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Abstract

Text embedding is an essential component
to build efficient natural language
applications based on text similarities such
as search engines and chatbots. Certain
industries like finance and healthcare
demand strict privacy-preserving conditions
that user’s data should not be exposed
to any potential malicious users even
including service providers. From a
privacy standpoint, text embeddings
seem impossible to be interpreted but
there is still a privacy risk that they can
be recovered to original texts through
inversion attacks. To satisfy such privacy
requirements, in this paper, we study a
Homomorphic Encryption (HE) based
text similarity inference. To validate our
method, we perform extensive experiments
on two vital text similarity tasks. Through
text embedding inversion tests, we
prove that the benchmark datasets are
vulnerable to inversion attacks and another
privacy preserving approach, dχ-privacy,
a relaxed version of Local Differential
Privacy method fails to prevent them.
We show that our approach preserves the
performance of models compared to that
the baseline has degradation up to 10% of
scores for the minimum security.

1 Introduction

Recently, various industries provide enhanced
user experiences through natural language
processing (NLP) applications. AI assistants
such as Amazon’s Alexa and Google Assistant
are representative examples that help users to
achieve their purposes with a wide range of
intentions. To build such complex applications,
it is common to utilize machine-learned
text representations, i.e., text embeddings to
infer similarities between texts (Cer et al.,

*Equal contribution

No. Query Text

1 I’m 13 . Can I buy supplies at a pet store without a parent/adult
present?

2 I earn $75K , have $30K in savings, no debt, rent from my
parents who are losing home. Should I buy home now or save?

3 How do I fold side-income into our budget so my husband
doesn’t know?

Table 1: Examples of query text containing sensitive
information from FIQA-2018 dataset. Sensitive texts
are marked with red color.

2018). Text embeddings facilitate the efficient
implementations of various NLP functions like
document search (Karpukhin et al., 2020),
intent decision (Humeau et al., 2020), and
dialogue response selection (Gu et al., 2020)
by leveraging precomputed embeddings for
real-time applications. However, such usage
of text embeddings poses emerging privacy
risks so-called inversion attacks that recover
the original texts from embeddings (Song and
Raghunathan, 2020).

User texts such as Know-Your-Customer1

inquiries in the finance domain frequently
contain privacy-sensitive data. The sensitive
data include not only personal information
which can identify users, but also their assets
and clues or intentions about their future
behaviors (Wheatley et al., 2016; Schwartz and
Solove, 2011). Table 1 shows example texts
with information that causes infringements on
user’s privacy if they are leaked to unauthorized
users. We define malicious users without
authorization for user’s privacy information
into two categories. First, external malicious
users perform attacks from outside of services
by accessing data or servers. Second, in certain
domains that require strict privacy preservation
such as finance, the data access from internal
malicious users even including service providers
should be prevented.

In this paper, we propose Homomorphic

1https://en.wikipedia.org/wiki/Know_your_customer
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Figure 1: An example of text embedding based finance service with privacy preservation. Our Homomorphic
Encryption method protects user data from (a) external and (b) internal malicious user attacks.

Encryption (HE) based text similarity inference
secure from inversion attacks by both external
and internal malicious users. It is possible
to satisfy such rigorous privacy-preserving
mechanism because HE approach enables
all computations to be performed without
decryption of the data (Cheon et al., 2017).
Other cryptographic technologies do not meet
the requirements because they need server-side
decryption for computation (Acar et al., 2018).
Another candidate method to resolve the above
problem like dχ-privacy, a variant of Local
Differential Privacy (LDP) should consider a
privacy-utility trade-off (Qu et al., 2021) in our
tasks.

Figure 1 shows an example of text embedding
based financial services using our HE method to
protect user’s query embedding from inversion
attacks. First, a large number of server-
side text embeddings such as documents for
search were precomputed and uploaded to
a centralized server in advance. Here, we
assume that server-side text embeddings are
not encrypted since service providers can
access the database. Service users generate
a public key and a secret key for homomorphic
encryption. Then they convert their query
texts into embeddings and encrypt them using
HE with their public key. When the users
send the encrypted query embedding to the
server, no external malicious user can access the
original data because of encryption. As a result,
we can protect an inversion attack at (a). Once
the encrypted query embeddings reach the
server, services can perform inference without

decrypting the data due to our HE-based
similarity function. During the inference, the
service provider cannot extract any information
from encrypted data because the HE secret
key is owned by the user only. Therefore, the
inversion attack point (b) is secure. Finally, the
server sends the still encrypted result securely,
and the user decrypts the result with the secret
key.

