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Abstract

Active learning, which effectively collects in-
formative unlabeled data for annotation, re-
duces the demand for labeled data. In this work,
we propose to retrieve unlabeled samples with
a local sensitivity and hardness-aware acquisi-
tion function. The proposed method generates
data copies through local perturbations and se-
lects data points whose predictive likelihoods
diverge the most from their copies. We further
empower our acquisition function by injecting
the select-worst case perturbation. Our method
achieves consistent gains over the commonly
used active learning strategies in various clas-
sification tasks. Furthermore, we observe con-
sistent improvements over the baselines on the
study of prompt selection in prompt-based few-
shot learning. These experiments demonstrate
that our acquisition guided by local sensitivity
and hardness can be effective and beneficial for
many NLP tasks.

1 Introduction

Crowdsourcing annotations (Rajpurkar et al., 2016;
Bowman et al., 2015) has become a common prac-
tice for developing NLP benchmark datasets. Rich
prior works (Pavlick and Kwiatkowski, 2019; Nie
et al., 2020; Ferracane et al., 2021) show that the
time-consuming and expensive manual labeling in
crowdsourcing annotations are not an annotation ar-
tifact but rather core linguistic phenomena. Active
Learning (AL) is introduced to efficiently acquire
data for annotation from a (typically large) pool of
unlabeled data. Its goal is to concentrate the hu-
man labeling effort on the most informative data in
hopes of maximizing the model performance while
minimizing the data annotation cost.

Popular approaches to acquiring data for AL are
uncertainty sampling and diversity sampling. Un-
certainty sampling selects data that the model pre-
dicts with low-confidence (Lewis and Gale, 1994;

Code is available at https://github.com/
szhang42/allsh

Culotta and McCallum, 2005; Settles, 2009). Di-
versity sampling selects batches of unlabeled exam-
ples that are prototypical of the unlabeled pool to
exploit heterogeneity in the feature space (Xu et al.,
2003; Bodó et al., 2011). Different from these two
perspectives, recent works focus on the informative-
ness of the selected data. For example, Zhang and
Plank (2021) acquire informative unlabeled data
using the training dynamics based on the model
predictive log likelihood. Margatina et al. (2021)
construct contrastive examples in the input feature
space. However, these methods either ignore the
local sensitivity of the input features or take no
consideration of the difficulty of the learning data.
Consequently, they may ignore examples around
the decision boundary, or select hard-to-train or
even noisy examples. Their performance may fur-
ther suffer under some practical settings, such as
those with imbalanced labels and when there is a
very limited annotation budget.

In this work, we determine the informativeness
by considering both the local sensitivity and learn-
ing difficulty. For local sensitivity, we take the clas-
sical definition from Chapelle et al. (2009), which
is widely used in both classic machine learning
problems (e.g. Blum and Chawla, 2001; Chapelle
et al., 2002; Seeger, 2000; Zhu et al., 2003; Zhou
et al., 2004) and recent deep learning settings (e.g.
Wang et al., 2018b; Sohn et al., 2020; Xu et al.,
2021). Specifying a local region Rregion(x) around
an example x, we assume in our prior that all ex-
amples in Rregion(x) have the same labels.2 If the
examples in Rregion(x) give us different labels, we
say the local region of x is sensitive. Data aug-
mentation has been chosen as the way to create
label-equivalent local regions in many recent works
(e.g., Berthelot et al., 2019b; Xie et al., 2020). We
utilize data augmentation as a tool to capture the
local sensitivity and hardness of inputs and present

2See the paragraph ‘unlabeled bias as regions’ and the
section ‘Regions and Smoothness’ for details.
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ALLSH: Active Learning guided by Local Sensi-
tivity and Hardness. Through various designs on
local perturbations, ALLSH selects unlabeled data
points from the pool whose predictive likelihoods
diverge the most from their augmented copies. This
way, ALLSH can effectively ensure the informa-
tive and local-sensitive data to have correct human-
annotated labels. Figure 1 illustrates the scheme of
the proposed acquisition strategy.

We conduct a comprehensive evaluation of our
approach on datasets ranging from sentiment analy-
sis, topic classification, natural language inference,
to paraphrase detection. To measure the proposed
acquisition function in more realistic settings where
the samples stem from a dissimilar input distribu-
tion, we (1) set up an out-of-domain test dataset
and (2) leak out-of-domain data (e.g., adversarial
perturbations) into the selection pool.

We further expand the proposed acquisition to a
more challenging setting: prompt-based few-shot
learning (Zhao et al., 2021), where we query a fixed
pre-trained language model via a natural language
prompt containing a few training examples. We
focus on selecting the most valuable prompts for
a given test task (e.g., selecting 4 prompts for one
given dataset). We adapt our acquisition function
to retrieve prompts for the GPT-2 model.

Furthermore, we provide extensive ablation stud-
ies on different design choices for the acquisition
function, including the designs of augmentations
and divergences. Our method shows consistent
gains in all settings with multiple datasets. With
little modification, our data acquisition can be eas-
ily applied to other NLP tasks for a better sample
selection strategy.

Our contributions are summarized as follows:
(1) Present a new acquisition strategy, embracing
local sensitivity and learning difficulty, such as
paraphrasing the inputs through data augmentation
and adversarial perturbations, into the selection
procedure. (2) Verify the effectiveness and general
applicability of the proposed method in more practi-
cal settings with imbalanced datasets and extremely
few labeled data. (3) Provide comprehensive study
and experiments of the proposed selection criteria
in classification tasks (both in-domain and out-of-
domain evaluations) and prompt-based few-shot
learning. (4) The proposed data sampling strategy
can be easily incorporated or extended to many
other NLP tasks.

2 Method

In this section we present in detail our proposed
method, ALLSH (Algorithm 1).

