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Abstract

Target-guided response generation enables dia-
logue systems to smoothly transition a conver-
sation from a dialogue context toward a target
sentence. Such control is useful for design-
ing dialogue systems that direct a conversation
toward specific goals, such as creating non-
obtrusive recommendations or introducing new
topics in the conversation. In this paper, we
introduce a new technique for target-guided re-
sponse generation, which first finds a bridging
path of commonsense knowledge concepts be-
tween the source and the target, and then uses
the identified bridging path to generate transi-
tion responses. Additionally, we propose tech-
niques to re-purpose existing dialogue datasets
for target-guided generation. Experiments re-
veal that the proposed techniques outperform
various baselines on this task. Finally, we ob-
serve that the existing automated metrics for
this task correlate poorly with human judge-
ment ratings. We propose a novel evaluation
metric that we demonstrate is more reliable for
target-guided response evaluation. Our work
generally enables dialogue system designers to
exercise more control over the conversations
that their systems produce.1

1 Introduction

Open-domain conversational systems have made
significant progress in generating good quality re-
sponses driven by strong pre-trained language mod-
els (Radford et al., 2019; Devlin et al., 2019) and
large-scale corpora available for training such mod-
els. However, instead of passively responding to a
user, dialogue systems can take on a more proactive
role to make recommendations, help users discover
new services, or introduce interesting new topics
to users to improve user experience. Furthermore,
a proactive or target-guided system can guide the
conversation towards safer conversational topics in

1Code available at www.github.com/prakhargupt
az/target-guided-dialogue-coda

Figure 1: Given a dialogue context and a target sentence,
our goal is to generate a dialogue response that smoothly
transitions the conversation from context towards the target.
Our proposed approach involves identifying a bridging path
of entities to link the context and the target.

case a conversation goes awry or a user becomes
abusive towards the system, and direct the users
towards topic areas that the system knows how
to talk about. Prior work has used mechanisms
such as emotion labels (Zhong et al., 2019), per-
sona (Song et al., 2019), and politeness (Niu and
Bansal, 2018) to control conversations. However,
such approaches require labeled training data for
a set of pre-determined labels, making it harder to
incorporate new goals into a system. In this work,
we study the problem of proactive response gener-
ation based on a target sentence. For example in
Figure 1, given the context ‘I enjoy swimming’, the
system guides the conversation towards the target
‘I like to travel to new places’ by mentioning ‘I like
to swim at beaches when I go on vacation’. Using
target sentences for proactive control is an intuitive
and flexible control mechanism for dialogue de-
velopers, free of domain-specific handcrafting and
annotations.

Existing publicly available dialogue corpora gen-
erally consists of free-flow conversations where
the speakers move the conversation forward based
on the dialogue history alone, with no particular
agenda. We build upon the recently released Otters
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dataset (Sevegnani et al., 2021) with one-turn topic
transitions for mixed-initiative in open-domain con-
versations. Given a source sentence from a speaker,
the task is to generate a topic transition sentence
with “bridging” strategies to a target sentence from
another speaker. The task is challenging on sev-
eral fronts. First, the system needs to balance the
trade-off between coherence with the context while
smoothly transitioning towards the target. Second,
the Otters training dataset is relatively small (less
than 2000 training instances), making it a low-
resource setting. Finally, we show that standard
word-overlap metrics are insufficient for this task.

In this work, we propose methods to leverage
commonsense knowledge from ConceptNet (Speer
et al., 2017a) to improve the quality of transition
responses. Our technique decomposes the response
generation process into first generating explicit
commonsense paths between the source and tar-
get concepts, followed by conditioning on the gen-
erated paths for the response generation. This is
intended to mimic how humans might bridge con-
cepts for creating transitions in conversations us-
ing commonsense knowledge. This technique of-
fers two benefits: 1) Leveraging external Concept-
Net knowledge solves the data scarcity issue and
improves the model’s capability to generate logi-
cal transitions; 2) Since the transition response is
grounded on commonsense knowledge paths, the
explicit paths used by the model can provide ex-
planations for the concepts used by the model, as
well as provide control over the generation pro-
cess. Furthermore, we propose a data augmenta-
tion mechanism to help with the data scarcity issue
by re-purposing training data from DailyDialog,
an open-domain dialogue dataset. Both these ap-
proaches are complementary and outperform ex-
isting baselines in response quality and transition
smoothness. We demonstrate how the proposed
approach of using explicit bridging paths enables
improved quality of transitions through qualitative
and human studies.

Automated evaluation is a challenging aspect
of dialogue response generation tasks (Zhao et al.,
2017). We show that the existing word-overlap
metrics such as BLEU can be easily fooled to as-
sign high scores to poor responses just based on
high n-gram overlap with reference responses. We
propose a metric TARGET-COHERENCE which is
trained using hard adversarial negative instances
and achieves a high correlation with human judge-

ment ratings of system outputs. As part of this
work, we collect and release a dataset of human
ratings of various system outputs for this task.

We discuss the broader impact and potential uses
of the proposed system, its limitations and potential
ethical issues related to this task in Section 8.