We perform extensive tests using well-known
benchmarks on two text similarity tasks,
semantic textual similarity and text retrieval.
The results on inversion attacks indicate that
text embeddings can be easily recovered to
original texts. Furthermore, we observe our
dχ-privacy baselines are not suitable to prevent
such attacks completely while maintaining the
performance of models. Specifically, it loses up
to 10% of scores at minor noise settings and
still shows information leakage. In contrast,
our method guarantees the protection from
inversion attacks and do not hurt performances.
To summarize, our contributions are:

• We demonstrate that well-known bechmarks
and pretrained text embedding models are
vulnerable to inversion attacks.

• We implement HE based text similarity
functions that can precisely approximate
original performance while preventing any
potential information leakage.

• Through extensive experiments, we prove
that our method achieves complete privacy-
preserving similarity tasks without hurting
the performance.
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2 Related Work
2.1 Text similarity with embeddings
Measuring text similarity is a fundamental
functionality for many NLP applications. To
overcome the limitation of lexical matching
(Robertson and Zaragoza, 2009) such as TF-
IDF and BM25, it is common to convert natural
language text into text embeddings (Reimers
and Gurevych, 2019) capturing the semantic
meaning of texts as a form of vectors because
it can represent rich contextual information.
Using text embeddings, the similarity between
texts can be interpreted as distances between
data points in a vector space. These properties
facilitate efficient computations of large-scale
text similarity inference because embeddings
can be precomputed and used in real-time
applications without inference considering
many parameters (Karpukhin et al., 2020). In
practice, large amounts of texts such as search
documents are precomputed whereas real-time
data from users such as short search-queries
require the embedding process on the fly. The
relevancy between query and documents can
be calculated with similarity functions such as
cosine similarity or dot product. Formally (1),
given text embeddings for query and document,
Eq and Ed, the similarity between query q and
each document d is computed with a similarity
function:

sim = funct(Eq(q), Ed(d))
(1)

2.2 Privacy-preserving in NLP
Although homomorphic computation basically
takes numerical data as its input, much
recent research shows attempts to apply
HE to text data (Lee et al., 2022; Chen
et al., 2022). However, these works mainly
consider encrypted classification tasks on text
embeddings. In this study, we focus on the text
embedding based text similarity applications.
Compared to classification task settings, the
service scenario using text similarity is more
suitable to take the advantage of using HE.
This is because huge text embeddings are
stored in a centralized server and users need
to send query texts to the server to get
inference results. In the process of it, they
want their queries, which may contain sensitive

information, not to be exposed to the server
and still receive a response as expected.

The authors in (Feyisetan et al., 2020)
proposed dχ-privacy for privacy-preserving
approach on textual data. However, their
method requires to select a privacy parameter ϵ
very carefully. Our baseline experiment results
using dχ-privacy showed low performance. The
work in (Xiong et al., 2022) proposed how
to evaluate a privacy risk on text data using
semantic correlation. Our HE-based method
using CKKS provides a practically complete
security in terms of this privacy risk assessment
since it ensures a 128-bit level of security and no
information leakage occurs without decryption
using a secret key. Other prior HE-based
works such as (Yu et al., 2017) and (Nautsch
et al., 2018) do not compute cosine similarity
directly because the HE schemes they use do
not support bootstrapping.

3 Method

In this section, we propose our Homomorphic
Encryption (HE) based method to protect
text data privacy. To achieve this, our goal
is to approximate text similarity functions
for given text embeddings in an encrypted
state using the CKKS scheme. Formally,
similar to the definition in (1), we implement
encrypted similarity function funct∗ that
computes the encrypted similarity result sim∗
from encrypted text embeddings in order to
achieve sim∗ ≈ sim(1) as much as possible.2

sim∗ = funct∗(Enc(Eq(q)), Ed(d))

3.1 Homomorphic Encryption : CKKS
Scheme

Homomorphic Encryption is a cryptographic
primitive that can support computations on
encrypted data without decryption. After
performing computations in encrypted state,
the decrypted output is the same as if we
performed the computations in plaintext.