2.1 Active Learning Loop

The active learning setup consists of an unlabeled
dataset Dpool, the current training set Dlabel, and a
model M whose output probability is pθ(· | x) for
input x. The model M is generally a pre-trained
model for NLP tasks (Lowell et al., 2018). At each
iteration, we train a model on Dlabel and then use
the acquisition function to acquire sacq sentences in
a batch T from Dpool. The acquired examples from
this iteration are labeled, added to Dlabel, and re-
moved from Dpool. Then the updated Dlabel serves
as the training set in the next AL iteration until we
exhaust the budget. Overall, the system is given
a budget of S queries to build a labeled training
dataset of size S.

2.2 Acquisition Function Design

To fully capture the data informativeness and train
a model with a limited amount of data, we consider
two data-selection principals: local sensitivity and
learning hardness.
Local Sensitivity Based on theoretical works on
the margin theory for active learning, the exam-
ples lying close to the decision boundary are infor-
mative and worth labeling (Ducoffe and Precioso,
2018; Margatina et al., 2021). Uncertainty sam-
pling suffers from the sampling bias problem as
the model is only trained with few examples in the
early phase of training. In addition, high uncer-
tainty samples given the current model state may
not be that representative to the whole unlabeled
data (Ru et al., 2020). For example, if an input has
high confidence while its local perturbation gen-
erates low-confidence output, then it is likely that
this input lies close to the model decision boundary.
This information can be captured by measuring the
difference between an input example and its aug-
mentation in the output feature space. We utilize
the back-translation (Sennrich et al., 2016; Edunov
et al., 2018; Zhang et al., 2021b) and TF-IDF (Xie
et al., 2020) as effective augmentation methods
which can generate diverse paraphrases while pre-
serving the semantics of the original inputs (Yu
et al., 2018b).

Instead of simply using augmentation, adversar-
ial perturbation can measure the local Lipschitz and
sensitivity more effectively. We therefore further
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exploit adversarial perturbation to more accurately
measure local sensitivity. For NLP problems, gen-
erating exact adversarial perturbations in a discrete
space usually requires combinatorial optimization,
which often suffers from the curse of dimensional-
ity (Madry et al., 2017; Lei et al., 2018). Hence,
we choose the hardest augmentation over K ran-
dom augmentations as a “lightweight” variant of
adversarial input augmentation which optimizes
the worst case loss over the augmented data.
Learning Hardness: From Easy to Hard Learn-
ing from easy examples or propagating labels from
high-confidence examples is the key principle for
curriculum learning (Bengio et al., 2009) and label
propagation based semi-supervised learning algo-
rithms (Chapelle et al., 2009). For example, Fix-
Match (Sohn et al., 2020), a SOTA semi-supervised
method, applies an indicator function to select high
confident examples at each iteration. This will fa-
cilitate the label information from high confidence
examples to low-confidence ones (Chapelle et al.,
2009). In our selection criterion, as the model is
trained with limited data, we also want to avoid
the hard-to-learn examples, which in some cases
frequently correspond to mislabeled or erroneous
instances (Swayamdipta et al., 2020; Zhang and
Plank, 2021). These examples may stuck the model
performance at the beginning of the selection.

2.3 Acquisition with Local Sensitivity and
Hardness

We come to the definition of our acquisition func-
tion. Given a model pθ and an input x, we compute
the output distribution pθ(· | x) and a noised ver-
sion pθ(· | x′) by injecting a random transforma-
tion x′ = g(x) to the inputs. Here, g(·) is sampled
from a family of transformations and these random
transformations stand for data augmentations. This
procedure can select examples that are insensitive
to transformation g(·) and hence smoother with re-
spect to the changes in the input space (Berthelot
et al., 2019b,a; Sohn et al., 2020). We calculate

ℓ(x,x′) = D(pθ(· | x), pθ(· | x′)), (1)

where D denotes a statistical distance such as the
Kullback–Leibler (KL) divergence (Kullback and
Leibler, 1951). Model pθ here can be a pretrained
language model such as BERT (Devlin et al., 2018).

Data Paraphrasing via Augmentation Para-
phrase generation can improve language mod-
els (Yu et al., 2018a) by handling language varia-

Figure 1: Overview of active learning framework guided
by local sensitivity and hardness. Some notations are
labeled along with corresponding components. ‘Select’
refers to the select worst-case augmentation.

tion. TF-IDF and backtranslation can generate di-
verse inputs while preserving the semantic meaning
(Singh et al., 2019; Xie et al., 2020). For TF-IDF,
we replace uninformative words with low TF-IDF
scores while keeping those with high. Specifically,
Suppose IDF(w) is the IDF score for word w com-
puted on the whole corpus, and TF(w) is the TF
score for word w in a sentence. We compute the
TF-IDF score as TFIDF(w) = TF(w)IDF(w). For
backtranslation, we use a pre-trained EN-DE and
DE-EN translation models (Ng et al., 2019) to per-
form backtranslation on each sentence. We denote
x as (x0, · · · , xn). Here, n denotes the original
length of the input. For x, we pass them through
two translation models to get x′ = (x′0, · · · , x′m),
where m denotes the length after backtranslating.
More details can be found in Appendix A.

Select Worst-Case Augmentation (WCA) In or-
der to construct effective local sensitivity, the most
direct approach is calculating the local Lipschitz
constant or finding the worst case adversarial pertur-
bation. However, estimating the Lipschitz constant
for a neural network is either model dependent or
computationally hard (Scaman and Virmaux, 2018;
Fazlyab et al., 2019). Instead, we select worst-
case augmentation over K copies, which can still
roughly measure the norm of the first-order gradi-
ent without a huge computation cost and is easy
to implement. Given input examples x, and K
augmentation of x as {x′

i}Ki=1, we propose the fol-
lowing acquisition function to select data:

ℓmax(x) = max
i∈[K]

ℓ(x,x′
i). (2)

Inspired by some simple and informal analysis in
continuous space, we draw the connection between
calculating ℓmax(x) and local sensitivity by

1330



Figure 2: The solid line is model decision boundary.
Orange circles refer to the unlabeled data and green
circles refer to the corresponding augmentation of the
orange unlabeled data.

