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Abstract

Machine Reading Comprehension with Unan-
swerable Questions is a difficult NLP task, chal-
lenged by the questions which can not be an-
swered from passages. It is observed that sub-
tle literal changes often make an answerable
question unanswerable, however, most MRC
models fail to recognize such changes. To ad-
dress this problem, in this paper, we propose
a span-based method of Contrastive Learning
(spanCL) which explicitly contrast answerable
questions with their answerable and unanswer-
able counterparts at the answer span level. With
spanCL, MRC models are forced to perceive
crucial semantic changes from slight literal dif-
ferences. Experiments on SQuAD 2.0 dataset
show that spanCL can improve baselines sig-
nificantly, yielding 0.86~2.14 absolute EM im-
provements. Additional experiments also show
that spanCL is an effective way to utilize gen-
erated questions.

1 Introduction

Machine Reading Comprehension (MRC) is an
important task in Natural Language Understand-
ing (NLU), aiming to answer specific questions
through scanning a given passage(Hermann et al.,
2015; Cui et al., 2016; Rajpurkar et al., 2018). As
a fundamental NLU task, MRC also plays an es-
sential role in many applications such as question
answering and dialogue tasks (Chen et al., 2017;
Gupta et al., 2020; Reddy et al., 2019). With the
rapid development of pre-trained language mod-
els (PLMs), there is also a paradigm shift (Schick
and Schütze, 2020; Dai et al., 2020; Sun et al.,
2021) reformulating other NLP tasks (e.g. infor-
mation extraction) into MRC format, especially for
open-domain scenarios (Li et al., 2019; Yan et al.,
2021a).

In most of the application scenarios, there exists
a hypothesis that only answerable questions can be
asked, which is somehow unrealistic and unreason-
able. Thus, the model that is capable of distinguish-

Passage:
The Legend of Zelda: Twilight Princess (Japanese: ゼルダの伝説 トワイライトプリンセス,
Hepburn: Zeruda no Densetsu: Towairaito Purinsesu?) is an action-adventure game developed
and published by Nintendo for the GameCube and Wii home video game consoles. It is the
thirteenth installment in the The Legend of Zelda series. Originally planned for release on the
GameCube in November 2005, Twilight Princess was delayed by Nintendo to allow its
developers to refine the game, add more content, and port it to the Wii. The Wii version was
released alongside the console in North America in November 2006, and in Japan, Europe, and
Australia the following month. The GameCube version was released worldwide in December
2006.[b]

Original Question:
What year was the Legend of Zelda:Twilight Princess originally planned for release?

Question Distortion:
What year was the Legend of Zelda: Australian Princess originally planned for release?

Question Paraphrase:
When was the legend of Zelda: Twilight Princess originally planned to be released?

Figure 1: Question Distortion and Question Paraphrase
are derived by slightly changing Original Question.

ing unanswerable questions is more welcomed than
the model that can only give plausible answers (Ra-
jpurkar et al., 2018). However, the challenge, that a
slight literal change may transfer answerable ques-
tions into unanswerable ones, makes MRC models
hard to gain such capability(Rajpurkar et al., 2018).
For example, in Figure 1, the original answerable
question becomes unanswerable by only replac-
ing Twilight with Australian, but the small
literal modification towards paraphrasing does not
change the answer. Recent MRC models which pre-
dict answers using context-learning techniques and
type-matching heuristics are not easy to perceive
such subtle but crucial literal changes(Weissenborn
et al., 2017; Jia and Liang, 2017). If different ques-
tions share many words in common, these models
are most likely to give them the same answer, i.e.,
2005 may be answered for all the three questions
in Figure 1.

To address the aforementioned challenge, we
propose a span-based method of Contrastive Learn-
ing (spanCL) in this paper. By explicitly contrast-
ing answerable questions with their paraphrases
and their distortions, MRC models are forced to
recognize the subtle but crucial literal changes. Us-
ing pre-trained language model (PLM) as encoder,
most contrastive learning methods adopt [CLS] as
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the sentence representation (Luo et al., 2020; Wu
et al., 2020; Gao et al., 2021; Yan et al., 2021b;
Wang et al., 2021). However, in this problem, as
the differences between contrastive questions are
very subtle, [CLS] is inadequate to capture such
small changes. To solve the challenge, we propose
a novel learning method, which incorporates the
comparative knowledge between answerable and
unanswerable questions, and exploits the semantic
information of answer spans to improve the sen-
tence representation. Overall, our contributions are
summarized as two folds:

• To improve MRC model’s capability of distin-
guishing unanswerable questions, we propose
a simple yet effective method called spanCL,
which teaches the model to recognize crucial
semantic changes from slight literal differ-
ences.