2 Related Work

Target Guided Dialogue Response Generation:
Sevegnani et al. (2021) is perhaps the closest to
our work described in this paper. They work on
the task of generating a new utterance which can
achieve a smooth transition between the previous
turn’s topic and the given target topic. Past work in
controllable text generation has explored steering
neural text generation model outputs to contain a
specific keyword (Keskar et al., 2019), a knowl-
edge graph (Wu et al., 2019), or a topic (Ling et al.,
2021). Steering dialogue towards a given keyword
has also been explored in past work (Tang et al.,
2019; Qin et al., 2020a; Zhong et al., 2021), albeit
as a retrieval task. In contrast, our goal is to gener-
ate a next utterance in a dialogue setup which can
steer a conversation towards target sentence in a
smooth fashion rather than generating a response
for a given keyword or topic. Our work is also
related to prior work on text infilling (Donahue
et al., 2020; Qin et al., 2020b), though compared
to them we work in a dialogue setup and utilize
commonsense knowledge to perform the infilling.
Commonsense for Dialogue Generation: Com-
monsense knowledge resources (Speer et al.,
2017b; Malaviya et al., 2020) have been used in dia-
logue response generation for tasks such as persona-
grounded dialogue (Majumder et al., 2020) and
open-domain dialogue generation (Ghazvininejad
et al., 2018; Hedayatnia et al., 2020; Zhou et al.,
2021c). Zhou et al. (2021a) created a dataset focus-
ing on social commonsense inferences in dialogue
and Arabshahi et al. (2020) designed a theorem
prover for if-then-because reasoning. A concur-
rent work (Zhou et al., 2021b) proposed to train a
model to explicitly generate implicit knowledge
and use this knowledge to generate a response.
Compared to their work, we focus on target-guided
response generation, suggest mechanism for knowl-
edge alignment with the transition response during
training, and focus on multi-hop knowledge paths.
More broadly, commonsense knowledge has been
used in text generation tasks such as story and essay
generation (Guan et al., 2019a; Yang et al., 2019).
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Automated Metrics for Evaluating Dialogue
Quality: Automated metrics such as BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), and BertScore (Zhang et al., 2020)
are widely used to evaluate quality of machine-
generated text. However, such metrics often corre-
late poorly with human judgement ratings of gen-
erated text quality (Sai et al., 2020). Past work
has explored trained model-based metrics such as
ADEM (Lowe et al., 2017) and RUBER (Tao et al.,
2017). However, training such model-based met-
rics often relies on tagged training data. Gupta
et al. (2021a) propose ways to mitigate the need for
such labelled data by automatically synthesizing
negative examples. Our proposed metric is along
similar lines, though we utilize different techniques
for synthetic negative example generation.

3 Task Overview

We first formalize the task of target-guided re-
sponse generation. Given a conversation context
c between two speakers A and B, and a target ut-
terance t for speaker B, the task is to generate a
transition sentence s which serves as a smooth link
between the context and the target. The target is
a phrase or a sentence. Otters dataset (Sevegnani
et al., 2021) consists of a simplified setting of one-
turn topic transitions, where the conversation his-
tory consists of a single utterance ua from speaker
A, and a target utterance ub for speaker B, and
the task is to generate a transition utterance s for
speaker B to serve as a smooth link between ua and
ub. The task is challenging since a system needs
to devise a strategy that balances the competitive
objectives of generating a response which is co-
herent to the context, while smoothly driving the
conversation towards the target.

In this work, we propose two approaches
for the transition response generation task: 1)
Commonsense-guided response generation (sec-
tion 4), and 2) Data augmentation to tackle data
sparsity (section 5). We refer to the proposed
method as CODA (Commonsense Path and Data
Augmentation). We also propose a novel metric
TARGET-COHERENCE to automatically evaluate
the smoothness of response transitions (section 6).

4 Commonsense-Guided Response
Generation

We frame the target-guided response generation
task as follows. Given a conversation context c

and a target t, a conditional language model learns
to predict the transition response s. Target-guided
generation can potentially benefit by incorporating
commonsense reasoning by identifying rich con-
nections between a pair of entities which enable us
to generate logical transition responses connecting
the two. Pre-trained language models are known to
suffer in cases where commonsense knowledge is
required during generation (Zhou et al., 2018; Guan
et al., 2019b), especially in tasks where there is not
enough data available for learning commonsense
patterns from the text, which is true for our case.
In contrast, Commonsense Knowledge Graphs like
ConceptNet (Speer et al., 2017a) provide structured
knowledge about entities, which enables higher-
level reasoning about concepts.

In this work we use commonsense knowledge
from ConceptNet for planning a transition response.
ConceptNet is a large-scale semantic graph that
has concepts as nodes and has commonsense re-
lationships between them, such as ‘IsA’ and ‘At-
Location’. However, ConceptNet suffers from se-
vere sparsity issues (Malaviya et al., 2020; Bosselut
et al., 2019). Therefore, it is not always possible to
find the concepts and relationships between context
and target concepts. To address the sparsity issue,
we develop Knowledge Path Generator (KPG), a
language model trained on paths sampled from
ConceptNet. The model takes a pair of entities or
concepts as input and generates a multi-hop path
connecting the two. Since the knowledge paths
are sampled from a generative model rather than
retrieved from a fixed knowledge base, we are no
longer limited by the entities and paths present in
the ConceptNet knowledge base.

To generate commonsense based responses, we
train a Commonsense Response Generator (CRG)
model to generate the transition response condi-
tioned on the paths generated by the KPG model
(Figure 2). Conditioning the response generation
on commonsense paths improves the reasoning ca-
pabilities of the CRG model and provides the added
benefits of interpretability and control over the gen-
eration process.

4.1 Commonsense path generator

The KPG models attempts to connect a concept or
entity phrase from the context to a concept from the
target by creating knowledge paths between them.
Path Sampling: To create training data for the
KPG models, we sample paths between entity

1303



Figure 2: Model illustrations for KPGs - Knowledge Path Generators (top) and CRG - Commonsense Response Generator
(bottom). Base architecture for all models is GPT-2. Given a path sampled from ConceptNet, KPG-wc learns to predict the path
given the head, tail and intermediate entities of the path while KPG-ht learns to predict the path given only the head and tail
entities. For the CRG model, during training, a head entity from the context, a tail entity from the target and intermediate entities
from the gold transition response are fed into KPG-wc and its output path is used as input to the CRG model. During inference, a
head entity from the context and a tail entity from the target are fed into the KPG-ht model. KPG-ht then generates a path with
new concepts such as “go on vacation”. CRG model conditions on this path for transition response generation.

phrases from ConceptNet using random walks.
This step builds upon past work of Wang et al.
(2020). Given nodes N and edges E from Con-
ceptNet, we perform random walks on the graph
to sample a set of paths P of the form p =
{n0, e0, n1, e1, ..., ek−1, nk} ∈ P . Here, a path p
connects a head entity phrase n0 with the tail entity
phrase nk via intermediate entities and edges (or
relations) ni, ei. To sample paths, the random walk
begins with a random entity node n0 and samples a
path of random length k ∈ {1, 2, ...,K}, where we
have set K = 6 in this work. To sample paths that
are useful for our task, we prevent sampling certain
edges types such as Synonym (Appendix A.1).
KPG-head-tails (KPG-ht): KPG-ht is a GPT-
2 (Radford et al., 2019) based model which is
trained to predict a knowledge path p which links
a head entity nh to a tail entity nt. For a sample
path p = {nh, e0, n1, e1, ..., ek−1, nt} from Con-
ceptNet, the path is formatted into the following
sequence “[target] nt [sep] nh e0 n1 e1, . . . , ek−1