ℓmax(x) = ℓ(x,x′) +
[
ℓmax(x)− ℓ(x,x′)

]

= ℓ(x,x′) +
[
maxi∈[K]⟨∇xℓ(x,x

′),x− x′⟩
]
+O(σ2).

(3)

Recent works in computer vision (Gong et al.,
2020; Wang et al., 2021) have provided more for-
mal connections between local gradient norm esti-
mation and K-worst perturbations.

The text sentences in NLP are in the discrete
space, which lacks the definition of local Lipschitz,
but finding the worst perturbation in a local dis-
crete set can still be a better measurement of local
sensitivity in the semantic space.
Choice of Divergence We use the KL divergence
as the primary measure of the statistical distance be-
tween the distribution of the original examples and
that over augmented examples. We also empirically
provide detailed analysis of the Jensen–Shannon
Distance (JSD) (Endres and Schindelin, 2003) and
α-divergence (Minka et al., 2005) as a comple-
mentary measure in Section 5. The α-divergence
(Pillutla et al., 2021) is a general divergence family,
which includes the most popular KL divergence
and reverse KL divergence. Different value of α
makes the divergence trade-off between overestima-
tion and underestimation. JSD is a metric function
based on a mathematical definition which is sym-
metric and bounded within the range [0, 1]. These
divergences are calculated as:

KL (p∥q) = ∑
i
pi(x) log

pi(x)
qi(x)

,

JSD (p∥q) =
√

1
2(KL(p∥m) + KL(q∥m)),

Dα(p∥q) = 1
α(α−1)

∑
i
[(pi(x)qi(x)

)α − 1],

(4)

where p is the output probability distribution of an
example, q is the output probability distribution of
an augmented example, and m = 1

2(p+ q).
Local Sensitivity and Informativeness The diver-
gence objective exploits unlabeled data by measur-
ing predictions across slightly-distorted versions of
each unlabeled sample. The diverse and adversarial
augmentations capture the local sensitivity and in-
formativeness of inputs and project examples to the

decision boundary (Ducoffe and Precioso, 2018).
Thus, the examples and their copies with highly
inconsistent model predictions lie close to the de-
cision boundary of the model (Gao et al., 2020).
These examples are valuable to have human an-
notations because they 1) contain high-confidence
region in a local perturbation and are therefore easy
to train 2) are highly likely to promote the model
with large-margin improvements (see example in
Figure 2). Under our local sensitivity and hardness
guided acquisition, we argue the selected examples
would not be necessarily the examples with the
highest uncertainty, which do not always benefit
the training. For instance, an example may have
low-confidence prediction of both original inputs
and augmented inputs thus making the samples
most hard to train.

2.4 More Details

Compute Distance We compute the divergence in
the model predictive probabilities for the pairs of
the input and its augmentations in Eqn (1). Specif-
ically, we use a pretrained BERT in classification
tasks and GPT-2 in prompt-based few-shot learning
as the base model pθ to obtain the output probabili-
ties for all unlabeled data points in Dpool. We then
compute the divergence value with Eqn (1). Rank
and Select Candidates We apply these steps to
all candidate examples from Dpool and obtain the
divergence value for each. Our acquisition function
selects the top sacq examples that have the highest
divergence value from the acquired batch T .

3 Experimental Settings

Table 1 shows the experimental data configuration.
In classification tasks, we use five datasets, includ-
ing Stanford Sentiment Treebank (SST-2; (Socher
et al., 2013)), Internet Movie Database (IMDB;
(Maas et al., 2011)), AG’s News Corpus (AG News;
(Zhang et al., 2015)), Quora Question Pairs (QQP;
(Wang et al., 2018a)), and Question NLI (QNLI;
(Wang et al., 2018a)). The validation and test splits
are provided in Margatina et al. (2021). Follow-
ing Desai and Durrett (2020), we test domain gen-
eralization and robustness on three challenging out-
of-domain (OD) datasets. For sentiment analysis,
SST-2 and IMDB are the source and target domains,
respectively, and vice versa; for paraphrase detec-
tion, TwitterPPDB (Lan et al., 2019) serves as the
out-of-domain test dataset for QQP.

In the prompt-based few-shot learning, we fol-
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Algorithm 1: Acquisition with Local Sensitivity and Hardness

1: Input: labeled data Dlabel, unlabeled data Dpool, acquisition size sacq, modelM with output probability pθ(· | x).
2: while Select examples before reaching the budget do
3: for x in Dpool do
4: Generate K augmentations, {x′

i}i=1,··· ,K ← g (x). //data paraphrasing via augmentation
5: Compute pθ(· | x) and pθ(· | x′

i) for i = 1, . . . ,K. //compute probabilities
6: Select the worst case augmentation x′ for each input x as ℓmax(x) = maxi=1,··· ,K ℓ(x,x′

i).
7: end for
8: Select top sacq largest examples in Dpool, according to the value of D(pθ(· | x), pθ(· | x′)).
9: Label these sacq examples.

10: end while
11: Curriculum learning the model parameters with Eqn (5).