• Comprehensive experiments show that
spanCL can yield substantial performance
improvements of baselines. We also show
that spanCL is an effective way to utilize
generated questions.

2 Related Work

Models for MRC. With the help of various
large-scale reading comprehension datasets (Her-
mann et al., 2015; Hill et al., 2015; Trischler et al.,
2016; Rajpurkar et al., 2016; Lai et al., 2017; Ra-
jpurkar et al., 2018), neural networks have achieved
a great success on MRC in recent years. At first,
these models are typically designed with a LSTM
(Hochreiter and Schmidhuber, 1997) or CNN (Le-
Cun et al., 1998) backbone, based on word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014), leveraging various attention mechanisms
to build interdependent representations of passage
and question (Kadlec et al., 2016; Dhingra et al.,
2016; Cui et al., 2016; Seo et al., 2016). Recently,
pre-trained language models (PLMs) made a pro-
found impact on NLP tasks (Radford et al., 2018;
Devlin et al., 2018; Yang et al., 2019a; Liu et al.,
2019; Lan et al., 2019; Clark et al., 2020; Brown
et al., 2020; Fedus et al., 2021). With millions,
billions even trillions of parameters, PLMs show
a great capacity of capturing contextualized repre-
sentations, and significantly boost the performance
of MRC models.
MRC with Unanswerable Questions. Know-
ing what you do not know is a crucial aspect of

model intelligence (Rajpurkar et al., 2018). In the
field of MRC, a model should abstain from answer-
ing when no answer is available to the question.
To deal with unanswerable questions, previous re-
searchers mostly focused on designing a powerful
answer verification module (Clark and Gardner,
2017; Liu et al., 2018; Kundu and Ng, 2018; Hu
et al., 2019). Recently, a double checking strategy
is proposed, in which an extra verifier is adopted
to rectify the predicted answer (Hu et al., 2019;
Back et al., 2019; Zhang et al., 2020a,b). Besides
the idea of designing verification modules, some
other studies try to solve the problem through data
augmentation, namely to synthesize more QA pairs
(Yang et al., 2019b; Alberti et al., 2019; Zhu et al.,
2019b; Liu et al., 2020).
Contrastive Learning. To obtain rich repre-
sentations of texts for down-stream NLP tasks,
there have been numerous investigations of using
contrastive objectives on strengthening supervised
learning (Khosla et al., 2020; Gunel et al., 2020)
and unsupervised learning (Chen et al., 2020; Gao
et al., 2021) in various domains (He et al., 2020; Lin
et al., 2020; Iter et al., 2020; Kipf et al., 2019). The
main idea of contrastive learning (CL) is to learn
textual representations by contrasting positive and
negative examples, through concentrating the pos-
itives and alienating the negatives. In NLP tasks,
CL is usually devoted to learning rich sentence rep-
resentations (Luo et al., 2020; Wu et al., 2020), and
the main difference between these methods is the
approach to find positive and negative examples.
Wang et al. (2021) argued that using hard negative
examples in CL is helpful to improve the semantic
robustness and sensitivity of pre-trained language
models. Enlightened by the promising effects of
CL, Kant et al. (2021) proposed to use CL in visual
question answering. He focused on playing CL on
MRC by comparing multiple answer candidates,
but neglected the fact that not all questions can be
answered through a given paragraph.

3 Approach

In this section, we first introduce the task of Ma-
chine Reading Comprehension with Unanswerable
Questions (MRC-U). Then, a baseline MRC model
based on PLM is described. At last, we propose a
span-based contrastive learning method for MRC-
U, named as spanCL. In this paper, question para-
phrase and positive question, question distortion
and negative question are used interchangeably.
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Figure 2: (a) The baseline model for MRC-U. (b) Span-based contrastive learning on answer-span representation.