We adopt the CKKS scheme (Cheon et al.,
2017, 2018a, 2019) that supports approximate
arithmetic operations over encrypted real-
valued vectors. While other HE schemes

2Asterisks(*) indicate a ciphertext or a computation
in ciphertext.
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such as BGV (Brakerski et al., 2011) and
BFV (Fan and Vercauteren, 2012) can be
applied for computations over integers, the
fourth generation HE scheme, CKKS supports
encrypted computations over real and complex
numbers. This advantage provides scalability
of encrypted computation to many applications
in the real world. More details of the CKKS
scheme can be found in (Cheon et al., 2017).

CKKS is a leveled HE scheme (Lee et al.,
2022). This implies that a given ciphertext
has a bounded depth to perform operations;
the number of operations we can perform
repeatedly is limited due to noise increase in
computation. If we multiply two ciphertexts
of level l, the output is a ciphertext of level
l − 1, which means the remained number of
operations is reduced by 1. For this reason, we
need a unique operation called bootstrapping to
resolve this level reduction. The bootstrapping
operation refreshes a ciphertext increasing its
level higher so the number of possible operation
times increases. The following HE operations
are available over ciphertexts of given real-
valued vectors pt1 and pt2 in plaintext.

• Add(ct1, ct2): output a ciphertext of pt1+pt2,
where + is the slot-wise addition.

• Mult(ct1, ct2): output a ciphertext of
pt1 ⊙ pt2, where ⊙ is the slot-wise
multiplication.

• Bootstrap(ct1): output a ciphertext of pt1
at refreshed level.

In addition, it is worth to note that
homomorphic operations can be performed
on a plaintext and a ciphertext together
as the operands of operations (Carpov and
Sirdey, 2015). We can take the advantage of
a plaintext-ciphertext operation because the
noise increase is less than that of between both
ciphertext operation. This flexibility enables
us to consider various user scenarios depending
on what to be protected.

For our tasks, we adopt the cosine similarity
as our relevance score. Recall the cosine
similarity of two vectors is defined as follows:

cos θ = u · v
∥u∥∥v∥

= u1v1 + · · ·+ unvn√(
u2

1 + · · ·+ u2
n

)× (
v2

1 + · · ·+ v2
n

)

where u and v are n-dimensional vectors and
θ is the angle between them, which indicates
how close they are. Since HE supports addition
and multiplication only, it is essential to
approximate an arbitrary operation with an
appropriate polynomial. In our task, the
approximation we need is the square root
inverse function. To implement this, we
apply Newton’s method (Panda, 2021) of the
following form to approximate the square root
inverse in an encrypted state.

yn+1 = 1
2yn(3− xy2

n)

The input domain of the function is 1 ≤ x ≤ 222

and precision is 3 × 10−7. For each iteration,
the polynomial equation is updated recursively.
Note that the function converges with an initial
value y0 satisfying |1−xy2

0| < 1. Here is a brief
error analysis of the approximation:

1− xy2
n+1 = 1

4xy2
n(3− xy2

n)2

= (1− xy2
n)2(1− xy2

n

4 )
...

= (1− xy2
0)2n+1

n∏

k=0
(1− xy2

k

4 )2n−k

where n denotes the number of iterations.
Inference In a real-world scenario for

HE based similarity inference, the workflow
requires the procedure for en/decryption of
data. Procedure 1 describes how a client
and a server can communicate in the process
of a document search service while achieving
privacy-preserving. One might concern that
the most relevant document index with
decrypted at the end might imply information
about the query. To resolve this concern, a
client can generate random indices and send
the target index with them to the server.

Security Lastly, we emphasize that our
HE parameters ensure 128-bit security level,
which implies 2128 operations are required to
recover the plaintext from a ciphertext with
the current best algorithm (Cheon et al., 2022).
Thus, a homomorphically encrypted ciphertext
is securely protected and cannot be revealed
without access to the secret key for decryption.
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Procedure 1 Find most relevant document
Initialize

D //service documents for search
Ed, Eq //text embedding models
funct∗ //HE based similarity function
Demb ← Ed(D)

Client
1: Generate a public key pk and a secret key sk
2: Qtext ← User input query text
3: Qemb ← Eq(Qtext)
4: Qemb∗ ← Encpk(Qemb)
5: Qemb∗, pk → Server

Server
6: return sim∗ ← funct∗(Qemb∗, Demb) with pk

Client
7: sim ← Decsk(sim∗) with sk
8: index ← argmax(sim)
9: index → Server

Server
10: return document ← D[index]

4 Experiments
4.1 Text Similarity Tasks
To evaluate our approach, we consider two text
similarity task settings: STS (Semantic textual
similarity) and Text retrieval. We provide
the brief descriptions on the tasks.

