98 / / 81.71 85.85
7 ADB 81.08 85.96 86.32 88.53 82.78 85.99
PFT-ADB 82.76 87.35 88.94 90.93 83.46 86.61

Table 2: Main results for known intent ratios (KIR) 25%, 50%, and 75% on BANKING, OOS, and StackOverflow
datasets. Average accuracy and macro F1-Score are reported over all classes.

x; = mp([CLS|, Toky,Toks, ...,Toky)  (2)
where 7 refers to the current training sample. A
dense layer transforms the vector to the intent rep-
resentation feature space and the resultant vector
is finally passed to a linear classifier. We pre-train
on known intents and their labels with softmax as
the loss function to optimize both the prefix tokens
and the last transformer layer. Equation 3 is the
softmax loss:

I 1 Zn: log( et )
08§ = —— 0g(——

(L Zngl e
where n is the batch size and z; refers to the output
logits of 7, class.

Following pre-training, the intent representa-
tions are extracted from our model for ADB post-
processing. ADB learns a tight spherical decision
boundary for each known intent. At inference, in-
tent representations that fall outside of all decision
boundaries are classified as open. For clarification,
the only alteration to the ADB method we employ
is the addition of prefix tokens in Figure 1. See
(Zhang et al., 2021a) for more information regard-
ing decision boundaries and other training details.

3

4 Experiments

4.1 Datasets

BANKING: A dataset of 77 banking intents with
samples summing to 13,083 banking-specific
customer service queries (Casanueva et al., 2020).
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It is also commonly referred to as “banking77”
but (Zhang et al., 2021a) uses “BANKING” and
since we are comparing our results primarily with
them, we conform to their choice.

00OS: A subset of CLINCS50 specifically de-
signed for out-of-scope intent prediction (Larson
et al., 2019) with 22,500 and 1,200 in and out of
domain samples respectively over 150 different
intents spanning 10 domains.

StackOverflow: = The processed version of
the StackOverflow dataset (Xu et al.,, 2015),
which has 20 different intents and 1,000 samples
for each.

4.2 Experiment Settings

In accordance with previous methods, we sample
25%, 50%, and 75% of intent classes randomly
during training as the “known” classes. The re-
maining are set aside as open classes and removed
from training sets. We use BERT (bert-base-
uncased) provided by Hugging Face (Wolf et al.,
2020) to extract intent representations from utter-
ances. The learning rate for prefixes and trans-
former parameters is set to 2e-5 since experiment-
ing with setting different learning rates for pre-
fixes and last layer of transformer did not consis-
tently lead to a performance increase. All experi-
ments are conducted on a NVIDIA 2080TI GPU.
To fairly compare our method, we keep other hy-
perparameters the same as (Zhang et al., 2021a).
For all results we average performance over ten
random seeds.



BANKING 00S StackOverflow

KIR Method Open Known Open Known Open Known
DeepUnk 70.44 60.88 87.33 70.73 49.29 52.60
259 (K + 1)-way 80.12 69.39 / / 74.86 63.80
? ADB 84.56 70.94 91.84 76.80 90.88 78.82
PFT-ADB 85.65 72.19 92.11 78.50 91.58 78.62
DeepUnk 69.53 77.74 85.85 82.11 43.01 70.51
50% (K +1)-way 67.26 79.52 / / 71.88 79.22
? ADB 78.44 80.96 88.65 85.00 87.34 85.68
PFT-ADB 80.02 82.51 89.34 86.83 88.17 86.02
DeepUnk 58.54 84.75 81.15 86.27 37.59 81.00
750, (K + 1)-way 60.71 87.47 / / 65.44 87.22
7 ADB 66.47 86.29 83.92 88.58 73.86 86.80
PFT-ADB 69.18 87.66 86.80 90.96 74.78 87.40

Table 3: Open and known comparison of main results for known intent ratios 25%, 50%, and 75% on BANKING,
0O0S, and StackOverflow datasets. F1-Score and macro F1-Score are reported for open class and known classes

respectively.

Regarding prefix-specific settings, we use repa-
rameterization with a hidden size of 512 unless
otherwise specified. The overall parameter size
is determined by the prefix length. In this task,
we found that enlarging the prefix length did not
lead to a consistent performance increase due to
its low-rank bottleneck. (He et al., 2022) also dis-
cusses that allocating additional parameter in self-
attention is only worthwhile if they make up less
than 0.1% of the parameter budget. Therefore,
we choose our default prefix length as 10, which
equates to roughly 0.1% of BERT’s trainable pa-
rameters.

