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Abstract

The knowledge graph (KG) stores a large
amount of structural knowledge, while it is not
easy for direct human understanding. Knowl-
edge graph-to-text (KG-to-text) generation
aims to generate easy-to-understand sentences
from the KG, and at the same time, maintains
semantic consistency between generated sen-
tences and the KG. Existing KG-to-text genera-
tion methods phrase this task as a sequence-to-
sequence generation task with linearized KG
as input and consider the consistency issue of
the generated texts and KG through a simple
selection between decoded sentence word and
KG node word at each time step. However,
the linearized KG order is commonly obtained
through a heuristic search without data-driven
optimization. In this paper, we optimize the
knowledge description order prediction under
the order supervision extracted from the cap-
tion and further enhance the consistency of the
generated sentences and KG through syntactic
and semantic regularization. We incorporate
the Part-of-Speech (POS) syntactic tags to con-
strain the positions to copy words from the KG
and employ a semantic context scoring function
to evaluate the semantic fitness for each word
in its local context when decoding each word
in the generated sentence. Extensive experi-
ments are conducted on two datasets, WebNLG
and DART, and achieve state-of-the-art perfor-
mances. Our code is now public available'.

1 Introduction

Knowledge graphs (KGs) record the common sense
knowledge in a structural way and have many po-
tential applications, e.g., question answering (Sax-
ena et al., 2020), recommendation system (Wang
et al., 2021) and storytelling (Xu et al., 2021). One
typical KG is shown in Figure 1, with circle nodes
indicating entities, and the directional edges con-
necting the head node to the tail node and repre-
senting the relation among connected entities. This

'https://github.com/LemonQC/KG2Text
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Figure 1: One example KG from DART dataset (Nan
et al., 2020). AWH is short for AWH Engineering Col-
lege. Text a) is the ground-truth sentence, text b) is
the POS sequence obtained by NLTK, and most words
copied from the KG are nouns. The linearized order of
KG should correlate with the information sequence ex-
pressed in the corresponding sentence (words indicated
in bold in GT sentence), and each decoded word should
fit in its local semantic context (e.g. the blue dashed
lines).

structural representation in KG is easy for infor-
mation storage while not convenient for human
understanding. In this paper, we focus on the task
of KG-to-text generation, which aims to describe
an input KG with fluent language sentences in an
easy-to-understand way. Compared to the tradi-
tional text generation task, KG-to-text generation
poses the extra challenge of maintaining the word
authenticity in the generated sentence given the in-
put KG. With the word authenticity and sentence
fluentness in mind, existing KG-to-text generation
methods (Ribeiro et al., 2020a; Koncel-Kedziorski
et al., 2019; Gardent et al., 2017) phrase this task
as a sequence-to-sequence generation task, where
the KG is linearized as input sequence and decoded
into sentences, and the word from the KG are se-
lected to be inserted into the decoded sentence with
predicted confidence at each time step. However,
when the KG is linearized into a sequence, sim-
ple heuristic search-based algorithms are usually
utilized, e.g., breadth-first search (BFS) or using
other pre-defined rules for sorting (Li et al., 2021;
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Ribeiro et al., 2020a), without considering the word
sequence information in the ground-truth sentences.
The order inference of the KG is not tightly cor-
related to the word sequence information in the
ground-truth sentences and is generated in a dis-
joint prestage. The decoded sentence is further con-
ditioned on the linearized KG order which might
incur cascaded errors (Cornia et al., 2019). To
tackle this problem, we extract the order informa-
tion from the ground-truth sentence and use this
order information to directly supervise the KG or-
der prediction with graph structural local context.
In this case, our order prediction component for
KG encodes the sentence sequence prior informa-
tion and will benefit the sentence generation in the
follow-up stage.

Also, most existing methods (Li et al., 2021;
Koncel-Kedziorski et al., 2019) maintain the word
authenticity by maximizing the copy probability of
the tokens from the KG, while ignoring the syntac-
tic correctness and semantic relevance. A simple
observation from the example in Figure 1, you can
find that the POS tags of most words copied from
the KG are nouns. Motivated by this observation,
we introduce a POS generator to guide the sentence
generation process by applying the POS informa-
tion as additional supervision at each time step
and limit the position scope of the word selection
from KG. Moreover, to further enhance semantic
relevance of generated sentence, we consider the
structural information and local semantic informa-
tion of the KG by designing a semantic context
scoring function with sliding windows of different
sizes, and combine the semantic context score into
the word selection process at each time step of the
sentence generation.