Dataset Train Val Test OD Dataset

SST-2 60.6K 6.7K 871 IMDB
IMDB 22.5K 2.5K 25K SST-2
AG News 11.4K 6K 7.6K -
QNLI 99.5K 5.2K 5.5K -
QQP 327K 36.4K 80.8K TwitterPPDB

SST-2 60.6K 6.7K 871 -
TREC 4.5K 500 500 -
RTE 2.5K 277 3K -

Table 1: Dataset Configuration. The top block is for
the classification tasks and the bottom block is for the
prompt-based few-shot learning. OD represents out-of-
domain datasets.

low Zhao et al. (2021) to use SST-2 (Socher et al.,
2013) for sentiment analysis, TREC (Voorhees and
Tice, 2000) for question classification, and RTE
(Dagan et al., 2005) for recognizing textual entail-
ment. See Appendix A for more details of the data.

3.1 Classification Task

We compare the proposed ALLSH against four
baseline methods. We choose these baselines as
they cover a spectrum of acquisition functions (un-
certainty, batch-mode, and diversity-based).
Random samples data from the pool of unlabeled
data Dpool following a uniform distribution.
Entropy selects sacq sentences with the highest
predictive entropy (Lewis and Gale, 1994) mea-
sured by −∑

x
pθ(x) ln pθ(x).

BADGE (Ash et al., 2020) acquires sacq sentences
based on diversity in loss gradient. The goal
of BADGE is to sample a diverse and uncertain
batch of points for training neural networks. It ac-
quires data from Dpool by first passing the input
through the trained model and computing the gra-
dient embedding with respect to the parameters of
the model’s last layer.
CAL (Margatina et al., 2021) The acquisition
function samples contrastive examples. It uses in-
formation from the feature space to create neighbor-
hoods for unlabeled examples, and uses predictive

likelihood for ranking the candidates.

3.2 Prompt-based Few-Shot Learning

Following Zhao et al. (2021), we adapt our ac-
quisition function for state-of-the-art generation
based model GPT-2 and propose to retrieve exam-
ples that are semantics and sensitivity aware to
formulate its corresponding prompts. We compare
ALLSH’s acquisition function with random, con-
textual calibrated, and uncertainty prompt. For
random prompt, we randomly select in-context ex-
amples from the training set for each test sentence.
For Calibrated, Zhao et al. (2021) inject calibration
parameters that cause the prediction for each test
input to be uniform across answers. See Zhao et al.
(2021) for more details. For Uncertain, we sample
the highest uncertain prompt for the test sentences.
For ALLSH, we augment the in-context examples
and select the prompts with the highest divergence
of the predicted likelihood between the original
examples and their augmentations.

3.3 Implementation Details

For classification, we use BERT-base (Devlin et al.,
2018) from the HuggingFace library (Wolf et al.,
2020). We train all models with batch size 16,
learning rate 2×10−5, and AdamW optimizer with
epsilon 1×10−8. For all datasets, we set the default
annotation budget as 1%, the maximum annotation
budget as 15%, initial accumulated labeled data
set Dlabel as 0.1% of the whole unlabeled data,
and acquisition size as 50 instances for each ac-
tive learning iterations, following prior work (e.g.,
Gissin and Shalev-Shwartz, 2019; Dor et al., 2020;
Ru et al., 2020). Curriculum Learning (CL) We
further combine our acquisition function with ad-
vances in semi-supervised learning (SSL) (Berth-
elot et al., 2019a; Sohn et al., 2020), which also
integrates abundant unlabeled data into learning.
A recent line of work in SSL utilizes data aug-
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mentations, such as TF-IDF and back-translation,
to enforce local consistency of the model (Sajjadi
et al., 2016; Miyato et al., 2018). Here SSL can
further distill information from unlabeled data and
gradually propagate label information from labeled
examples to unlabeled one during the training stage
(Xie et al., 2020; Zhang et al., 2021c). We construct
the overall loss function as

L = LS + α · Ex∼Dpool
D(pθ(· | x), pθ(· | x′))

︸ ︷︷ ︸
LU

, (5)

where LS is the cross-entropy supervised learning
loss over labeled samples, LU is the consistency
regularization term, and α is a coefficient (Tar-
vainen and Valpola, 2017; Berthelot et al., 2019b).

For prompt-based few-shot learning, we run
experiments on 1.5B-parameters GPT-2 (Radford
et al., 2019), a Transformer (Vaswani et al., 2017)
based language model. It largely follows the details
of the OpenAI GPT model (Radford et al., 2018).
We take the TF-IDF as the default augmentation
method and provide a rich analysis of other aug-
mentation methods in Section 5. More detailed
experimental settings are included in Appendix A.

4 Experiments

We evaluate the performance of our acquisition
and learning framework in this section. We bold
the best results within Random, Entropy, BADGE,
CAL, and the proposed ALLSH (Ours) in tables.
Then, we bold the best result within each column
block. All experimental results are obtained with
five independent runs to determine the variance.
See Appendix A for the full results with error bars.

4.1 In-Domain Classification Task Results
In Table 2, we evaluate the impact of our acquisi-
tion function under three different annotation bud-
gets (1%, 5%, and 10%). With a constrained an-
notation budget, we see substantial gains on test
accuracy with our proposed acquisition: ALLSH
and selecting worst-case augmentation. With this
encouraging initial results, we further explore our
acquisition with curriculum learning. Across all
settings, ALLSH is consistently the top perform-
ing method especially in SST-2, IMDB, and AG
News. With a tight budget, our proposed acquisi-
tion can successfully integrate the local sensitivity
and learning difficulty to generate annotated data.