3.1 Task Description
In this paper, we focus on studying extractive MRC,
in which the expected answer of a question is a
word span of a given passage. Thus, given a textual
question Q and a textual passage P , our goal is to
find the answer span (ys, ye) to Q in P , where ys is
the answer start position in P and ye is the answer
end position in P .

3.2 Basic MRC Model
We use the model same as Devlin et al. (2018) as
the basic model for MRC-U task. When a ques-
tion and a passage are input, if the question is an-
swerable, the model is expected to give a legal
answer span (ys, ye) in the passage; if the question
is unanswerable, the model is expected to output
the [CLS] span (0, 0), which indicates no related
answer can be found in the passage. The overall
structure of the network is presented in Figure 2.

For illustration, we denote the output of PLM’s
last layer as the sequence representation, H ∈
Rl×d, where l is the sequence length and d is the
dimension. Accordingly, the hidden representa-
tion of the i-th token in the sequence is denoted as
hi ∈ H . To find the start position of an answer, a
start weight vector ws ∈ Rd is introduced to cal-
culate the beginning possibility of each position.
Formally, the probability that the answer starts at
the i-th token is defined as

psi =
exp(hi ·ws)∑

j≤l

exp(hj ·ws)
. (1)

Similarly, with a end weight vector we ∈ Rd, the
probability that the answer ends at the i-th token is

defined as

pei =
exp(hi ·we)∑

j≤l

exp(hj ·we)
. (2)

For learning, the cross-entropy loss on identifying
the answer start and end positions is taken as the
training objective as

Lspan = −log(psys)− log(peye), (3)

where ys and ye are the start and end positions of
the true answer span. With the learnt model, the
output answer span (y′s, y

′
e) is predicted according

to

(y′s, y
′
e) = argmax(i,j)|i≤j hi ·ws+hj ·we. (4)

3.3 Span-based Contrastive Learning
In this section, spanCL is introduced from two
aspects. First, considering the contrastive idea of
CL, we give the details about how the positive
and negative examples are generated. Second, the
training objective of spanCL is presented.
Positive Examples. In our method, we define
the positive examples as the questions which have
slight literal differences but the same answers with
their original questions. Back Translation is an ef-
fective data augmentation method (Xie et al., 2019;
Zhang et al., 2017; Zhu et al., 2019a), in which
a text is first translated to a target language (e.g.
France) from its source language (e.g. English),
and then back translated to the source language.
The final back-translated text is taken as the ex-
ample of augmentation. Thanks to Back Transla-
tion, the produced examples are lexically different
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Strategy Example

Negation Original question: What was Beyonce’s role in Destiny’s Child?
Negative question: What wasn’t Beyonce’s role in Destiny’s Child?

Entity replacement
Original question: What native people lived in the San Diego area before the Europeans arrived?
Negative question: What native people lived in the San Diego area before the Mexicans
arrived?

Antonym

Original question: What part of Gothic buildings are often found terminated with enormous
pinnacles?
Negative question: What other part of Gothic buildings are often found terminated
with small pinnacles?

Table 1: Strategies used to generate negative questions.

but semantically same with the original example.
Specifically, for each question, we first produce
three question paraphrases by Back Translation us-
ing three languages. Then we select the question
that has the most literal differences with the origi-
nal question as the positive question.
Negative Examples. In our method, we define
the negative examples as the questions which have
slight literal differences and not the same answers
with their original questions. Three simple strate-
gies are adopted to produce negative examples as
the following.

• Negation. A negation word is inserted or re-
moved from the original question.

• Antonym. First, spaCy 1 is utilized to conduct
segmentation and POS for the original ques-
tion. Then, one of the words (verbs, nouns,
adjectives, or adverbs) are randomly replaced
with its antonym.

• Entity Replacement. With an answerable
question, one of its entity words is randomly
placed with another entity word, which has
the same entity type but does not appear in
any questions.