In summary, we propose a Syntax controlled KG-
to-text generation model with Order and Semantic
Consistency, called S-OSC. The main contributions
are summarized as follows:

* We propose a learning-based sorting network
to obtain the optimal KG description order
with graph structural context for more fluent
caption generation.

* We enhance the authenticity of generated sen-
tences to the KG through syntactic and se-
mantic regularization. POS tag information is
incorporated into the sentence modeling and
helps to determine the word selection from
KG, together with one additional semantic
context scoring function.

» Extensive results on two benchmark datasets
indicate that our proposed S-OSC model out-
performs previous models and achieves new
state-of-the-art performance.

2 Related Work
2.1 KG-To-Text Generation

KG-to-text generation task has been a hot research
topic since the first dataset WebNLG was pro-
posed (Gardent et al., 2017). Recent works for solv-
ing this task have two main categories. One cate-
gory is using graph neural networks (Marcheggiani
and Perez-Beltrachini, 2018; Ribeiro et al., 2020b;
Li et al., 2021; Cheng et al., 2020) or graph trans-
formers (Koncel-Kedziorski et al., 2019) to directly
capture the graph structure information and decode
into sentences. E.g., the recent work (Ribeiro et al.,
2020b) forms four different encoder architectures
for combining local and global node contexts. ENT-
DESC (Cheng et al., 2020) introduces multi-graph
structure to better aggregate knowledge informa-
tion. The other category is first linearizing the
KG (Ribeiro et al., 2020a; Yang et al., 2020; Gar-
dent et al., 2017; Hoyle et al., 2020) and then formu-
lating a sequence-to-sequence generation task with
lineared KG nodes as input to generate sentences.
E.g., Distiawan et al. (Distiawan et al., 2018) uti-
lize a fixed tree traversal order to directly flatten
the KG into a linearized representation. The struc-
tural information of the KG is not preserved when
generating the KG order. In this paper, we follow
the second general pipeline with local structure
encoded in the order generation process.

2.2 Knowledge Graph Order Generation

A line of KG-to-text models (Ribeiro et al., 2020a;
Braude et al., 2021) tries to generate sentences con-
ditioned on the KG order, where the order genera-
tion is especially important as different KG descrip-
tion orders may result in various generated texts.
Most previous works focus on graph traversal-
based approaches (Flanigan et al., 2016; Gardent
etal., 2017; Ke et al., 2021; Li et al., 2021) for KG
order generation. (Li et al., 2021) proposes to use a
relation-biased breadth first search (RBFS) strategy
to linearize the KG. These previous graph traversal-
based approaches are heuristic without considering
the word sequence information in the ground-truth
sentences. Inspired by previous work (Cornia et al.,
2019) which generates image caption with optimal
object description order, we extract the sequence
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information from the ground-truth sentences as su-
pervision and train one order prediction module
to generate optimal order. Moreover, our order
prediction considers the local graph structure in
triplet.

2.3 Captioning with POS Tags

POS tags have been used in various text generation
(e.g. image captioning and video captioning) to
impose the syntactic constraint. In the neural text
generation work (Yang and Wan, 2021), the authors
propose to use POS guided softmax function as
the linguistic prior information for modeling the
posterior probabilities of next-POS and next-token,
in order to increase text generation diversity. In
the image caption, Bugliarello et al. (Bugliarello
and Elliott, 2021) claim that incorporating POS
tag information in the sentence generation process
consistently improves the quality of the generated
text. In video captioning, Hou et al. (Hou et al.,
2019) propose to define the templates of POS tag
sequences to represent the syntactic structure of the
generated text. In KG-to-text generation task, we
not only use the POS tags to ensure the syntactic
correctness of the generated text, but also use the
POS tags to constrain the positions to copy words
from KGs.

2.4 Pre-Trained Language Models

Pre-trained language models (PLMs) on massive
corpora, such as BERT (Devlin et al., 2018),
BART (Lewis et al., 2019) and T5 (Raffel et al.,
2019), have achieved superior performance in var-
ious natural language generation tasks, including
KG-to-text generation task (Ribeiro et al., 2020a;
Peters et al., 2019; Ke et al., 2021). Ribeiro et
al. (Ribeiro et al., 2020a) leverage the generation
ability of PLMs and use the linearized KG as in-
put to generate texts. We also use the PLM in our
method to guarantee the model generalization abil-
ity, and at the same time, design extra order predic-
tion and context scoring components to maintain
the semantic consistency.