4.3 Baselines

We compare our results to the most competitive
open intent classification methods: DeepUnk (Lin
and Xu, 2019), (K + 1)-way (Zhan et al., 2021),
and the ADB method we directly extend (Zhang
etal., 2021a). The DeepUnk results are taken from
(Zhang et al., 2021a) which replaced the BiLSTM
with BERT to generate intent representations for
fair comparison. (Zhan et al., 2021) also uses
BERT as its encoder but keeps just the CLS to-
ken’s final hidden state instead of pooling the en-
tire sequence. (Zhan et al., 2021) did not test on
the same OOS split and cells corresponding to that
configuration are left blank for tables in Section 5.

5 Results

Our main results and respective baseline compar-
isons are presented in Tables 2 and 3. Table 2
is limited to accuracy averaged over all classes,
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including the open class and macro F1 over the
same set of classes. For a fine-grained analysis of
open intent performance, Table 3 contrasts the F1
score of the open class with the macro F1 over the
remaining known classes. PFT-ADB denotes our
method of adding prefix tuning to ADB and the
best result for each section is in boldface.

For each dataset we tested, PFT-ADB improves
performance on all prior methods with the mi-
nor exception of StackOverflow F1-Score and
known score. Specifically, as shown in Table
2, we achieve accuracy improvements of (1.63%,
1.95%, 2.07%) on BANKING, (0.50%, 1.22%,
3.03%) on OOS, and (1.01%, 0.76%, 0.82%) on
StackOverflow for known intent ratios (25%, 50%,
75%). The consistency of our results across con-
figurations suggests that paying closer attention
to pre-training intent representations can enhance
the distinction of decision boundaries in the post-
processing step. Additionally, we do not add a
significant number of trainable parameters to ex-
isting methods (only 0.1%), successfully avoiding
trading substantial costs for performance increase.
Note that our results are comparable to that of
the most recently released DA-ADB (Zhang et al.,
2022) model. We believe that due to their or-
thogonal nature, DA-ADB and our approach could
be combined together for further performance im-
provements.

We note that the dataset with the lowest per-
formance gain is StackOverflow. (Zhang et al.,
2021a) found that their novel post-processing
method, ADB, was most effective on this dataset



Method Accuracy Fl-score Open Known
Emb 64.40 68.56  66.62 68.38
MLP 81.56 8589 7598 8597
Emb+12th L 86.40 88.15  84.44 88.19
MLP+12thL  90.07 91.52 8848 91.54
FFT-NoPT 87.56 89.20 85.71 89.24
ADB 86.32 88.53  83.92 88.58

Table 4: Experiments on the impact of different pre-
fix encoding approaches with and without fine-tuning
the last layer of transformer. We use OOS dataset with
75% known Intent Ratio. “Emb” refers to embedding-
only method. “MLP” refers to method that uses 2 lay-
ers of MLP to encode prefix. “+12th L means we un-
freeze the last layer of transformer. “FFT-NoPT” de-
notes full fine-tuning without any prefixes.

compared to prior methods. They hypothesized
that this was due to being able to form tighter de-
cision boundaries for the technical jargon more
prevalent in StackOverflow. Following this rea-
soning, it could be that for this dataset the post-
processing method is paramount and enriching the
intent representations alone is not enough to yield
a substantial performance improvement.

It is important that an open intent classifica-
tion method balances the performance on known
classes while still identifying open intents. Ta-
ble 3 verifies that despite changing pre-training
tuning methods, ADB post-processing still ade-
quately addresses this issue. The performance in-
crease is consistent between both the open class
and known classes for each dataset indicating that
prefix-tuning does not interfere with optimizing
both aspects of the open intent problem. Again,
we anticipate that combining PFT-ADB with the
newer DA-ADB could result in even better perfor-
mance.

The following ablations focus on the OOS
dataset since it covers multiple domains and we
wanted to generalize beyond just the financial do-
main.