Table 1 shows several negative examples derived
by these strategies. Note that question generation
is not the main topic of this paper.
Span-based Contrastive Learning. Using PLM
as the encoder, [CLS] usually serve as the sen-
tence representation in CL (Gao et al., 2021; Wang
et al., 2021; Yan et al., 2021b). When the difference
between the original question and its paraphrase or
distortion is very subtle, a single [CLS] token is
not adequate to capture the difference, making the
model hard to answer such question. Therefore, we
propose to improve MRC models by contrasting

1https://github.com/explosion/spaCy

these questions according to their answer-span rep-
resentations. Specifically, given a question Qorg

and its answer span (ys, ye), through the augmen-
tation methods mentioned previously, we synthe-
size one positive question Qpos and one negative
question Qneg. Based on the definition of positive
examples and negative examples, (ys, ye) is the an-
swer span to both Qpos and Qorg but not to Qneg.
Denote h

Qorg
ys and h

Qorg
ye as the representation vec-

tors of the ys-th token and ye-th token in the input
passage P for the question Qorg, hQpos

ys and h
Qpos
ye

as those for Qpos, and h
Qneg
ys and h

Qneg
ye as those

for Qneg. The concatenation of hQorg
ys and h

Qorg
ye is

used as the answer-span representation to Qorg and
denoted as zQorg . Similarly, the answer-span rep-
resentation to Qpos and Qneg are denoted as zQpos

and zQneg respectively. Then, our span-based con-
trastive loss is calculated as

LspanCL = −log
exp(Φ(zQorg ,zQpos)/τ)

exp(Φ(zQorg ,zQpos)/τ))

+ exp(Φ(zQorg ,zQneg )/τ))

(5)

where Φ(u,v) = u⊤v/ ∥u∥ ∥v∥ computes sim-
ilarity between u and v and τ > 0 is a scalar
temperature parameter. With the definition, the fi-
nal objective loss of our method is presented as the
following:

L = λ1Lspan + λ2LspanCL. (6)

4 Experiments

4.1 Datasets and Metrics
We evaluate our method on the well-known dataset
SQuAD 2.0 (Rajpurkar et al., 2018), which covers
the questions of SQuAD1.1 (Rajpurkar et al., 2016)
with new unanswerable questions written adversar-
ially by crowdworkers to imitate the answerable
ones. Moreover, for each unanswerable question, a
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plausible answer span is annotated, which indicates
the incorrect answer obtained by type-matching
heuristics. The training dataset contains 87k an-
swerable and 43k unanswerable questions, and half
of the examples in the development set are unan-
swerable.

Two official metrics are used to evaluate the
model performance on SQuAD 2.0: Exact Match
(EM) and F1. EM is used to compute the percent-
age of predictions that match ground truth answers
exactly. F1 is a softer metric, which measures the
average overlap between the prediction and ground
truth answer at token level.

4.2 Experimental Setup

MRC Model. We adopt the model introduced
in 3.2 with various PLM encoders for the MRC-U
task. Bert (Devlin et al., 2018), RoBERTa (Liu
et al., 2019), ALBERT (Lan et al., 2019) are se-
lected in our experiments. We download the pre-
trained weights from Hugging Face2.
Training Data Construction. For each original
answerable question, we use Back Translation to
generate its paraphrase. In SQuAD 2.0, we can
find the negative questions for 18,541 answerable
questions in the original dataset. For the rest 68,280
answerable questions, we use our augmentation
strategies to generate negative questions.

During our training, the span loss is calculated
based on Qorg and Qneg. In section 4.3, we will
explain why Qpos is discarded for calculating span
loss.
Hyper-parameters. We use the default hyper-
parameter settings for the SQuAD 2.0 task. Specifi-
cally, we set maximum sequence length, doc stride,
maximum query length and maximum answer
length to 512, 128, 64 and 30. For fine-tuning our
model, we set the learning rate, batch size, training
epoch and warm-up rate to 2e-5, 12, 2 and 0.1. The
temperature in spanCL is set to 0.05. The weights
of span loss and spanCL loss are λ1 = λ2 = 0.5.
For each time, we fix the random seed, ensuring our
results are reproducible. We run our experiments
on two Tesla A100 40G GPUs with 5 GPU hours
to train a model.