3 Approaches

In this section, we first formulate the KG-to-text
generation problem setting and then elaborate the
proposed S-OSC in detail.

3.1 Problem Formulation

Given the input KG G, which is composed of
{(hlyrlutl)a e ’(hnarnatn)|h*7t* S E)T* S

R}, where £ denotes the entity set and R repre-
sents the relation set, the KG-to-text generation
task aims to generate a fluent and reasonable text
sequence 7 =< tq,ta, -+ ,tx > (tx € V), where
V denotes the vocabulary. In this paper, we follow
the general pipeline (Ribeiro et al., 2020a; Ke et al.,
2021; Ribeiro et al., 2021) of linearizing the input
KG into sequence Glinear =< 91,92,"** s 9m >
consisting of m tokens, and then decoding the KG
token sequence into sentences.

3.2  Our Proposed S-OSC Model

We propose S-OSC, illustrated in Figure 2, which
consists of two main components: one learning-
based sorting network for KG, and one copy or pre-
diction selection module for decoding each word
in the sentences. The sorting network generates
the optimal description sequence for the input KG.
Based on the KG order sequence, the sentence de-
coder generates each word with a certain probabil-
ity predicted by the copy or prediction selection
module to replace the decoded word with the word
in the KG. Thus, the model can maintain the word
authenticity in the generated sentence compared
to the KG. A key innovation in our learning-based
sorting network is to utilize the sequence infor-
mation extracted from the ground-truth sentence
to directly supervise the optimal sequence predic-
tion instead of heuristic search in the KG without
considering the description sequence prior. Our
copy or prediction selection module for decoding
each word in the sentences incorporates additional
POS syntactic constraint and semantic context con-
sistency scoring function evaluating the semantic
fitness of each word in its sliding windows with
various sizes. The details of each module in our S-
OSC model are illustrated in the following sections.

3.2.1 Sorting Network

The description order of the KG will affect the
content of the generated sentence. In a worse sce-
nario, poor order may result in the loss of important
information (see the example in Figure 7). To over-
come the drawback of disjoint learning for KG
order generation and sentence generation in the
previous heuristic-based methods (Li et al., 2021;
Ribeiro et al., 2020a; Yang et al., 2020), we propose
a learning-based sorting network with the order su-
pervision extracted from the ground-truth sentence.
Notably, our sorting network is based on the fea-
tures from the structural Triplet Encoder, where the
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Figure 2: S-OSC model architecture. The pre-trained language model takes the KG as input and extracts head-
relation-tail triplet structure features through Triplet Encoder. Then, these triplet features are fed into the Sorting
Network to generate one optimal description order under the sequence supervision extracted from ground-truth
sentence. Conditioned on the KG order, we further decode the sequence into sentences through Word Decoder and
apply additional syntactic supervision through POS Generator. To maintain the word authenticity in the generated
sentences, we further design one Copy or Prediction component incorporating the POS syntactic information and
semantic context scoring with sliding windows to help determine when to copy tokens from KG, in addition to the
word decoding probability from the Word-Encoder-Decoder and the binary classification probability for copy or

prediction at each time step.

head-relation-tail triplet structure features are ex-
tracted through pre-trained KG embedding method
TransH (Wang et al., 2014) and pre-trained lan-
guage model BART (Lewis et al., 2019). Due to
the variable length of the KG, we introduce a place-
holder to pad it into fixed length N, which also de-
notes the number of possible position classes. The
head-relation-tail triplet structure features Flsypq,
are concatenated with the padding Fj,,q and fed
through the Fully Connected (FC) layers with soft-
max classifier F'Cs to obtain Sy,q4ri and predict
the sorting order S, ger-

Smatricc = FCS([FSt’I"LL; Fpad])

Sorder = argmaxrow(smatrix)

ey

In this paper, we treat the order prediction task as a
classification problem, where N denotes the num-
ber of classes (the maximum of the triplets in KG).
Thus, we measure the cross-entropy loss between
the ground-truth order G4, and the sorting order

Sorder:

N
Lgsort = — Z log(sﬁnatrm) : G:)erer 2)
n=0

ty t tm -
POS
P1 @ I_I_|_l [ Pm } Tags
e L[]
| Fusion || Fusion || || Fusion |
| |
I Transformer Decoder | Word
Y . ¥ { Decoder
(wi | [we | [ ] [wi|
Figure 3: The architecture of the Word-Encoder-

Decoder with a POS Generator.