5.1 Effect of Reparameterization and Tuning
Variations

In Table 4 we show that under the same dataset and
known intent ratio, performance varies consider-
ably when adopting MLP as prefix encoder. In
the first row, the embedding-only method leads to
poor results of 64.40% accuracy. Contrarily, intro-
ducing a 2 layer MLP to encode prefixes increases
the performance by around 15%. More impor-
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Method Length Accuracy Fl-score Open Known
10 87.60 89.08  85.82 89.11
20 88.25 89.49 86.80 89.52
30 87.88 89.44  86.13 89.47

Emb+12th L 50 85.70 8749 8372 87.53
80 85.93 87.75  83.87 81.78
100 87.95 89.45  86.16 89.48
10 90.16 91.57  88.57 91.60
20 89.67 9127 8796 91.30
30 90.05 91.59 8835 91.62

MLP+12th L 50 88.65 90.34  86.82 90.37
80 89.49 91.27  87.51 91.30
100 89.84 91.51 88.09 91.54

Table 5: Results of tuning with different prefix lengths.
We use OOS dataset with 75% known intent ratio.

tantly, the result is stable and reproducible. It in-
dicates that using MLP to reparameterize prefixes
is crucial in obtaining a consistent performance.

Results using prefix tuning alone (rows 1 and
2) in this task are slightly worse than ADB’s fine-
tuning results. In particular, the performance gap
in identifying open intent is more salient, reveal-
ing prefix-tuning’s lower capacity for out-of-scope
classification. However, when we incorporate pre-
fix tuning along with tuning the last layer of trans-
former, we find a surprisingly large performance
increase. For embedding and MLP methods, tun-
ing the last layer of transformer gives a perfor-
mance boost to 86.40% and 90.07%, respectively,
with only additional 0.1% of ADB’s parameters.
Since the latter transformer layer captures high-
level feature of utterances, we believe that this
small amount of parameter steer the higher layers
to learn more task-oriented information as well as
fit intents into a better-distributed latent space.

We also try the common method of fully fine-
tuning, i.e., unfreezing all of BERT’s parameters
which was not done in (Zhang et al., 2021a). The
performance is still 1% lower than our method
while we use only 8.1% of parameters.

5.2 Impact of Prefix Lengths

We experimented with the prefix length to deter-
mine its effect on performance. From Table 5, we
observe that with the increase of the prefix length
from 10 to 100 (parameter size from .1% to 1.6%),
the results do not follow the same ascending pat-
tern. We argue that simply adding more prefix to-
kens would not lead to a consistent performance
boost due to its bottleneck. (He et al., 2022) de-
termined that prefix tuning is another form of low-
rank update, which cannot make use of more than



. Just z and Rest Method Accuracy Fl1-Score Open Known
Accuracy  F1-Score  Accuracy  F1-Score Attention 87.49 89.69  85.19 89.73
No-FT 8156 85.89 81.56 85.89 Feed Forward =~ B0A7 8892 8381 8850
Layer Normalization  86.61 88.81  84.21 88.85
12 90.07 91.62 90.07 91.62
Keys and Values 85.67 88.58 8239 88.64
1 89.18 o1.19 2021 91.81 Entire Layer 90.07 91.52 88.48 91.54
10 89.81 91.80 89.42 91.42 Y ’ ’ ’ ’
9 88.81 90.89 88.93 91.18 . .
7 87.07 89.79 88.42 90.93 Table 7: Fine-tuning components of final transformer
4 85.23 88.21 87.00 89.90 layer on OOS with known intent ratio 75%. Only the
1 84.77 87.73 87.58 90.24 parameters of the component(s) are tuned and the rest

Table 6: Fine-tuning various groupings of transformer
layers on OOS with known intent ratio 75%. “No-FT”
is prefix-tuning without any fine-tuning. Prefix-tuning
configuration was kept constant throughout runs.

0.1% of additional parameters.

5.3 Fine-Tuning Different Groupings of
Layers

Combining prefix-tuning with fine-tuning a subset
of transformer layers is, to the best of our knowl-
edge, a novel approach. Fine-tuning the last layer
alone is ideal for minimizing trainable parame-
ters. We aim to determine whether varying which
layer or group of several layers is unfrozen can
achieve better results than the last layer alone. Ta-
ble 6 summarizes our findings. The layer of in-
terest is specified with the variable . “Just z”
is fine-tuning layer = alone and “z and Rest” is
fine-tuning the layer x and all subsequent layers.
Using this notation, “Layer / and Rest” is akin to
fine-tuning all of BERT. “No-FT” refers to prefix-
tuning without any additional fine-tuning. For this
row and when x is 12, the results between the two
main columns are of course the same.