For BADGE, despite combining both uncertainty
and diversity sampling, it only achieves the compa-

rable results on QNLI, showing that gradient com-
puting may not directly benefit data acquisitions. In
addition, requiring clustering for high dimensional
data, BADGE is computationally heavy as its com-
plexity grows exponentially with the acquisition
size (Yuan et al., 2020). We provide rich analysis of
the sampling efficiency and running time for each
method in Appendix A and include the results in
Table 13. Also, ALLSH outperforms the common
uncertainty sampling in most cases. Given the cur-
rent model state, uncertainty sampling chooses the
samples that are not representative to the whole un-
labeled data, leading to ineffective sampling. CAL
has an effective contrastive acquiring on QNLI. We
hypothesize that due to the presence of lexical and
syntactic ambiguity between a pair of sentence, the
contrastive examples can be used to push away the
inputs in the feature space.

Acquired dataset size: 1% 5% 10%

SST-2

Random 84.11 86.53 88.05
Entropy 84.53 87.82 89.45
BADGE 84.32 87.11 88.72
CAL 84.95 87.34 89.16
Ours 85.97 88.61 90.05
+ WCA 86.12 88.56 90.14
+ CL 86.37 88.79 90.18

IMDB

Random 65.90 84.22 86.25
Entropy 68.32 84.51 87.29
BADGE 67.80 84.46 87.17
CAL 73.55 84.72 87.27
Ours: 75.23 85.82 87.91
+ WCA 75.17 85.79 87.83
+ CL 77.57 86.02 88.43

AG News

Random 85.43 90.05 91.93
Entropy 86.48 92.21 92.65
BADGE 86.81 90.72 92.41
CAL 87.12 92.13 92.82
Ours 88.42 92.86 93.13
+ WCA 88.50 92.84 93.22
+ CL 88.57 92.94 93.20

QNLI

Random 76.33 83.61 84.63
Entropy 77.95 83.83 84.75
BADGE 77.74 84.90 84.32
CAL 78.53 85.14 84.99
Ours 78.44 84.93 84.87
+ WCA 78.47 85.12 84.91
+ CL 78.92 85.06 84.96

QQP

Random 77.32 81.73 84.22
Entropy 78.47 81.92 86.03
BADGE 78.02 81.63 84.06
CAL 78.23 82.52 84.25
Ours 78.97 82.43 84.77
+ WCA 78.90 82.55 84.83
+ CL 79.32 82.91 84.95

Table 2: Results of the in-domain test accuracies for
different acquired dataset size. + WCA refers to Ours +
select worst-case augmentation. + CL refers to Ours +
curriculum learning. We provide error bars in Table 11
in the Appendix.
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4.2 Out-of-Domain Classification Task Results

We compare our proposed method with the base-
lines for their performance in an out-of-domain
(OD) setting and summarize the results in Table 3.
We test domain generalization on three datasets
with two tasks, including sentiment analysis and
paraphrase detection. We set the annotation budget
as 15% of Dpool for all OD experiments. For OD in
SST-2 and IMDB, ALLSH yields better results than
all baselines with a clear margin (1.7% and 2.0%,
respectively). With curriculum learning, the results
are continually improved. The performance gains
on out-of-domain are often greater than the gains
on in-domain, implying that ALLSH can signifi-
cantly help the model to generalize across domains.
On QQP, ALLSH achieves comparable results as
CAL without curriculum learning while the perfor-
mance can be further improved by adding curricu-
lum learning.

ID SST-2 IMDB QQP
OD IMDB SST-2 TwitterPPDB
Random 76.31 82.01 85.57
Entropy 75.88 85.32 85.18
BADGE 75.23 85.11 85.39
CAL 78.88 84.92 86.14
Ours 80.54 86.97 86.03
+ WCA 80.72 86.99 86.07
+ CL 80.91 87.07 86.18

Table 3: Results of out-of-domain (OD) generalization.
We report the out-of-domain accuracy on the target do-
main. ID refers to in-domain dataset. OD refers to
out-of-domain dataset.

4.3 Prompt-Based Few-Shot Learning Results

We present the prompt-based few-shot learning re-
sults with GPT-2 in Table 4, in which we follow
the setting (4-shot, 8-shot, and 12-shot) in Zhao
et al. (2021). Few-shot learners suffer from the
quality of labeled data (Sohn et al., 2020), and pre-
vious acquisition functions usually fail to boost
the performance from labeling random sampled
data. In Table 4, we observe that uncertain prompts
performs similar to random selected prompts. A po-
tential reason is that an under-trained model treats
all examples as uncertainty examples and hard to
distinguish the informativeness. However, our pro-
posed acquisition demonstrates the strong capabil-
ity in modeling the local sensitivity and learning
from easy to hard. It comes to the best perfor-
mance in most of the settings. These findings show
the potential of using our acquisition to improve
prompt-based few-shot learning and make a good
in-context examples for GPT-2 model.

4-shot 8-shot 12-shot

SST-2

Random 64.9 54.5 56.3
Calibrated 73.8 64.6 73.0
Uncertainty 59.7 64.5 66.8
Ours 75.3 77.8 79.7

TREC

Random 23.1 32.7 37.5
Calibrated 44.2 44.1 44.4
Uncertainty 34.8 52.2 54.1
Ours 46.4 58.7 59.8

RTE

Random 53.2 54.9 56.0
Calibrated 57.5 57.7 58.2
Uncertainty 57.0 57.3 57.8
Ours 57.9 58.4 59.7

Table 4: Results across different strategies of acquiring
training examples (the prompt format is fixed). The
language model here is GPT-2 (1.5B).

5 Analysis

Can we use our proposed acquisition in the im-
balance setting? Extreme label imbalance is an
important challenge in many non-pairwise NLP
tasks (Sun et al., 2009; Zhang et al., 2017; Muss-
mann et al., 2020b). We set up the imbalance set-
ting by sampling a subset with class-imbalance
sample rate. For binary classification, we set the
positive-class data sample rate as 1.0 and negative-
class data sample rate as 0.1. As our acquisition
focuses on local sensitivity and informativeness,
it tends to select examples close to the decision
boundary. Once too many positive examples and
few negative examples are labeled, the local per-
turbation around negative samples are easy to be
positive, and thus ALLSH selects examples that
are close to the negative examples. We conduct
the experiments on SST-2, IMDB, and AG News
with annotation budget as 1%. In Table 5, Ours3

indicates strong improvements. This further proves
that our selection method can generalize better.