3.2.2 Copy or Prediction Network

To maintain the authenticity of KG words in gen-
erated sentences, the model needs to selectively
copy words from KG words instead of using the
predicted words from Word Decoder. Besides di-
rectly predicting the copy probability from the hid-
den state (Koncel-Kedziorski et al., 2019; Li et al.,
2021; See et al., 2017), the Copy or Prediction Net-
work in our S-OSC model further enhances the syn-
tactic and semantic consistency of selected words
in the decoded sentence through the incorporation
of POS generator (shown in Figure 3) and semantic
context scoring (shown in Figure 4). Next, we will
introduce each module in detail.

POS Syntactic Constraint Conditioned on the
KG order Gypger, we first linearize the KG by

1281



pad
pad Pl

AWH 7 1

Engineering I_, scores

College
iAWH Engineering CollegeiLioni located— -+, 0.91, 0.02,

sliding windows

Lion

2001

W'1 W’z W‘3 W's

Figure 4: The architecture of semantic context scoring
module with sliding windows.

adding the tokens < Head >,< Relation >
,< Tail > to the corresponding position for
each triplet and obtain the Gjjpeqr. Then, the
Word Encoder and the POS Generator take Gy;pear
as their inputs and output the word encoding
WI={w;,7 € 1---m} and POS tag encoding
PI={p;,i € 1---m} , respectively. Then, the to-
ken encoding w; and POS tag encoding p; are com-
bined in the fusion module to get the updated token
encoding w;.

w; = LN(FC([wi; pi]) + wi), 3)

where LN denotes the layer normalization. The
updated token encoding w; after fusing is decoded
into sentence WI' = {w;,i € 1---k} in Word
Decoder.

POS generator is supervised through POS tags
pre-extracted from the sentence. The loss function
is formulated as:

M
Lpos = - Zlog(Pgen(pl |p17 oy Pi-1; Gorder))a

=1
“4)
where Py, denotes the predicted probability from
POS generator. Similarly, the objective of Word-
Encoder-Decoder is as follows:

!

K
Lioken = — Z log(Wgen(w;'|w/17 e
=1

&)
where Wy, denotes the predicted probability of
each word token.

Semantic Context Scoring Besides the syntactic
constraint for copied words, we also design one
semantic context scoring component, illustrated in
Figure 4, to evaluate the semantic consistency of
copied or predicted words in the sliding windows.
Sliding windows are generated for each word to
provide the local context, e.g., the sliding window

awj—l;WI ))a

size is set to 3 in Figure 4. Besides, padding is
needed for the first several words when forming the
sliding windows. Word features in the sliding win-
dow are contacted to get the context information
Fontext, and are fed into the FC layers to obtain
the semantic score Xemantic

Xsemantic = U(FC(Fconte:pt))> (6)

where o denotes the sigmoid function.

Word Copy Probability Prediction With our
newly introduced POS token embeddings v, and
the semantic context score Xsemantic, the probabil-
ity p’jopy for copying words from KG is computed
in Eq. 7, and is used in testing time for final selec-
tion between predicted words from Word Decoder
and words in KG at each time step when generating
sentences.

tlgepy = o(Wivw, + Wavp, + W3sk + beopy),

plgopy =\ Xsemantic + (1 - )\) ' tlsopya
(7

where W1, Wa, W3 and by, are learnable parame-
ters. vy, represents token embedding and sy, repre-
sents the last hidden state of Word-Decoder at each
time step. A is a trade-off coefficient and is set as
0.3.

The semantic context scoring module is jointly
optimized with copy probability prediction and ben-
efits the copy probability prediction. The copy or
prediction loss function is defined as:

K

Leopy = — Y _(y" - log(pk,p,) + (1 = o) )
k=0

log(l - plgopy))7

where y/¥ is the ground-truth 0-1 label indicating
copying or predicting word at k — th time step,
which is generated from KG and the ground-truth
sentence (see more details in supplementary mate-
rial).

Finally, the total training loss L. in our S-
OSC model is composed of four components:
sorting loss Lg,(Eq. 2), POS generation loss
Lyos(Eq. 4), word generation 1oss Lioken(Eq. 5)
and copy or prediction 10ss Loy, (Eq. 8).