• STS (Semantic textual similarity): The
task assesses the ability to inference the
semantic similarity of given text pairs.
Specifically, we measure the correlation
between ground truth labels judged by
human, and similarity scores predicted
by models. Following previous studies
(Reimers and Gurevych, 2019), we consider
a set of seven well-known semantic textual
similarity datasets, STS 2012–2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016), STS
Benchmark (Cer et al., 2017) and SICK-
Relatedness (Marelli et al., 2014). Each
dataset has a set of text pairs and the
corresponding ground truth labels indicating
semantic relevances. We compute the
cosine similarity between text embeddings
and measure the correlation between the
similarities and the ground truth labels.
Following Gao et al. (2021), we utilize
Spearman’s correlation evaluation script
from the SentEval toolkit3 (Conneau and
Kiela, 2018).
3https://github.com/facebookresearch/SentEval

• Text Retrieval: The task computes
list-wise relevance scores i.e. dot product
between a query and documents to be
searched. The documents are sorted
according to the scores and the task assesses
text retrieval quality based on the rank of
correct documents. Following the recent
works (Gao and Callan, 2021; Santhanam
et al., 2022), we evaluate text retrieval
performances with the BEIR benchmark
(Thakur et al., 2021), which aims to
evaluate zero-shot retrieval performance of
text embedding models. We consider five
datasets: FiQA-2018, NFCorpus, ArguAna,
SCIDOCS, and SciFact. Each dataset
contains domain-specific text data. For
instance, FiQA-2018 consists of finance
search queries which are representative
examples of privacy-sensitive texts.

We use publicly open text embedding models
without additional fine-tuning to demonstrate
that our approach can be applied generally
to any existing text embedding models. For
STS and text retrieval, we use SimCSE4 and
DistilBERT 5 checkpoints from huggingface
transformers (Wolf et al., 2020) as our
backbone models, respectively. More details
about evaluation settings can be found in
Appendix A.

4.2 Privacy-Preserving Baseline
1. Plaintext: The results from text

embeddings without privacy-preserving
schemes are obvious counterparts to be
compared with privacy-preserved ones. In
the rest of this paper, we denote them
as plaintext. The common objective of
our method and other privacy-preserving
baselines is to precisely approximate the
performances of plaintext while preventing
the exposure of original information.

2. dχ-privacy: Following Qu et al. (2021) and
Lee et al. (2022), we consider dχ-privacy,
which is a relaxed variant of noise-based
local differential privacy (LDP) methods
as our baseline. The method prevents
information leakage of text embeddings
4https://huggingface.co/princeton-nlp/sup-simcse-

bert-base-uncased
5https://huggingface.co/sentence-

transformers/msmarco-distilbert-base-v3
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SentEval BEIR benchmark
STS12 STS13 STS14 STS15 STS16 STS-B SICK-R FiQA-2018 NFCorpus ArguAna SCIDOCS SciFact

Plaintext 0.1617 0.1381 0.1493 0.1496 0.1033 0.2489 0.1325 0.6281 0.4731 0.0797 0.1556 0.6098

η = 175 0.0492 0.0546 0.0466 0.0441 0.0321 0.0699 0.0232 0.5718 0.3237 0.0694 0.1132 0.4806
η = 150 0.0407 0.0505 0.0425 0.0392 0.0318 0.0592 0.0262 0.5715 0.3175 0.0638 0.1154 0.5101
η = 125 0.0333 0.0406 0.0344 0.0296 0.0254 0.0465 0.0178 0.5603 0.3225 0.0560 0.0984 0.4756
η = 100 0.0248 0.0280 0.0235 0.0211 0.0152 0.0350 0.0114 0.5060 0.2245 0.0494 0.0823 0.4175
η = 75 0.0139 0.0141 0.0115 0.0101 0.0075 0.0190 0.0040 0.4347 0.1827 0.0375 0.0558 0.2844
η = 50 0.0031 0.0027 0.0019 0.0016 0.0017 0.0049 0.0007 0.3204 0.0910 0.0249 0.0283 0.1439

Table 2: Performance of Text Embedding Inversion. Black-box inversion on text embeddings with text data
from SentEval and BEIR benchmark. We report the F1 scores of multi-label classifiers predicting words in original
text from given text embeddings.