SST-2 IMDB AG News
Random 79.45 62.33 82.95
Entropy 81.71 65.69 82.79
CAL 83.23 72.75 83.27
Ours 85.48 74.48 84.11

Table 5: Main results of different active learning strate-
gies on the imbalanced SST-2, IMDB, and AG News.

Would different augmentations make meaning-
ful difference? We test if our results are sensitive
to the choice of augmentation: TF-IDF and back-
translation. For TF-IDF, we compare the random
sample augmentation and worst-case augmentation
(WCA). TF-IDF and Backtranslation generate di-
verse paraphrases while preserving the semantics
of the original sentences. Select-worst case aug-
ments the inputs by incorporating the approximate
adversarial perturbations. Table 6 indicates our
method is insensitive to different augmentations.

3Ours in the Section 5 refers to ours + curriculum learning.
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SST-2 IMDB AG News
Backtranslation 86.01 75.12 88.39
TF-IDF 85.97 75.23 88.42
+ WCA 86.37 75.17 88.50

Table 6: Acquisition performance for different augmen-
tations. We report results of our acquisition with differ-
ent augmentations to get the local copies of the samples.

We also observe that WCA achieves the highest
gains on two datasets. This confirms our discus-
sion in Section 2.3 that select-worst case is capable
of imposing local sensitivity.

What is the influence of the choice of diver-
gence? We select different divergences in the
statistical distance family and study their abilities
in encoding different information. Corresponding
to Section 2.3, we present the results in Table 7.
We experiment on the KL divergence, JSD, and
α-divergence (Minka et al., 2005) with the α value
set as −0.5 or 0.5. We notice that for our case the
difference between different divergences is small.
A possible reason is that the number of class cat-
egories is small and therefore the choice of diver-
gence does not have a large influence.

Can we use the proposed acquisition with ex-
tremely few labeled data? We have presented
the results under very limited annotation budgets
in Table 2. We set the annotation budget as 0.8%
and 0.4%. The key observation is that the degrada-
tion of performance in the other acquisition func-
tions are dramatic. For example, in IMDB, the
uncertainty sampling (Entropy) shows the obvious
performance drop. It suffers from the sampling
bias problem because of the frequent variation of
the decision boundary in the early phase of train-
ing with very few labeled data available, which
results in ineffective sampling. Even under this
extreme case, our acquisition still aims to select
the most informative examples for the model. This
further verifies our empirical results in Section 4.3
on prompt-based few-shot learning where only a
very few in-context prompts are provided.

6 Related Work

Active Learning Active Learning has been
widely used in many applications in NLP (Low-
ell et al., 2018; Dor et al., 2020; Ru et al., 2020).
The uncertainty-based methods (Fletcher et al.,
2008) have become the most common strategy.
Instead of only considering uncertainty, diversity
sampling has also become an alternative direction.
Recent works (Geifman and El-Yaniv, 2017; Sener

SST-2 IMDB AG News
KL 86.37 77.57 88.57
JSD 86.25 77.38 88.41
α = −0.5 86.31 77.42 88.43
α = 0.5 86.39 77.53 88.61

Table 7: Ablation study on different choices of diver-
gences. We report KL, JSD, and α-divergence, and set
α = ±0.5 respectively.

SST-2 IMDB

Dataset size 0.4% 0.8% 0.4% 0.8%
Random 64.64 61.08 60.84 73.86
Entropy 67.88 63.94 58.96 71.32
CAL 73.81 65.72 61.65 74.15
Ours 76.45 69.46 64.54 75.88

Table 8: Results on the SST-2 and IMDB datasets under
limited annotation budget (0.4%, 0.8%).

and Savarese, 2017; Ash et al., 2020; Yuan et al.,
2020) focus on different parts of diversity. Most
recent works (e.g. Zhang and Plank, 2021; Mar-
gatina et al., 2021) have been more on exploiting
the model behavior and each individual instance.
Our work focuses more on the local sensitivity and
informativeness of data, leading to better perfor-
mance under various limited annotation settings.

Annotation Budgeting Annotation budgeting
with learning has long been studied (Turney, 2002).
Sheng et al. (2008) study the tradeoff between col-
lecting multiple labels per example versus annotat-
ing more examples. On the other hand, different
labeling strategies such as providing fine-grained
rationales (Dua et al., 2020), active learning (Kirsch
et al., 2019), and the training dynamics approach
(Swayamdipta et al., 2020) are studied. Except stan-
dard classification, class-imbalance (Mussmann
et al., 2020a) or noisy label cases (Fan et al., 2021;
Chen et al., 2021) have also been explored. We
utilize active learning to explore the labeling strate-
gies and aim to select the most informative data for
annotations.

7 Conclusion

Our work demonstrates the benefits of introducing
local sensitivity and learning from easy to hard into
the acquisition strategy. The proposed acquisition
function shows noticeable gains in performance
across classification tasks and prompt-based few-
shot learning. In this work, we conduct the de-
tailed study with the proposed acquisition strategy
in different settings, including imbalanced and ex-
tremely limited labels. We also verify the impact
of different choice of designs such as the choice of
divergence and augmentations. To summarize, the
proposed ALLSH is effective and general, with the
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potential to be incorporated into existing models
for various NLP tasks.
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A Experimental details

A.1 Full Results and Examples
We report the full results of out-of-domain and
in-domain tasks in Tables 9 and 11, respectively.
The full results of prompt-based few-shot learning
are shown in Table 10 and Table 12 shows prompt
examples of each task.