4.3 Main Results

From Table 2, we notice that spanCL improves
the performance of each baseline model, yielding
0.86~2.14 absolute EM improvement and 0.76~2.0

2https://huggingface.co/bert-base-uncased

Model Dev ∆
EM F1 EM F1

BERTbase 73.37 76.34 - -
+ spanCL 75.51 78.34 +2.14 +2.00

BERTlarge 78.88 81.85 - -
+ spanCL 79.76 82.61 +0.88 +0.76

RoBERTabase 78.85 81.42 - -
+ spanCL 80.18 82.84 +1.33 +1.42

RoBERTalarge 86.12 88.88 - -
+ spanCL 86.98 89.70 +0.86 +0.82

ALBERTbase 77.84 81.27 - -
+ spanCL 79.52 82.97 +1.68 +1.7

ALBERTlarge 79.99 83.27 - -
+ spanCL 81.51 84.67 +1.52 +1.4

Table 2: Results (%) on the dev set of SQuAD 2.0.

Model EM Dev
HasAns NoAns EM F1

BERTbase 70.31 74.76 73.37 76.34
+ pos 72.57 68.93 72.26 75.22
+ neg 67.05 87.74 74.02 76.38
+ pos&neg 66.16 78.48 72.59 75.37
+ spanCL 72.52 75.91 75.51 78.34

Table 3: Training with spanCL vs Training with ex-
panded datasets.

absolute F1 improvement, demonstrating spanCL
is model-agnostic and effective.

As additional training data (i.e. the extra pos-
itive and negative questions) is used, it is neces-
sary to analyze if the improvements are merely
brought by this additional data. We conduct ex-
periments by training with different datasets and
display the results in Table 3. BERTbase means
training BERTbase with original SQuAD 2.0 train-
ing set. “+pos” and “+neg” mean expanding the
original training set with generated positive ques-
tions and generated negative questions respectively.
Surprisingly, Simply expanding the training set can
not guarantee the performance improvement. We
find that adding positive examples into the train-
ing set does not improve the performance of MRC
model. One possible reason is that the positive
questions make the model over insensitive and ig-
nore slight literal changes, which is inappropriate
for MRC-U task. By comparing BERTbase with
“+neg”, we find that training with more negative
examples, the model tends to predict more NoAns
and achieve a high performance on NoAns, while
the performance on the HasAns drops a lot and
the overall improvement of EM is much less than
“+spanCL”. From the results in Table 3, we can
conclude that spanCL is effective to utilize the gen-
erated questions.
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Model EM F1
BERTbase 73.37 76.34

+ CRQDA (Liu et al., 2020) 75.80 78.70
+ spanCL with simple negatives 75.51 78.34
+ spanCL with CRQDA 76.12 79.09

Table 4: Performance of spanCL with different synthetic
negative questions.
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Figure 3: The influence of different temperatures in
spanCL. The best performance is achieved when the
temperature is set to 0.05. BERTbase is adopted as the
base model.

4.4 Influence of Negative Examples

The unanswerable questions generated by our
strategies are rather plain. We believe spanCL can
further boost the performance by high-quality unan-
swerable questions. Liu et al. (2020) proposed a
context-relevant generation method called CRQDA,
which generates delicate negative questions 3. In
table 4, “+CRQDA” denotes training the baseline
model with the dataset including the delicate neg-
ative questions generated by CRQDA. “+spanCL
with simple negatives“ denotes applying spanCL
with negative questions generated by our three
strategies. “+spanCL with CRQDA” denotes ap-
plying spanCL with negative questions generated
by CRQDA. Comparing “+spanCL with simple
negatives“ with “+spanCL with CRQDA“, we find
that spanCL can further boost the performance by
delicate negative questions.

4.5 Influence of Temperature

The temperature τ in spanCL loss (Equation 5) is
used to control the smoothness of the distribution
normalized by the softmax operation. A large tem-
perature smoothes the distribution while a small
temperature sharpens the distribution. As shown
in the Figure 3, spanCL is sensitive to the temper-
ature value. In general, small temperature results

3https://github.com/dayihengliu/CRQDA

Model EM F1
BERTbase 73.37 76.34

+ spanCL 75.51 78.34
+ CL with [CLS] reps 74.18 77.05
+ CL with span and [CLS] reps 73.82 76.86

Table 5: Results (%) with different question representa-
tions used in the contrastive learning.