nt”. KPG-ht is only used during CRG inference
where the head entity is extracted from the context
and tail entity from the target (Figure 2).
KPG-will-contain (KPG-wc): A large number of

possible paths can exist for a given head-tail entity
pair. Training the CRG model by conditioning on
paths which are irrelevant to the gold transition
response might discourage the CRG model from
conditioning on the provided commonsense path.
Since we do not have gold paths for a response, we
instead train a model KPG-wc to generate paths
which are more aligned to the gold response by en-
forcing the generated path to contain entities from
the gold response. KPG-wc is trained to predict
a path which contains a pre-specified entity set
Ep = {k1, ..., kn} in the generated path by format-
ting paths sampled from ConceptNet as the follow-
ing sequence: “[wc] k1 [wc] k2. . . [target] nt [sep]
nh e0 n1 e1, . . . , ek−1 nt” (Figure 2). The entity
set Ep is a randomly permuted sequence of enti-
ties n1, n2, . . . , nk−1 from the sampled path. Here
“wc” symbolizes “will contain”. Training with this
sequence indicates to the model that the path gener-
ated between nh and nt should contain the entities
from the set Ep in a sensible order. Specifying the
special token “[target]” followed by the tail entity
nt informs the model about the last entity it should
output when generating a path. We discuss how
the set Ep is constructed for CRG model training
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in the next section.
In practice, we train a single common GPT-2

based model for KPG-wc and KPT-ht. The model
at test time is able to generate knowledge paths for
either case, whether in-path entities from Ep are
present (KPG-wc) in the input or not (KPG-ht).

4.2 Response generator

The Commonsense response generator conditions
on the commonsense paths generated from the KPG
models to generate the transition responses.

Entity extraction. We extract a set of entities
Eh, Et and Er from the context, target and gold
transition response respectively using NLTK. We
designed simple grammar rules (details in Ap-
pendix A.1) to convert phrases to concise forms
that match the nodes present in ConceptNet, e.g.,
“watching the star” is converted to “watch stars”.

Sampling and filtering paths: In this step, for
every pair of head and tail entity from Eh and Et,
we sample multiple paths from the KGP models
using topk sampling and chose one or more of these
paths for training and inference. For training the
CRG models with the commonsense paths, we need
to curate paths that are relevant to and aligned with
the gold response so that they are not ignored by the
CRG model during inference. We achieve this by
first sampling paths which are relevant to the gold
response, and then apply filtering mechanisms to
curate the final set of paths. For training data path
sampling, we use the KPG-wc model (Figure 2).
The input to the model is a head and tail entity
pair nh and nt, and the entity set Ep that consists
of the set of entities Er from the gold transition
response. The model then generates a set of paths
that contain the head and tail entities as well as
the gold response keywords. Thus, the sampled
path is inherently relevant to the gold response
due to the conditioning on gold keyword entities.
During inference, the set Er is not available, so we
leverage the KPG-ht model that takes just the head
and tail entity pair nh and nt as input to generate a
commonsense path.

Assuming the context and target consists of m
and n entities each, and we generate q number of
paths per pair, we get a total of m× n× q number
of paths for each data instance. Since m× n× q
can be a large number, we use simple methods to
sub-select entity pairs and paths. (1) Sub-selecting
Entity Pairs: We score an entity pair by calculating
the inverse document frequencies (computed using

Gutenberg English corpus) of the entity tokens and
summing up the maximum value found for a to-
ken in each entity in the pair. For training phase,
we keep the top D pairs of entities, and for testing
phase we keep only the highest-scoring pair. (2)
Sub-selecting paths: We apply the following strate-
gies to prune the set of paths for each entity pair:
1) Perplexity - We filter out all the paths whose
perplexity values (from the KGP models) are more
than double the average perplexity values of all
paths between an entity pair. 2) We remove all
the paths which have repetition of entities since
repetition often leads to degeneration during de-
coding. 3) For paths in training data, we filter out
paths which contain entities not present in the gold
response. The final set of paths P are converted
into natural language by converting the relation and
inverse relations into textual format. For example,
“art gallery UsedFor for art” is converted to “art
gallery is used for art”.

Training and inference in CRG model. The CRG
model (GPT-2 based) is trained as a conditional
model with the following input sequence: “knowl-
edge path [target] target sentence [context] context
sentence [response] transition response” for each
knowledge path from the set P . We train the CRG
model by minimizing the log-likelihood loss of the
transition response. For inference, we create the set
of paths P by entity extraction, path sampling and
filtering and choose a random path p from the final
set P . The model generates the transition response
conditioned on the sequence of c, t, and p.

5 Data Augmentation

The task of target-guided response generation is
still a relatively unexplored task, and Otters (Seveg-
nani et al., 2021) is the only suitable dataset for
this task to the best of our knowledge. However,
Otters is small and consists of only a few hundred
context-target pairs. This makes learning transi-
tion concepts and strategies challenging in this low-
resource setup. On the other hand, there are many
publicly available dialogue datasets for training re-
sponse generation models. Such datasets contain
free-flow conversations, where although the speak-
ers generate context coherent responses, they do
not condition their responses on any target. We pro-
pose a technique to leverage and re-purpose such
datasets for the task of target-guided response gen-
eration. We pick the DailyDialog (Li et al., 2017)
dataset for experimentation and convert its conver-
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Context the restaurant looks authentic european.
Response the chef trained in florence. the pasta

tastes nice here.
SRL Output predicate = tastes, arguments= the pasta;

nice here
Target clause the pasta tastes nice here.

Figure 3: An example to demonstrate how a conversation in
DailyDialog can be re-purposed for the task of target-guided
response generation.

sations to target-guided conversations in two steps:
1) Target creation, and 2) Data filtering.

For target creation, we run Semantic Role La-
belling (SRL) to predict predicate and arguments
in a response. For each predicate identified, we
create a clause by putting together the predicate
and arguments in a textual sequence. Finally, we
only use the clause occurring towards the end of
the response as a target. An example for target
creation is shown in Figure 3 (More details about
clause identification are in Appendix A.2).

The target creation step does not guarantee that
a candidate response transitions smoothly towards
the target clause. In the data filtering step, we
introduce a TARGET-COHERENCE metric to score
a transition response in terms of its coherence to
the context and smoothness towards the target. The
metric is described in more detail in section 6. The
metric assigns a score between 0-1 for a transition
response and we remove instances with a score less
than a threshold k (set to 0.7) from consideration.
The remaining instances are used for pretraining
response generation models which are finally fine-
tuned on the Otters dataset.