SentEval BEIR benchmark
Name STS12 STS13 STS14 STS15 STS16 STSB SICK-R FiQA-2018 NFCorpus ArguAna SCIDOCS SciFact
#Texts 3,108 1,500 3,750 3,000 1,186 1,379 4,927 648 323 1,406 1,000 300
#Avg words 6.33 6.48 6.09 5.88 5.96 5.76 4.94 6.48 2.59 108.38 7.80 9.12

Table 3: Statistics of evaluation text data. #Texts indicates the number of sentence pairs and queries. #Avg
words show the number of average words per sentence and query.

through the noise injection privatization.
For a given embedding x and sampled noise
N , the privatized embedding is P (x) = x +
N . We sample N ∈ Rn by N = rp where
r is sampled from the Gamma distribution
Γ(n, 1

η ) and p is sampled from the uniform
distribution Bn. Same as Lee et al. (2022),
we measure performances at six noise levels
(η = 175, 150, 125, 100, 75, 50). Lower η
indicates higher noise to embeddings and
better privacy-preserving.

4.3 Text Embedding Inversion
We investigate inversion risk existing in text
similarity tasks. Song and Raghunathan (2020)
suggests two methods for embedding inversion
attack, namely, white-box and black-box
inversion. We choose black-box inversion
since it assumes that an attacker only can
access text embeddings but no access to model
itself. This property is suitable for our
privacy-preserving concerns on the applications
which utilize precomputed embeddings for text
similarity inference. Black-box inversion, in a
nutshell, trains a multi-label classifier which
takes text embeddings as inputs and predicts
words in original texts.

max
ϕ

∑

s∈S

∑

w∈W

log pϕ(w|E(s))

Formally, for any pretrained text embedding
model E, we train an inversion model ϕ by
maximizing the log-likelihood where S and W
are a set of training sentences and a set of
words in a sentence, respectively.

Implementation As an inversion model,
we use a simple 1-layer MLP which shows
enough performance to extract meaningful
information from given text embeddings in our
test. To train the inversion model, we sample
sentences from BookCorpus (Zhu et al., 2015)
and take the train-split texts from benchmark
datasets. To choose the best checkpoints and
the thresholds for classifiers, we also make
the validation data by using BookCorpus and
the development split of benchmark datasets.
For more detail settings on text embedding
inversion test, see Appendix B.

Result Table 2 shows the performances (F1
measurement) of inversion models. We measure
F1 scores for the extracted words filtered by
the best threshold selected by validation data.
Note that our HE approach is not included in
the test because it provides complete security
(see Section 3.1). First, we can find the
inversion models successfully extract original
texts from plaintext embeddings. However,
compared to typical classification tasks, the
models show poor performances (less than
0.5 point) on overall F1 scores (except for
FIQA-2018 and SciFact). This is because
the model should perform extreme multi-label
classification (Chalkidis et al., 2019) with a
large number of classes i.e. the vocab size,
which is roughly 20,000 words. We can see
that inversion models show worst performance
on the ArguAna retrieval dataset, it is because
ArguAna consists of search queries much longer
than other datasets (presented in Table 3).
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Original text from FIQA-2018:
15 year mortgage vs 30 year paid off in 15
Plaintext vs, year, mortgag, 30, paid, 15
η = 175 vs, paid, mortgag, year, loan, 30
η = 150 vs, mortgag, paid, year, pay, 15
η = 125 vs, paid, month, bore, 30, pay
η = 100 vs, mortgag, 30, paid, pay
η = 75 vs, 30, paid, spare, mortgag, tore
η = 50 paid, vs, common, pay, hunch

Original text from STS-B:
a man is singing and playing a guitar
Plaintext guitar, sing, man, play, fluid
η = 175 guitar, play, man, banana, trampolin, sing
η = 150 guitar, play, man, banana, trampolin, afghanistan
η = 125 guitar, play, banana, man, afghanistan, nadia
η = 100 guitar, banana, afghanistan, play, nadia, afghan
η = 75 guitar
η = 50 -

Table 4: Result of Text Embedding Inversion with
texts from FIQA-2018 and STS-B. The words with
red color are correctly predicted ones.