Base Model Training schemes EM F1
BERTbase Joint 75.51 78.34
BERTbase Alternate 74.67 77.08
BERTbase pre-train then finetune 72.19 74.87
BERTlarge Joint 79.76 82.61
BERTlarge Alternate 79.50 82.55
BERTlarge pre-train then finetune 77.77 80.30

Table 6: Results (%) with different training schemes.

in better performance. A practical temperature can
be obtained within a small range (from about 0.02
to 0.1). We select 0.05 as the temperature in our
experiments.

4.6 Selection of Question Representations

In this paper, we argue that the answer span rep-
resentation is better than [CLS]. We conduct ex-
periments with different question representations
in this section. When applying CL with [CLS]
representations, we add a classification layer on
the top of [CLS] to determine if a question is an-
swerable or not (Zhang et al., 2020b), making the
representation of [CLS] acquire the information
of the question’s answerability. We also play CL
with both [CLS] and answer-span representations,
in which two CL losses are calculated together.
From Table 5, we can see that CL with [CLS]
reps improves the model performance but the im-
provement is small than that from spanCL, and the
combination of the two CL losses can confuse the
model and result in a little improvement.

4.7 Comparison between Different Training
Schemes

There are three training schemes to combine the
span loss and spanCL loss: 1) joint training, in
which these two losses are used together in each
training step; 2) alternate training, in which the
model is updated with spanCL loss after every M
updates with span loss; 3) pre-train and fine-tune,
in which we first pre-train the model with spanCL
loss and then fine-tune it with span loss. For al-
ternate training, we select M from {1, 2, 3} and
find M = 2 gives the best results. From Table
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Passage: The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries
gave their name to Normandy, a region in France. They were descended from Norse (\"Norman\" comes from \"Norseman\") raiders and
pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia.
...... ......
The Norman dynasty had a major political, cultural and military impact on medieval Europe and even the Near East. The Normans were
famed for their martial spirit and eventually for their Christian piety, becoming exponents of the Catholic orthodoxy into which they
assimilated. They adopted the Gallo-Romance language of the Frankish land they settled, their dialect becoming known as Norman,
Normaund or Norman French, an important literary language.

Question: What is France a region of ?

Answer from baseline: Normandy

Answer from baseline+spanCL: no answer

Question: What type of major impact did the Norman dynasty have on modern Europe ?

Answer from baseline: political, cultural and military

Answer from baseline+spanCL: no answer

❌

✅

✅

❌

Figure 4: Qualitative Examples.

6, we conclude that joint training gives the best
performance and alternate training performs a little
worse. Surprisingly, with the pre-train and fine-
tune training scheme, the model performs worse
than the baseline model. We guess this is because
without the supervision of answer-span knowledge,
it is hard to learn useful question representations.

4.8 Qualitative Analysis

We qualitatively analyze two representative unan-
swerable questions in Figure 4. It can be seen that
the baseline model predicts a plausible answer for
each question while the baseline model trained with
spanCL abstain from answering.

To correctly answer the first question, the model
is asked to learn the question’s semantics in sen-
tence level. To correctly answer the second ques-
tion, the model is asked to recognize the literal
change in word level. SpanCL can help the model
perceive such crucial differences between the ques-
tion and passage from both semantic and lexical
aspects, and thus enable the baseline model to ab-
stain from answering for these two questions.

5 Conclusion

In this paper, we propose a span-based method of
Contrastive Learning (spanCL) to solve the MRC
task with Unanswerable Questions. SpanCL is
devised based on the fact that an answerable ques-
tion can become unanswerable with slight literal
changes. By explicitly contrasting an answerable
question with its paraphrase and distortion at the
answer span level, MRC models can be taught to
perceive subtle but crucial literal changes. Experi-

mental results demonstrate that spanCL is model-
agnostic and can improve MRC models signifi-
cantly. Additional experiments show that spanCL
is more effective to utilize the generated questions
than other methods. In addition, it should be no-
ticed that how to generate high-quality question
examples is not fully investigated in this paper,
which may introduce a performance bottleneck to
spanCL. Therefore, a study on question genera-
tion compatible with spanCL is encouraged in the
future.
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