ID SST-2 IMDB QQP
OD IMDB SST-2 TwitterPPDB
Random 76.31±0.66 82.01±3.45 85.57±0.42
Entropy 75.88±1.82 85.32±2.36 85.18±1.79
BADGE 75.23±0.87 85.11±2.92 85.39±3.44
CAL 78.88±1.27 84.92±2.30 86.14±0.31
Ours 80.24±0.91 86.07±2.45 86.03±0.40
+ WCA 80.42±0.85 86.19±2.37 86.07±0.36
+ CL 80.51±0.67 86.24±1.98 86.18±0.29

Table 9: Results of out-of-domain (OD) generalization.
We report the out-of-domain accuracy on the target do-
main. ID refers to in-domain dataset. OD refers to
out-of-domain dataset.

4-shot 8-shot 12-shot

SST-2

Random 64.9±8.4 54.5±4.6 56.3±2.3
Calibrated 73.8±10.9 64.6±8.8 73.0 ±5.3
Uncertainty 59.7±7.3 64.5±5.9 66.8±4.8
Ours 75.3±7.8 77.8±4.7 79.7±3.2

TREC

Random 23.1±5.9 32.7±7.5 37.5±7.8
Calibrated 44.2±2.2 44.1±3.6 44.4±4.0
Uncertainty 34.8±3.4 52.2±4.1 54.1±5.2
Ours 46.4±2.8 58.7±3.6 59.8±4.3

RTE

Random 53.2±6.0 54.9±3.0 56.0±2.2
Calibrated 57.5±1.8 57.7±1.3 58.2±1.1
Uncertainty 57.0±1.5 57.3±1.4 57.8±1.1
Ours 57.9±2.3 58.4±1.6 59.7±1.2

Table 10: Full results across different choices of the
training examples (the prompt format is fixed). The
language model at here is GPT-2XL (1.5B).

A.2 Classification Task Hyperparameters and
Experimental Settings

Our implementation is based on the BERT-base
(Devlin et al., 2018) from HuggingFace Transform-
ers (Wolf et al., 2020). We optimize the KL diver-
gence as the objective with the Adam optimizer
(Kingma and Ba, 2014) and batch size is set to
16 for all experiments. The curriculum learning
is trained for 200 iterations. The learning rate is
2× 10−5. The α in Eqn (5) is set as 0.01 for all ex-
periments. With longer input texts such as IMDB,
we use 256 as the maximum sequence length. For
others, we use 128. Following Ash et al. (2020)
and Margatina et al. (2021), for the initial training
set Dlabel, we begin the active learning loop by

Acquired dataset size: 1% 5% 10%

SST-2

Random 84.11±0.45 86.53±0.61 88.05±0.73
Entropy 84.53±0.81 87.82±0.73 89.45±0.92
BADGE 84.32±0.64 87.11±0.82 88.72±0.44
CAL 84.95±0.56 87.34±0.61 89.16±0.67
Ours 85.97±0.53 88.61±0.48 90.05±0.61
+ WCA 86.12±0.47 88.56±0.55 90.14±0.57
+ CL 86.37±0.43 88.79±0.46 90.18±0.48

IMDB

Random 65.96±0.66 84.22±0.52 86.25±0.54
Entropy 68.32±0.53 84.51±0.48 87.29±0.51
BADGE 67.80±0.44 84.46±0.50 87.17±0.41
CAL 73.55±0.56 84.72±0.48 87.27±0.50
Ours: 75.23±0.43 85.82±0.35 87.91±0.53
+ WCA 75.17±0.58 85.79±0.67 87.83±0.71
+ CL 77.57±0.64 86.02±0.62 88.43±0.57

AG News

Random 85.43±0.53 90.05±0.51 91.93±0.60
Entropy 86.48±0.46 92.21±0.41 92.65±0.39
BADGE 86.81±0.48 90.72±0.51 92.41±0.53
CAL 87.12±0.31 92.13±0.38 92.82±0.35
Ours 88.42±0.37 92.86±0.40 93.13±0.39
+ WCA 88.50±0.35 92.84±0.37 93.22±0.42
+ CL 88.57±0.30 92.94±0.32 93.20±0.35

QNLI

Random 76.33±0.54 83.61±0.57 84.63±0.62
Entropy 77.95±0.50 83.83±0.61 84.75±0.55
BADGE 77.74±0.53 84.90±0.48 84.32±0.46
CAL 78.53±0.49 85.14±0.45 84.99±0.53
Ours 78.44±0.41 84.93±0.32 84.87±0.39
+ WCA 78.47±0.43 85.12±0.37 84.91±0.38
+ CL 78.92±s0.40 85.06±0.36 84.96±0.33

QQP

Random 77.32±0.66 81.73±0.72 84.22±0.75
Entropy 78.47±0.57 81.92±0.64 86.03±0.49
BADGE 78.02±0.49 81.63±0.55 84.06±0.60
CAL 78.23±0.52 82.52±0.57 84.25±0.48
Ours 78.97±0.46 82.43±0.44 84.77±0.52
+ WCA 78.90±0.50 82.55±0.48 84.83±0.48
+ CL 79.32±0.53 82.91±0.51 84.95±0.58

Table 11: Full results of the in-domain test accuracies
for different acquired dataset size. + WCA refers to
Ours + select worst-case augmentation. + CL refers to
Ours + curriculum learning.

uniformly random sampling from Dpool. For all
experiments in the Section 5, we set the annota-
tion budget as 1% and use Ours (ours + curriculum
learning) as the default methods.