6 Target-Coherence Metric

Evaluating target-guided responses is a challeng-
ing task as a good transition response needs to
be both - coherent to the context and smoothly
transition towards the target. Furthermore, since
the task is open-domain and open-ended, there are
many possible correct responses which may not
match with a reference response (Çelikyilmaz et al.,
2020). To tackle these challenges, we propose an
automatic metric for this task that does not use
human references. The proposed metric TARGET-
COHERENCE is based on a classification model
trained to classify a transition response as either
positive, that is, it is coherent to the context and
smoothly transitions towards the target, or negative,
that is, the response is either not coherent to the
context or does not transition towards the target.

POSITIVE
Gold c,r,t

CONTEXT c the restaurant looks authentic
european.

RESPONSE r the chef trained in florence.
TARGET t the pasta tastes nice here.

NEGATIVE
Random t’
with gold r,c

TARGET t’ i love to drive my car.

NEGATIVE
Random c’
with gold r,t

CONTEXT c’ i enjoy computers and phones.

NEGATIVE
Random r’
with gold c,t

RESPONSE r’ there is no parking here.

Figure 4: We train a reference-less model-based metric
TARGET-COHERENCE to score the smoothness of a gener-
ate response wrt to dialogue context and target sentence. To
train the metric, we synthesize hard negative examples using
an ensemble of techniques as shown in this figure.

Dataset Train Dev Test
Otters-id 1,929 (693) 1,160 (404) 1,158 (303)
Otters-ood 2,034 (677) 1,152 (372) 1,130 (372)
DailyDialog 11,118 1,000 1,000

Table 1: Overview of the datasets.

We use the gold transition response from the
training dataset to create positive instances for train-
ing. For a positive instance with context c, target
t and response r, we create negative instances us-
ing the following mechanisms: 1) We hold two
out of (c,t,r) constant while randomly sample the
third one. For example, sample a random context
c′, which makes r incoherent to the c′. An example
is shown in Figure 4. 2) We use a GPT-2 model
trained on Otters dataset to generate a response r′

coherent to c but conditioned on a random target
t′. 3) For a target t, we chose a response r′ from
the Otters training set which has t as the target
but context c′ ̸= c. We sample a maximum of 2
negative instance per mechanism and balance the
count of positive and negative instances by repeat-
ing positive instances. We fine-tune a pre-trained
BERT-base (Devlin et al., 2019) model on these
instances with binary cross entropy loss.

7 Experiments

7.1 Datasets

We use two datasets in our experiments. 1) Ot-
ters (Sevegnani et al., 2021) contains instances with
context-target-transition response triplets. It con-
sists of two sets of splits. The Out-Of-Domain
(OOD) split ensures that none of the context-target
pairs in the test set are present in the train set. In
the In-Domain (ID) split, one of either the context
or the target in each pair in the test-set is allowed
to appear in the train-set. DailyDialog dataset con-
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sists of casual conversations between two speakers.
In Table 1 we present the number of dialogues in
DailyDialog dataset and number of responses in
otters, along with number of unique context-target
pairs in brackets. Otters dataset consists of multiple
responses per context-target pair. Some transition
responses in Otters dataset are noisy - they contain
sentences and phrases from the target sentences.
We remove such data from the test sets (with word
overlap 0.75), leaving 1019 data points in the
Otters-id test set and 988 data points in the Otters-
ood test set.

7.2 Baselines for generation

We report results for a number of baselines. We
provide complete implementation details of CODA
and all baselines in Appendix A and B.
• GPT-2: (Radford et al., 2019) A pretrained GPT–

small language model fine-tuned on Otters data.
Conditions on the context and target sentences to
generate the transition response.

• GPT2-Fudge Yang and Klein (2021) uses a dis-
criminator trained to distinguish good response
continuations from the poor ones and guides the
GPT-2 based decoder towards responses that are
coherent to both the source and target sentences.

• Multigen (Ji et al., 2020) combines the vocabu-
lary distribution generated by underlying GPT-2
model with a concept distribution from a com-
monsense knowledge base (ConceptNet).

• Concept-Predict leverages a concept prediction
strategy from Qin et al. (2020a). The concept is
predicted based on closeness to the target.

• CS-Pretrain model is pretrained with common-
sense paths used for training the KPG models and
is based on the commonsense story generation
model from Guan et al. (2020).

Ablation experiments: We report results for fol-
lowing CODA variants:
• CODA-ONLYDA: CODA variant that uses Dai-

lyDialog augmentation and does not use com-
monsense paths from KPG models in the CRG
model.

• CODA-NODA: CODA trained without addi-
tional data from DailyDialog.

• CODA-NOEDGE CODA variant that uses only
entities and no edges from the path.

• CODA-NOALIGN: variant that relies on only
KPG-ht for training and inference. Does not
select paths based on alignment with responses.

• CODA-KBPATH: variant that retrieves paths

Metric Target as
response

Context as
response

Reference
response

Correlation
w ratings

BLEU 15.0 9.9 6.5 -0.11
METEOR 14.0 12.6 13.2 0.01
ROUGE-L 32.3 29.8 26.5 -0.04
BS-rec 38.1 38.9 41.3 0.05
BS-F1 42.8 42.6 38.9 -0.06
TARGET-
COHERENCE

10.7 4.0 77.4 0.47

Table 2: We present the metric scores when using the target,
context and one of the references as the response. All metrics
except for TARGET-COHERENCE score the target and context
higher than the reference. TARGET-COHERENCE achieves
high correlation with human ratings. Underlined values repre-
sent statistically significant result with p-value<0.05.

directly from ConceptNet using the algorithm
proposed in Lin et al. (2019).

• CODA-Upper Upper bound for CODA which
uses paths inferred from the gold responses using
the KPG-wc keywords model during inference.