Meanwhile, inversion models show different
overall performances on STS and text retrieval
benchmarks. This might be due to two factors,
which are: 1) SentEval and BEIR benchmark
have different domains of texts i.e. sentences
on common domain and search queries for
diverse domains such as finance science; 2)
most importantly, they use their own text
embedding models, SimCSE and DistilBERT.
Even though the overall performance on STS
does not reach that of text retrieval, inversion
models still extract unneglectable amount of
original information. At lowest noise value
(η = 175), the model loses more than half
of its performance in the plaintext setting.
After that, the results clearly show that the
more noise we add the less original information
extracted. When a noise reaches the highest
value (η = 50), inversion model shows F1 scores
less than 0.01 point on all STS datasets. On
the other hand, for text retrieval, the model
still has moderate performances (greater than
0.3 point at most).

Qualitative Analysis We analyze two
examples of text embedding inversion in order
to provide an qualitative analysis. We bring
two examples of texts from FIQA-2018 and
STS-B shown in Table 4. We enumerate
extracted words up to Top-6 words ordered
by their likelihood scores. We set the number
of top words based on the analysis from
Table 3, which shows the number of average
tokens on most datasets is about 6. We
first see the example from FIQA-2018. From

the plaintext embedding, the inversion model
successfully extracts a set of words (vs, year,
mortgag, 30, paid, 15 ) that represent the
semantic information of original text and have
no false positive words. After we add lowest
noise (η = 175) to the embedding, the model
starts to confuse semantically related words
(mortgag → loan, paid → pay). At highest
noise (η = 50), the model starts to extract
completely unrelated words such as common,
hunch. We can observe similar patterns on
the example of STS-B. The inversion model
extracts all important words (guitar, sing,
man, play) and only one false positive word
(fluid) from the plaintext embedding. After
we maximize the noise, the model failed to
extract any words (filtered by a threshold). By
using dχ-privacy, it is possible to alleviate the
embedding inversion but not enough to prevent
it completely. These results demonstrate how
vulnerable text embeddings are in terms of
potential information leakages. For more
examples on other datasets, see Appendix C.

4.4 Text Similarity Evaluation
Implementation We implemented HE
methods with the full residual number system
(RNS) of the CKKS scheme (Cheon et al.,
2018b) that supports bootstrapping on GPU.
We utilized approximation of the square root
inverse with a vector-vector multiplication in
STS and a vector-matrix multiplication to
compute dot products in Text Retrieval. Note
that we only encrypt query texts in retrieval
settings since we suppose a situation where
documents are open to the public and need
not to be protected. Similar to computing
cosine similarity, other similarity functions like
dot product can be easily implemented with
additions and multiplications in an encrypted
state. For detailed descriptions of our HE
parameters, refer to Appendix D.

Semantic Textual Similarity Table 5
shows the performance results on STS datasets.
To accurately validate the approximation
performance of our HE method, we report
the Spearman’s correlation scores displaying
floating point numbers up to seven decimal
point. At the first step of noise (η = 175),
the noise-based perturbation, dχ privacy loses
about 10% of plaintext performance in average.
It shows the largest drop at STS-12 (75.2961809
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STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg

Plaintext 75.2961809 84.6670451 80.1894789 85.3988064 80.8192094 84.1348744 80.3869902 81.5561381
η = 175 51.7546246 74.0075826 67.1210473 81.6210128 69.9514644 78.9265977 78.1727766 71.6507294
η = 150 48.2063251 71.9283803 64.6684534 80.4148958 67.3609882 77.2761905 77.0743311 69.5613663
η = 125 44.3021020 69.2406938 61.6506406 78.6018538 63.8953096 74.9027321 75.2612661 66.8363711
η = 100 39.9374092 65.3637801 57.6159417 75.5333165 58.9898118 71.1861685 72.0707709 62.9567427
η = 75 34.4587947 58.1591253 50.9218122 69.1092061 51.0846282 64.1191090 65.5976507 56.2071895
η = 50 25.1756964 41.6619297 36.5166211 52.4056402 35.6048580 47.1511518 49.2968972 41.1161135

HE (Ours) 75.2984575 84.6670451 80.1894864 85.3988015 80.8192093 84.1348781 80.3870014 81.5564113
diff. w plaintext 0.0022766 - 0.0000075 -0.0000049 -0.0000001 0.0000036 0.0000112 0.0003277

Table 5: Performance of Semantic Textual Similarity task. We report Spearman’s correlation scores
using the SentEval toolkit. At the bottom of the table, we show the gap between Plaintext results and HE
approximations. Values in bold denote better scores.