TF-IDF based data augmentation (Xie et al.,
2020) aims to generate both diverse and valid ex-
amples. It is designed to retain keywords and re-
place uninformative words with other uninforma-
tive words. BERT is used as the word tokenizer.
We set IDF(w) is the IDF score for word w com-
puted on the whole corpus, and TF(w) is the TF
score for word w in a sentence. Then, we compute
the TF-IDF score as TFIDF(w) = TF(w)IDF(w).
Suppose the maximum TF-IDF score in a sentence
x is C = maxi TFIDF(xi). We set the probability to
min(p(C - TFIDF(xi))/Z, 1), where p is a hyperpa-
rameter that controls the magnitude of the augmen-
tation and we set p =0.3. Z is the average score
over the inputs sentence. For backtranslation, we
use a pre-trained EN-DE4 and DE-EN5 translation
models (Ng et al., 2019) to perform backtranslation

4https://dl.fbaipublicfiles.com/
fairseq/models/wmt19.en-de.joined-dict.
single_model.tar.gz

5https://dl.fbaipublicfiles.com/
fairseq/models/wmt19.de-en.joined-dict.
single_model.tar.gz

1340

https://dl.fbaipublicfiles.com/ fairseq/models/wmt19.en-de.joined-dict. single_model.tar.gz
https://dl.fbaipublicfiles.com/ fairseq/models/wmt19.en-de.joined-dict. single_model.tar.gz
https://dl.fbaipublicfiles.com/ fairseq/models/wmt19.en-de.joined-dict. single_model.tar.gz
https://dl.fbaipublicfiles.com/ fairseq/models/wmt19.de-en.joined-dict. single_model.tar.gz
https://dl.fbaipublicfiles.com/ fairseq/models/wmt19.de-en.joined-dict. single_model.tar.gz
https://dl.fbaipublicfiles.com/ fairseq/models/wmt19.de-en.joined-dict. single_model.tar.gz


Task Prompt Label Names
SST-2 Review: At times, the movie looks genuinely pretty. Positive, Negative

Sentiment: Positive

Review: The movie is amateurish, but it’s a minor treat.
Sentiment:

TREC Question: Where can I find information on becoming a journalist? Number, Location, Person, Description,
Answer Type: Location Entity, Abbreviation

Question: What is the temperature today?
Answer Type:

RTE The motor industry accounts for as much as 40 percent of the 450,000 installed industrial robots True, False
worldwide but their use is changing and applications are expanding.
Question: The most common use for robots is the manufacture of automobiles. True or False?
Answer: True

Arroyo was the favorite of investors because of her experience as a trained economist
and government manager.
Question: Arroyo has experience as an economist and as a government manager. True or False?
Answer:

Table 12: The different prompts we use for SST-2, TREC, and RTE. One training example per task is presented.
The language model is used to predicted the label probability as shown in the right column.

on each sentence.

A.3 Prompt-based Few-Shot Learning
Hyperparameters and Experimental
Settings

We use the 1.5B parameters GPT-2 (Radford et al.,
2019), with a Transformer (Vaswani et al., 2017)
based architecture. The model largely follows the
details of the OpenAI GPT model (Radford et al.,
2018) with a few modifications. Layer normaliza-
tion (Ba et al., 2016; Fan et al., 2020; Zhang et al.,
2021a) is moved to the input of each sub-block and
an additional layer normalization is added after the
final self-attention block. Following the settings in
Zhao et al. (2021), the maximum input length is
2048 tokens or 1500 words. In Table 12, we show
the default prompt format for SST-2, TREC, and
RTE. For datasets, Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013) is one of benchmarks
in General Language Understanding Evaluation
(GLUE) (Wang et al., 2018a). With fully labeled
parse tress, This corpus allows a complete anal-
ysis of the compositional effects of sentiment in
language. TREC (Voorhees and Tice, 2000) is a
6-way question classification. The target is to clas-
sify the questions based on whether their answer
type is a Number, Location, Person, Description,
Entity, or Abbreviation. Similarly, RTE (Recog-
nizing Textual Entailment) (Dagan et al., 2005) is
also a benchmark dataset from GLUE. It is a binary
classification task to determine if a given premise
entails a given hypothesis.

SST-2 IMDB AG News AVG.
Random 0 0 0 0
Entropy 173 107 402 227
BADGE 25640 3816 1961 10303
CAL 708 273 1284 755
Ours 513 228 881 541
+ WCA 611 275 1023 636

Table 13: Running time (seconds) per sampling iteration
(inference and selection) during AL acquisition for each
datasets. AVG. refers the average acquisition time for
all three datasets. For each acquisition, we report the
running time under three adversarial attacks respectively

A.4 Sampling Efficiency and Running Time

We mask m as the number of labeled data in Dlabel,
n the number of unlabeled data in Dpool, C the
number of classes in the downstream classifica-
tion task, d the dimension of embeddings, l the
maximum sequence length, and sacq the acquisi-
tion size. We set these values following Yuan et al.
(2020) and Margatina et al. (2021). In Table 13,
running time in seconds are summarized per sam-
pling iteration (inference and selection) during AL
acquisition for each dataset. Experiments in this
part are performed on a Tesla V100 GPU. We keep
sacq = 100, d = 768, t = 10, and l = 128. For
IMDB, we change the maximum sequence length
to 256. As demonstrated in Table 13, BADGE re-
quires a significantly amount of running time, since
it has to cluster high-dimensional vectors and is a
very computationally-heavy method. CAL also re-
quires relative long running time as it needs to find
the contrastive examples by finding nearest neigh-
bors and computing contrastive score for unlabeled
candidates. Our method achieves the second best
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efficiency. Even with the select worst-case augmen-
tation, our acquisition function is still computation-
ally productive as the augmentation and ranking
candidates can be well deployed in the current com-
putational machines. Entropy is overall the most
efficient method as it only requires to rank the list
of uncertainty scores, while it tends to have weaker
performance.

1342