7.3 Evaluation Metrics
We report standard automated metrics such as
BLEU (Papineni et al., 2002), ROUGE-L (Lin,
2004), METEOR (Banerjee and Lavie, 2005), and
BertScore (BS-rec and BS-F1) (Zhang et al., 2020).
Evaluation is carried out using multiple references
from the test set. Word-overlap metrics do not
correlate well with human judgements (Liu et al.,
2016). Additionally, we observe that on this task,
even a poor transition response can get a high score
on reference-based metrics if it has high overlap
with the context or the target. We carry out an ex-
periment where we use the target, context and one
of the references as the transition response. An
ideal metric would score the reference response
high, and give low scores to target and context used
as a response. In Table 2, reference-based metrics
assign higher scores to target and context sentences
used as responses compared to human-written re-
sponses. In contrast, TARGET-COHERENCE as-
signs high scores to reference responses and low
scores to target and context sentences.
Correlation of metrics with human judgements:
We investigate how well do the metrics correlate
with human ratings of system outputs. To perform
this analysis, responses from CODA, baselines, as
well as reference responses are judged by crowd-
source annotators who rate the smoothness of a
response given the dialogue context and the target
on a scale of 0 to 1. We collect a total of 440
ratings across Otters ID and OOD splits, and report
Spearman rank correlation (Spearman, 1961) of the
metrics and the ratings. Krippendorff’s alpha for
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In-Domain Out-Of-Domain
BLEU METEOR ROUGE-L BS-rec TC BLEU METEOR ROUGE-L BS-rec TC

GPT-2 3.4 11.9 23.9 35.4 26.7 3.0 10.8 22.2 35.0 29.7
GPT2-Fudge 3.4 12.4 24.4 36.1 28.3 3.4 11.1 23.0 35.1 29.6
Multigen 6.2 12.5 28.1 40.0 27.8 4.9 11.6 26.0 36.7 30.8
Concept-predict 3.3 12.3 28.5 38.1 28.3 3.7 11.6 23.1 35.9 26.3
CS-Pretrain 2.8 11.1 23.2 35.2 21.5 2.8 10.2 21.2 33.0 22.0
CODA 5.0 12.6 25.9 38.0 36.7 4.6 11.5 24.3 35.5 37.9
CODA-ONLYDA 4.0 12.4 24.4 37.5 32.7 3.1 11.1 22.7 35.3 33.2
CODA-NODA 4.4 12.3 25.1 37.8 35.7 4.5 11.6 24.4 35.4 36.0
CODA-NOEDGE 4.2 12.0 25.0 37.4 33.7 4.0 11.8 24.2 35.4 35.9
CODA-NOALIGN 3.7 12.4 25.5 38.5 32.1 3.2 11.2 22.8 35.6 31.2
CODA-KBPATH 3.6 12.5 24.9 38.6 33.9 3.6 11.4 24.1 35.9 33.0
CODA-UPPER 8.3 18.1 32.6 44.4 47.9 7.5 17.9 30.7 42.7 45.4
Human 6.5 13.1 26.5 41.3 77.4 4.9 12.3 24.0 37.6 77.3

Table 3: We present the results of automatic evaluation based on word-overlap and proposed TARGET-COHERENCE. CODA
outperforms all the baselines for most of the metrics. We also present results for CODA’s model ablations.

annotation is 0.42. Results, shown in last column
of Table 2, depict that most standard automated
metrics correlate poorly with human ratings, while
the, proposed TARGET-COHERENCE achieves a
very high correlation score of 0.47.

We present the Amazon Mechanical Turk in-
terface for human ratings collection in Figure 5
in the Appendix. The workers were first shown
instructions about the task with definitions and ex-
amples for all the rating criteria. We paid crowd
workers on Amazon’s Mechanical Turk platform
$0.7 per annotation and gave bonuses to annota-
tors with high annotation quality. Our estimated
hourly pay was $13, which is above the minimum
US federal hourly wage. We set the worker qualifi-
cation condition as 1000 HITS completed, 95% or
more approval rate and location as native English
speaking countries. We release the human ratings
and system outputs used for computing the metric
correlations as part of this work.

7.4 Results

In this section we present the automatic and human
evaluation results. Automated metric results are
summarized in Table 3. Although reference-based
metrics are lexically biased (subsection 7.3), we
still report their scores. We observe that CODA
outperforms all the baselines under in-domain (ID)
as well as out-of-domain (OOD) setups of Otters
data as per TARGET-COHERENCE (TC) score. For
example, CODA gets a high TC score of 36.7 (ID)
and 37.9 (OOD) while the TC scores of the clos-
est baselines GPT2-Fudge, Multigen and Concept-
predict are in the range of 28-31, demonstrating
that the proposed method leads to significant im-
provements in response quality. However, CODA
is far from reaching human performance (TC 77.4).

CODA Ablations: We observe that: (1) Not us-

Criteria Models Win Lose Tie
Smooth CODA vs GPT-2 37.5 31.6 31.0

CODA vs Multigen 32.3 22.8 44.8
Sensible CODA vs GPT-2 22.0 21.3 56.7

CODA vs Multigen 25.8 25.6 48.6
Informative CODA vs GPT-2 32.3 27.3 40.4

CODA vs Multigen 35.5 27.8 36.7

Table 4: Human evaluation through pairwise comparison be-
tween CODA and baselines. CODA is preferred in smoothness
and informativeness criteria while being comparably sensible.

ing commonsense knowledge (CODA-ONLYDA)
leads to large performance drops, highlighting that
CODA effectively utilizes commonsense knowl-
edge. (2) Dropping data augmentation leads to a
small drop in performance (CODA-NODA), hint-
ing at relatively small (but still significant) benefit
from pretraining the model using data augmenta-
tion. (3) Low performance of CODA-NOEDGE

shows the importance of using edges in common-
sense paths. (4) Not aligning and selecting paths
based on their relevance to responses during CRG
training (CODA-NOALIGN) leads to a high drop
in performance. (5) CODA outperforms CODA-
KBPATH by 8% (ID) and 14.5% (OOD). This im-
proved performance can be attributed to the gen-
eralizability of entities and paths generated from
the KPG models. (6) CODA-UPPER achieves high
scores, highlighting that further improvement in
commonsense path generation component can sig-
nificantly boost the output quality of CODA.