Several interesting observations are evident in
Table 6. Firstly, the fine-tuning of at least one
layer in addition to prefix-tuning is strictly nec-
essary for optimal performance. Under the con-
straint of tuning just a single layer, the last per-
forms the best. The latter layers of the model are
where higher-level details of natural language are
processed. We hypothesize that tuning this layer
best incorporates the propagation of prior prefixes
with the base model. Tuning prior layers may have
a similar effect, but if the subsequent layers are
frozen, the understanding of prompts is obfuscated
since the latter frozen layers have no experience
attending to prefixes.

Another notable finding is that if performance
is to be prioritized, fine-tuning the final two lay-
ers together is better than the last layer alone.
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of the layer is frozen.

This suggests that the prefixes are complex enough
such that their value is maximized when the final
two layers tune in tandem. However, the trade off
of minor performance increase at the cost of dou-
bling the trainable parameters may not be worth it
depending on the application.

Lastly, we note that as layers beyond two are
trained in the “x and Rest” column, performance
begins to degrade. This supports the observation
made by (Kumar et al., 2022) that fine-tuning dis-
turbs pre-trained features in the base model. Train-
ing only the final layer(s) avoids perturbing low-
level semantics learnt in earlier layers of the base
model, but still adds sufficient capacity to attend
to the prefixes.

5.4 Fine-Tuning Various Components in Last
Layer

While fine-tuning only the last transformer layer
reduces the trainable parameter count to 8%, this
is still a large value compared to the 0.1% param-
eter count of the prefixes alone. We isolate vari-
ous components of the last transformer layer to de-
termine if some could be frozen to further reduce
parameter count. The results are presented in Ta-
ble 7. Tuning the entire layer significantly outper-
formed any other variation, alluding that there is
an important relationship between the prefixes and
every component of the final transformer layer.
Tuning each of the components in the last layer is
essential to procure maximum prefix performance.

6 Conclusion

We have shown that incorporating prefix-tuning
with the ADB intent representation pre-training
method achieves SOTA results in the financial do-
main on the banking77 benchmark dataset and
others. Furthermore, our tuning method does not
sacrifice excessive parameters count for the per-
formance gain. The combination of prefix-tuning



with fine-tuning only the last layer of transformer
is simple yet novel to the best of our knowledge
and surfaces interesting questions regarding the
mechanisms they use to interact. We intend to ad-
dress the limitations presented hereafter in the near
future.

Limitations

Despite achieving SOTA results on open intent
classification tasks, our work has several facets
that could be furnished further. Firstly, we tune the
last layer of transformer along with the prefixes,
making our method less parameter efficient than
prefixes alone. Other approaches to fine-tuning
the last layer of the transformer during pre-training
should be investigated. Moreover, this work does
not include any other PET method such as adapter
tuning (He et al., 2021) or LoRA (Hu et al., 2021).
We anticipate that using other PET methods will
reveal new observations regarding their interac-
tion with partial fine-tuning. We restrict our study
to simple single intent dialogues while industry-
deployed models would likely encounter noise as
well as multiple intents. Testing the robustness of
our method under these conditions could be valu-
able. Lastly, we plan to research whether our suc-
cess with prefix-tuning in combination with partial
fine-tuning generalizes to other NLU and financial
tasks.

Ethics Statement

Recent impressive achievements in NLP thanks to
the advent of LLMs do not come without cost.
Most relevant to our paper is the environmental
impact and inequitable distribution of such tech-
nologies (Strubell et al., 2019). The resources re-
quired to train a LLM are large which from the
environmental perspective increases our contribu-
tion to climate change and from an equity perspec-
tive limits who can access, research, and use the
model.

While the self-supervised pre-training step of-
ten has the greatest resource requirements, fine-
tuning LLMs is undertaken by many more parties
following a model’s public release. The numer-
ous task-specific deployments of popular models
likely have greater net CO4 emissions than the ini-
tial pre-training. Our work directly combats this
concern by promoting parameter efficient tuning
as an efficacious alternative to relatively expensive
fine-tuning. The fraction of trainable parameters
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reduces tuning memory requirements, in turn re-
ducing power consumption and environmental im-
pact. Additionally, the reduction of required mem-
ory enables the adoption of LLMs by those who
do not have access to expensive high-quality hard-
ware or cloud platforms. Finally, storing copies of
the model for each task is efficient. Only a single
copy of the frozen LLM is needed along with the
smaller prefixes and in our case, trained last layer
of transformer, resulting in similar benefits as the
reduction of memory.
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