FiQA-2018 NFCorpus ArguAna SCIDOCS SciFact
Plaintext 0.2569705 0.2564896 0.4261360 0.1332835 0.5378220
η = 175 0.2384545 0.2568275 0.4177632 0.1263631 0.5305757
η = 150 0.2327629 0.2533514 0.4136059 0.1252494 0.4925842
η = 125 0.2262708 0.2521192 0.4073824 0.1204473 0.5075745
η = 100 0.2142368 0.2478810 0.3909309 0.1112396 0.4824138
η = 75 0.1850581 0.2281045 0.3484871 0.0938708 0.4300155
η = 50 0.1071001 0.1670855 0.2334603 0.0499934 0.2653896

HE (Ours) 0.2569705 0.2564895 0.4259367 0.1332835 0.5378219
diff. w plaintext - -0.0000001 -0.0001993 - -0.0000001

Table 6: Performance of Text Retrieval task. We
report nDCG@10 scores.

→ 51.7546246). After the representation of
text embeddings are highly collapsed with
large noise (η = 50), the average correlation
scores down to the half of the original score
(81.5561381→ 41.1161135). On the other hand,
we can see that our HE method preserves the
performance of plaintext almost completely.
The method lose scores less than 10−5 point
from plaintext (at most 0.0000049 point on
STS-15). We can also observe the increase of
scores at STS-12, STS-14, STS-B and SICK-
R datasets. This happens to occur because
the noises during encryption may influence
in a positive way to compute the scores. As
a result, in terms of average score, plaintext
and our approach have almost the same scores
(less than 10−3 point difference between them).
In particular, the average absolute deviation
between the plaintext cosine similarity scores
and the ciphertext cosine similarity scores
is from 3.89 × 10−8 in STS15 (lowest) to
5.08× 10−8 in STS12 (highest).

Text Retrieval Table 5 shows the
experimental results on text retrieval datasets.
We report nDCG(Normalized Discounted
Cumulative Gain) scores. Different from
the results on STS datasets, the dχ-privacy
method shows relatively robust performances
on text retrieval. We can observe little
performance degradation (less than 5%) on

most datasets (except for FIQA-2018). Even if
we increase noise further, it still maintain small
degradation (less than 10%). We think theses
differences comes from their evaluation metrics
(spearman’s correlation and nDCG). Since the
correlation measures the difference between
ground truth similarities and predicted ones,
the noise directly affects the final correlation
scores although the noise is small. In contrast,
nDCG is measured by the rank of documents
which remain the same if the noise only affects
to the relevance scores but not to the rank of
documents. However, at the last noise step (η
= 50), the scores drop under 50% of original
scores similar to the results on STS datasets.
On the other hand, same as the STS result, our
HE method maintains plaintext performance
with little degradation (at most 0.0001993 point
on ArguAna). More precisely, the average
absolute deviation between the dot-products
in plaintext and those in ciphertext lies from
3.67× 10−8 in SciFact (lowest) to 3.94× 10−8

in NFCorpus (highest).

5 Conclusions

In this paper, we proposed homomorphic
encryption based text similarity inference with
text embeddings. With our method, users
can utilize text embedding based services
without revealing the original text, which can
be recovered through inversion attacks as we
demonstrated in the experiment 4.3. Extensive
experiments 4.4 on two text similarity tasks
proved that our approach does not harm the
performance of models. In contrast, the dχ-
privacy baselines fail to achieve protection
from inversion attacks without performance
degradation. We hope that this work lays
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the groundwork for the secure usage of text
embeddings in privacy-sensitive industries like
finance and more future works on the practical
usage of our HE approach by resolving the
current limitations.

Limitations

Our HE-based methods report that a vector-
vector multiplication in STS takes roughly
30 to 40 ms per text on average. For text
retrieval, a vector-matrix multiplication per
query takes approximately 0.6 to 0.7 seconds
against 1,000 documents in our benchmark
datasets on average. The computation time
increases linearly depending on the number of
documents. Since operations in an encrypted
state are computationally expensive, efficiency
need to improve in computing time to provide
document search services over large amounts
of corpora for a practical use.