Human Evaluation: We conduct human eval-
uations on Amazon Mechanical Turk to evaluate
the quality of generated transition responses. An-
notators are requested to evaluate the transition
response on following criteria: (1) Smooth: rate
whether the response serves as a smooth transition
between the dialogue context and target. (2) Sensi-
ble: whether the response makes sense in itself i.e.
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Context: i like the sand on my feet
Target: my puppy is called georgie.
GPT-2: My mom likes the water.
Multigen: My pet is the gecko.
CODA: My dog walks along the beach with sand.
CODA-Path: sand is at location beach belongs to walk
is desired by puppy

Context: my favorite city is seattle.
Target: i ride my bicycle everywhere.
GPT2: Seattle is my favorite city to go to
Multigen: So what do you do when you go to the seattle
CODA: I bought my bicycle from a bike shop in seattle.
CODA-Path: favorite city is the location which has
bicycle shop is a dependency of ride bicycle

Context: i am a server at a food place.
Target: i eat greasy foods.
GPT-2: I eat healthy foods at restaurants.
Multigen: I hate my food.
CODA: I am a server, but I don’t want to eat too much.
CODA-Path: server is a person not desires eat greasy food

Table 5: Sample representative model outputs.The knowledge
paths used by CODA provide interpretability and control over
the response generation process

it is grammatical and logically coherent. (3) Infor-
mative: how much informative content a response
carries. Human annotators compare (or mark as a
tie) responses from two models. We collect two
annotations for 100 randomly selected data points
from the test outputs. Results in Table 4 demon-
strate that CODA outputs are preferred over the
baselines on ‘Smooth’ and ‘Informative’ criteria.

7.5 Qualitative Analysis

We present representative outputs from the models
in Table 5. For CODA, we show the path used in
response generation. We notice that GPT-2 and
Multigen often tend to either generate simple out-
puts (e.g. ‘I hate my food’ in the last example)
or simply repeat or address either the target or the
context (e.g. ‘My pet is the gecko’, ‘Seattle is my
favorite city to go.’) which leads to high BLUE
and METEOR scores, but low TC scores. CODA
avoids these pitfalls as it is conditioned on gener-
ated commonsense paths based on both the context
and target entities leading to more informative and
sensible outputs. However, CODA is susceptible
to two issues: 1) Using poor keywords for path
generation, and 2) Generation of irrelevant paths
(e.g. ‘server is a person not desires greasy food’ in
the last example).
Path quality: We conduct a human evaluation
study to measure the quality of the generated paths.
For randomly selected 100 generated responses, we
ask annotators to judge 1) Relevance: Is the path
relevant and used in the response? and 2) Makes

sense: Does the path makes sense? Results reveal
that 79% of the paths were judged to be relevant
and 76% of the paths were judged to make sense.
Thus in aggregate, the generated knowledge is good
in quality, and is used in the generated response.
Path novelty: We analyzed the paths generated by
CODA which were judged as sensible by human
annotators and found that 26.8% of entities in the
paths were not found in ConceptNet. This include
entities such as ‘favorite food’, ‘pet kitten’, ‘single
kid’ and ‘online class’. Thus, the actual paths from
the ConceptNet might not be able to cover a large
fraction of head/tail entities. Furthermore, 81% of
sensible paths are novel and do not exist in Con-
ceptNet. For example, even though the path ‘eat
motivates go to restaurant has subevent dinner is
the location for bread’ exist in ConceptNet, the path
‘eat motivates go to restaurant has subevent dinner
is the location for pizza’ does not exist in Concept-
Net. Thus we show that CODA can generalize to
new entities and paths.

In Appendix C we discuss a human-in-the-loop
study for controllability. The human-in-the-loop
experiment shows that even minimal human inter-
vention in the form of domain relevant keywords
input for knowledge paths can improve the quality
and smoothness of the transition responses.

8 Conclusion

In this work, we propose and evaluate models for
target-guided response generation using explicit
commonsense bridging paths. We also introduce an
automated metric to evaluate smoothness of a tran-
sition response. We showed that our model gener-
ates more smooth and informative outputs through
automatic and human evaluation. Furthermore, it
allows for more interpretable results. Going for-
ward, we envision a model which could combine
target and non-target guided dialogue planning.
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Ethics and Broader Impact

Broader Impact and applications: Our proposed
models for target-guided response generation can
be used to generate responses based on target sen-
tences that can drive the system’s agenda in a con-
versation. Deploying a target-sentence guided dia-
logue model needs careful consideration and test-
ing since designating a target sentence for all turns
of a conversation might disrupt the natural flow of
the conversation. Therefore, they can be deployed
alongside existing non-target guided dialogue mod-
els that perform free-flow conversations without
predesignated targets. At each turn of a conversa-
tion, a central system can use the target-coherence
metric to decide if the system should generate a
target-guided response or a simple follow-up re-
sponse to the context. Target-guided systems can
used for several useful applications such as creating
non-obtrusive recommendations, comforting peo-
ple, recommending new products and services, and
introducing interesting new topics and educating
users about those topics.
Potential risks and solutions: We wish to raise
awareness about potential misuse of proposed sys-
tems for persuading users by people with ill inten-
tions. For example, conversational systems can
pose as humans and then proactively alter user’s
perceptions about specific issues, evaluations of
products or services, or political inclinations. To
circumvent such issues, it is necessary to improve
transparency through regulations, such as inform-
ing the users that they are conversing with a bot and
not a human. Regulations are necessary to avoid
hazardous outcomes during deployment for specific
domains. For example, European Union’s regula-
tory framework proposal on artificial intelligence2

defines use of AI systems for “educational or vo-
cational training, that may determine the access
to education and professional course of someone’s
life” as high risk. Anyone who uses or builds upon
our system should comply with such regulations.
Apart from regulations, recent safety and ethics
related research and datasets (Baheti et al., 2021;
Sun et al., 2021) in conversational AI can help in
mitigating aforementioned issues. Henderson et al.
(2018) and Dinan et al. (2021) highlight and dis-
cuss potential ethical and safety issues that arise
in dialogue systems research. Xu et al. (2020) pro-
vides a review of recent methods that try to mitigate

2https://digital-strategy.ec.europa.e
u/en/policies/regulatory-framework-ai

safety issues in open-domain dialogue generation
which can be utilized for the target-guided response
generation task.
Limitations and potential biases: Current con-
versational systems suffer from several limitations,
such as, they are not good at human qualities such
as empathy, morality, discretion and factual cor-
rectness. There is a risk that a target driven system
would ignore these factors to achieve the target.
Therefore more research is needed to equip bots
with such qualities. Our models are trained on ex-
isting datasets such as Otters and DailyDialog, and
also leverage external commonsense knowledge
resources. Knowledge graphs such as ConceptNet
have been found to contain biases and have weak
representations of moral common sense knowl-
edge (Hulpus, et al., 2020; Mehrabi et al., 2021).
While grounding on knowledge paths from knowl-
edge graphs can provide insights and explanations
about the model’s reasoning, our models could po-
tentially inherit biases present in these data sources.
Advancements in adding a moral dimension to KGs,
and extending them with intuition of morality (such
as crime is bad), can enable generation of morally
correct knowledge paths. Furthermore, imbuing
conversational systems with empathy (Ma et al.,
2020), moral discretion (Ziems et al., 2022) and
factual correctness (Gupta et al., 2021b; Dziri et al.,
2022) will improve users’ experience and trust in
the system.

We have included the Mechanical Turk arrange-
ments and worker pay in the last paragraph of the
section 7.3. We paid well above the US federal
minimum wage (around $13 hourly) and provided
enough time to the workers to complete the task
which was determined based on a few pilot experi-
ments.
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A Implementation Details for CODA

A.1 Training Details for CODA

Model training: We code our models using Py-
torch and Huggingface 3 library. We use validation
loss to do model selection. The KPG-wc, KPG-
ht and CRG models are all based on GPT-2 small
architecture. We use batch size of 10 for GPT-2
models. We use Adam optimizer with initial learn-
ing rate of 1e − 4. We use GeForce RTX 2080
GPUs for training models. All existing code used
and datasets were CC-BY 4.0 or open sourced by
original authors.
Decoding paths and responses: For decoding
paths using the KPG models, we use temperature
of 0.7 and nucleus sampling with top-p set to 0.9.
We use the same decoding strategy and hyperpa-
rameters for decoding responses using CRG model.
Concept Extraction: Entities are extracted from
the context, target and response to generate and
align paths using the KPG models. For a sentence
s, we first extract the set of noun and verb phrases
from the sentence using NLTK. We design sim-
ple grammar rules to convert some phrases to a
more concise forms that are similar to the kinds of
nodes present in ConceptNet,e.g., “watching the
star” is converted to “watch stars”. We use NLTK’s
POS tagging combined with the following gram-
mar rules: (1) Nouns and Adjectives, terminated
with Nouns <NN.*|JJ>*<NN.*> (2) Verb and verb
phrases <RB.?>*<VB.?>*<JJ>*<VB.?>+<VB>?.
We normalize the verbs using NLTK. The final set
of entities consist of the noun and verb phrases. We
exclude phrases such as “today”, “enough” which
are sometimes incorrectly detected as entities.
Sub-selecting entity pairs during training of
CRG model: For every context-target pair, we
have n number of pair of head-tails entities. We
score an entity pair by calculating the inverse docu-
ment frequencies (computed using Gutenberg En-
glish corpus) of the entity tokens and summing up
the maximum value found for a token in each entity
in the pair. For training phase, we keep the topD

3https://huggingface.co/

pairs of entities. The value of top D is selected
based on validation performance and comes out
typically between 1-3.
Knowledge graph details: The number of nodes in
the ConceptNet resource we have used4 is 382226.
We perform random walks on the graph with paths
of length from 1 to 6 and get a total of 3883671
number of paths.
Edges in the knowledge path: We discard some
edge types which are regarded to be uninformative
and offer little help for our task following Wang
et al. (2020). They include RelatedTo, Synonym,
Antonym, DerivedFrom, FormOf, Etymologically-
DerivedFrom and EtymologicallyRelatedTo. Since
the nodes in ConceptNet are directional, we also
add inverse edges during path sampling. For ex-
ample the path “ecosystem <– PartOf <– organism”
can be sampled as “ecosystem _isPartOf organism”
where the underscore indicates a reverse edge.

A.2 Clause Identification for Data
Augmentation

For target creation, given a dialogue context c and
its response r, we first break the response r into
sentence clauses. For example, given a context “Is
my booking complete?” and the response “your
reservation is confirmed. now i need your phone
number,”, we extract a clause t “i need your phone
number” as the target candidate t. For clause ex-
traction we use Allennlp’s SRL parser 5 which is
trained using a BERT-based model (Shi and Lin,
2019) and is based on PropBank (Palmer et al.,
2005). It identifies the arguments associated with
the predicates or verbs of a sentence predicates
(verbs or events) in a sentence and classifies them
into roles such as agent, patient and instrument. For
the example above, it identifies “need” as a predi-
cate with agent “i” and instrument “your number”.

A.3 Data Augmentation for CODA
We filter data from the dailydialog dataset based
on a threshold set to 0.7 for data augmentation.
This threshold was selected using emperical perfor-
mance of thr CODA model. For CODA-ONLYDA
model which does not use knowledge paths, the
context, target and transition response is used di-
rectly in training the CRG decoder of CODA-
ONLYDA model. But for CODA model which
uses the knowledge paths, the dailydialog data is

4www.github.com/wangpf3/Commonsense-P
ath-Generator

5github.com/allenai/allennlp
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Context: i enjoy staring up at the sky.
Target: i like to spend a lot of my free time with my pet.
Response 1: I like stargazing outside with my pet. (0.99)
Response 2: I like stargazing outside. (0.05)
Response 3: I like walking with my pet. (0.01)
Response 4: My pet is a big star. (0.02)

Context: i make blogs.
Target: i have a large family with babies.
Response 1: I want to blog about my children.(0.99)
Response 2: My family has a lot of babies. (0.05)
Response 3: My blogs are very famous. (0.01)

Table 6: Stress testing the Target-Coherence metric. We show
sample responses and TC score for the responses in brackets.

converted to the same format as Otters data, that is,
we first do entity detection on the target component
of the responses as well as the the dialogue context.
Then we generate a set of paths for each pair of
entities. The CODA model is first trained on paths
from the filtered dailydialog data and then fine-
tuned on the Otters dataset which follows the same
knowledge path format. The maximum dialogue
history length is set to 2 for dailydialog dataset.

A.4 Target Coherence Metric
In Table 6, we provide examples for stress testing
the Target-Coherence metric. TC scores for the
responses are shown in brackets. Simply repeating
or addressing either the target or context gets a low
TC score. For example the response “I like stargaz-
ing outside” is not a smooth transition and gets
a low TC score, while “I like stargazing outside
with my pet” is a smooth transition and gets a high
TC score. In Figure 4 we present an overview of
the mechanisms used for generating negative sam-
ples for training the Target-Coherence metric. For
negative examples, 1) Given gold response r, and
context c, we sample a random negative target t’,
which creates a response which does not transition
towards the target t, 2) Given gold response r, and
target t, we sample a random negative context c’,
which creates a response which is not coherent to
the context c, 3) Given gold context c, and target
t, we either sample a random negative response r’
or generate a response r’ conditioned on random
c’ or t’, which creates a response which does not
transition to target t or is coherent to context c.