For efficient search with text embedding
similarities, modern applications equip with
approximate search frameworks like faiss6.
Such method becomes more crucial when
handling open-domain search corpus like
Wikipedia (larger than 5 million of documents).
Since the HE implementation in this paper
focuses on relatively simple similarity functions
like cosine similarity, it is non-trivial to be
directly incorporated with existing frameworks
and algorithms that utilize complex data
structures and operations like hashing and
graph-based search. Therefore, one of our
future works will be the research on the
implementation of the HE based efficient search
methods.
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A Experimental Settings for Text
Similarity Tasks

Hyperparameters for text embedding models
are shown in Table 7. We only report the
parameters necessary for inference because
we do not fine-tune the models at all. The
models used for two text similarity tasks
have differences on 1) their pooling strategies
which decides the way to aggregate transformer
hidden states to single text embedding, 2) the
similarity functions to calculate the relevancy
between text embeddings.

Hyperparams SimCSE DistilBERT
Pooling strategy [CLS] mean
Max sequence length 512 512
Embedding size 768 768
Similarity cosine dot product

Table 7: Hyperparams for text embedding model test.

B Experimental Settings for Text
Embedding Inversion

Hyperparameters for inversion model are
shown in Table 8. We sample 100k sentences
from BookCorpus as train data. We choose the
best threshold parameter based on the results
with thresholds from 0.6 to 1.0 with an interval
0.05. As a result, 0.90 and 0.95 thresholds are
selected for SentEval and BEIR benchmark,
respectively. To build the vocabulary for
inversion model predictions, we tokenize given
texts with spacy7 and postprocess them by
removing stopwords and normalizing words
with lemmatization8.

Hyperparams Inversion Model
Learning rate 0.001
Max epoch 100
Batch size 64
Hidden size 768
Threshold range [0.6, 1.0]

Table 8: Hyperparams for inversion model training and
test.

7https://spacy.io/
8https://www.nltk.org/index.html

C Text Embedding Inversion
Results

Table 9 shows additional text embedding
inversion results from NFCorpus, SCIDOCS,
SciFact, and SICK-R.

Original text from NFCorpus:
Do Cholesterol Statin Drugs Cause Breast Cancer?
Plaintext cholesterol, cancer, caus, statin, drug, breast
η = 175 cholesterol, caus, statin, cancer, breast, exact
η = 150 cholesterol, cancer, statin, breast, drug, caus
η = 125 cholesterol, cancer, statin, breast, caus
η = 100 cholesterol, breast, caus, cancer, statin
η = 75 cholesterol, cancer, statin, breast, drug, induc
η = 50 cholesterol, cancer, statin, breast, soar
Original text from SCIDOCS:
Digital image forensics: a booklet for beginners
Plaintext beginn, digit, imag, begin, twelv
η = 175 digit, beginn, photograph, slowli, fascin, pictur
η = 150 digit, beginn, photograph, fool, examin, pictur
η = 125 beginn, digit, photograph, photo, imag, dive
η = 100 photograph, pictur, imag, digit, beginn, studi
η = 75 photograph, digit, absorb, prod, fascin
η = 50 drawer, manual, photo, examin, lectur, memor
Original text from SciFact:
0-dimensional biomaterials show inductive properties.
Plaintext biomateri, dimension, induct, properti
η = 175 dimension, biomateri, induct, properti, note
η = 150 induct, dimension, biomateri, feminin, tight, close
η = 125 biomateri, dimension, properti
η = 100 biomateri, dimension, induct, element, feminin, announc
η = 75 induct, scrub, tentat, dealt, project, show
η = 50 dimension, agon, daze, biomateri, induct, darren
Original text from SICK-R:
A black dog on a leash is walking in the water
Plaintext dog, black, collar
η = 175 black, bella
η = 150 black, bella
η = 125 black, bella
η = 100 black, bella
η = 75 mall, daypack
η = 50 -

Table 9: Result of Text Embedding Inversion

D Our HE parameter selection
For STS, we selected CKKS parameter whose
dimension N = 216 and its modulus q is
21555. For text retrieval, since dot products
only require additions and multiplications,
we select a ciphertext parameter preset for
Somewhat Homomorphic Encryption (Gentry,
2009) for efficiency in computation. We choose
a parameter set where dimension N is 213 so
each ciphertext block consists of 213−1 = 4, 096
slots and its modulus q ≈ 2217 guarantees a 128-
bit security level under SparseLWE-estimator.
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