B Training Details of Baselines

Training GPT-2 Fudge model Yang and Klein
(2021) proposed a future discriminator based de-
coding technique. The Fudge discriminator uses a
discriminator trained to distinguish good response

continuations from the poor ones and guides the
GPT2 based decoder towards responses that are co-
herent to both the source and target sentences. The
Fudge discriminator needs positive and negative
sample data for training. We train the discrimi-
nator to distinguish a good response from a bad
(not coherent to target or context). The input to
train the discriminator (a LSTM model) is the con-
catenation of the context sentence, followed by the
target sentence and finally the tokens of a response
r with tokens k. The discriminator then learns to
predict 1 if the next token in the response at posi-
tion k belongs to the gold response or 0 if the token
is a random one. We train the Fudge discrimina-
tor by preparing negative instances using the same
techniques we use to train the Target-Coherence
model - sampling random negative responses, re-
sponses coherent to the context but not to the target,
and responses coherent to the target but not to the
context.

Training CS-Pretrain model The model is based
on the commonsense story generation model from
Guan et al. (2020) We create training data for
the CS-Pretrain model by using the same sampled
paths we use for training the KPG-wc model. The
paths are converted into textual format by convert-
ing edges into text sequences. The model is only
pretrained with general commonsense paths and
then fine-tuned on Otters dataset in a manner simi-
lar to the GPT-2 baselines (i.e. without paths). Our
experiments show that pretraining with common-
sense model does not help with target-guided task,
probably since the task needs target conditional
commonsense and general commonsense knowl-
edge only confuses the model during decoding.

Training Concept-Predict leverages a concept pre-
diction strategy from Qin et al. (2020a). The input
to the model is the context and target and it predicts
a single concept based on closeness to the target.
The concept is then fed as an input to the CRG
model along with the context and target sentences.

Training CODA-ONLYDA: CODA variant that
uses Dailydialog augmentation and does not use
commonsense paths from KPG models in the CRG
model. Therefore the model consists of only a CRG
model (no KPG models) which take the context and
target sentences as inputs.

Training CODA-NOEDGE CODA variant that
uses only entities and no edges from the path.
For example the path “favorite city is the location
which has bicycle shop is a dependency of ride bi-
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Target Keywords
i need your address send money; visit; mail; send gift; send coupon
you should spend time with your friends don’t be alone; mental health; be happy;
you can try our restaurant best ingredients ; cheapest food; free delivery
our new recipe is best selling fat free; healthy; protein; tasty
i am the best financial advisor get rich quickly; sound advice; money management
you should have a positive attitude mental health; others will help; peace
we should always avoid fighting peace; happiness; injury; understand other people
i want to come to united states freedom ;democracy; money; job; american dream; education
everyone should get vaccinated public health; reduce hospital burden; live longer; covid; be safe
we should donate to charity help poor; make a difference; give assistance; feel good; social benefits

Table 7: The set of manually created targets and keyword set used for each target.

Figure 5: Amazon mechanical turk interface for human ratings collection

cycle” is converted to “favorite city bicycle shop
ride bicycle”, which is fed as input to the CRG
model.
Training CODA-NOALIGN: variant that relies
on only KPG-ht for training and inference. Does
not select paths based on alignment with responses.
The paths used during training the CRG model
come from KPG-ht instead of KPG-wc.
Training CODA-KBPATH: variant that samples
paths directly from ConceptNet using the algorithm
proposed in Lin et al. (2019). Given a pair of con-
text and target concept, we use their algorithm to
sample an actual path directly from ConceptNet.
The model is pretrained on Dailydialog augmented
data and fine-tuned on Otters with the sampled
paths from ConceptNet. The model suffers from
missing entities and missing links between entities
in ConceptNet which is solved by CODA.

C Human-in-the-loop Experiment

Can human involvement improve generation?
Our CRG model uses explicit paths generated from
the KPG models, which not only provides inter-
pretability, it also allows human-in-the-loop inter-
vention for finer controllability. To test this hypoth-
esis, we create a model KPG-oneent which is a
hybrid version of KPG-wc and KPG-ht model. The
model takes a single entity nk given by a user as an
input and is trained to generate a path containing
that entity. We test this model on a manually cre-
ated set of target sentences S of size 10 belonging

Context: i dye my hair.
Target: we should donate to charity.
Path (KPG-oneent): hair belongs to people motivated by
give assistance has prequisite donate to charity.
CODA-controlled: I donate my hair to a non-profit that
helps people in need.
Path (KPG-ht): hair belongs to people desires donate
to charity
CODA: People who donate are very good people.

Context: i have an amazing garden.
Target: you can try our restaurant.
Path (KPG-oneent): garden is a location of grow food
motivated by goal best ingredients is desired by person
capable of try restaurant
CODA-controlled: My restaurant uses the best ingredients
from the garden.
Path (KPG-ht): garden is a location of have friends
over has prerequisite try restaurant
CODA: you can have friends over.

Table 8: Sample data and model outputs from the human-
in-the-loop experiment. The underlined words are keyword
inputs provided to the model KPG-oneent. The italicised
words in the CODA controlled outputs are phrases are gener-
ated based on the input keywords.

to domains such as healthcare and charity. The data
created is shown in Table 7. An example sentence
in set S is ‘we should donate to charity’ and we
manually curate a set of keywords such as ‘help
poor’, ‘give assistance’ and ‘tax deductions’ that
are relevant to the target sentence of interest and
can guide the knowledge path sampling towards
meaningful paths. This data creation took the au-
thors 30 minutes of effort. For 100 random sampled
contexts from the Otters dataset, we select a ran-
dom target sentence from the set S and sample a
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keyword k from the curated set of keywords of that
target. We compare this controllable model with
the KPG-ht model that was used for path gener-
ation in all our experiments. We present sample
outputs of the model in Table 8. The input key-
words used as intervention are underlined. The
paths which use the keyword intervention generate
smoother transitions compared to the paths which
do not use the keyword intervention. We find that
the TARGET-COHERENCE metric favors the KPG-
oneent model in 59 percent of cases, confirming
that even minimal human intervention in the form
of domain relevant keywords can improve the qual-
ity of generation.
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