Ltotal = Ltoken + )‘le05 + )\2Lsort + )\3Lcopy>
)

where A1, Ay and A3 are the trade-off coefficients.
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4 Experiments

In this section, we report the comparison results
with state-of-the-art methods and further analyze
the performance of each component in our S-OSC
model through ablation studies. We also evaluate
our model performance through human evaluation
and qualitative analysis.

4.1 Datasets

In this paper, two benchmarks: WebNLG (Li et al.,
2021) and DART (Nan et al., 2020) are utilized to
evaluate the performance of our S-OSC model.

WebNLG WebNLG (Li et al., 2021) is a most
widely used dataset in KG-to-text generation task.
Each graph is extracted from DBPedia and consists

of two to seven triplets. The train/val/test splits are
7362/1389/5427.

DART Compared to WebNLG, DART (Nan
et al., 2020) is a larger open-domain dataset, where
triples are composed of tree-structured ontology.
The train/val/test splits are 30348/2759/5097.

4.2 Evaluation Metrics

Following the previous works (Ribeiro et al.,
2020a,b; Li et al., 2021) on WebNLG dataset,
we adopt four automatic language evaluation met-
rics for WebNLG dataset, i.e., BLEU-4 (Pap-
ineni et al., 2002), CIDEr (Vedantam et al., 2015),
Chrf++ (Popovié¢, 2015) and ROUGE-L (Lin,
2004). Following previous works (Nan et al., 2020)
on DART dataset, in addition to BLEU-4 (Pap-
ineni et al., 2002), we use four additional auto-
matic evaluation metrics, i.e., METEOR (Banerjee
and Lavie, 2005), MoverScore (Zhao et al., 2019),
BERTScore (Zhang et al., 2019) and BLEURT (Sel-
lam et al., 2020).

4.3 Implementation Details

In the sorting network, the fixed KG order length
N is set to 8 and 10 for WebNLG and DART, re-
spectively. The POS generator operates on the
POS sequences parsed from ground-truth sentences
via NLTK, and trains from BART-Base pretrained
model (Lewis et al., 2019). For Word-Encoder-
Decoder, we follow the code in JointGT (Ke
et al., 2021) and utilize Bart-Base with self-
attention (Shaw et al., 2018). The beam search
size for generating sentences in inference time is
set to 5. We optimize all the parameters under the
supervision of the total loss in Eq. 9 using the Ope-
nAl AdamW optimizer. The loss weights A1, Ay

Datasets WEBNLG
Metrics B-4 R-L CIDEr Chrf++
Lietalt (Lietal, 2021) 57.10 7520 420 75.00
Lietal. (Lietal., 2021) 61.88 7574  6.03 79.10
GraphWriter (Koncel-Kedziorski et al., 2019) 45.84 60.62  3.14 55.53
CGE-LW (Ribeiro et al., 2020b) 48.60 62.52  3.85 58.66
T5-Base (Ribeiro et al., 2020a) 48.86 65.57 399 66.08
BART-Base (Ribeiro et al., 2020a) 49.81 63.10 345 67.65
T5-Large (Ribeiro et al., 2020a) 58.78 68.22 4.10 74.40
BART-Large (Ribeiro et al., 2020a) 5249 65.61 3.50 72.00
JointGT! (Ke et al., 2021) 57.00 77.10 473 76.90
S-OSC(ours) 6190 7930 530  79.70
S-OSC(ours)-GT 63.10 80.00 5.40 81.00
Table 1: Results for different models on WebNLG

dataset. B-4 and R-L are short for BLEU-4 and ROUGE-
L, respectively. Bold and underline fonts represent the
best and the second best performing results. "S-OSC-
GT" indicate our "S-OSC" model with ground-truth
order in inference (The same term is applied in the fol-
lowing). T denotes the results of reproduction. Other
cited results are from Li et al. (Li et al., 2021).

and A3 in total training loss (Eq.9) are set to 0.7,
0.4, and 0.3, respectively.

4.4 Main Results on WebNLG and DART

We compare our S-OSC model with other state-of-
the-art methods on WebNLG and DART. Results
on WebNLG are shown in Table 1. It can be ob-
served from Table 1 that our S-OSC model outper-
forms all the previous methods in three evaluation
metrics, i.e., B-4, R-L and Chrf++, except for the
CIDEr value being in the second place compared
to the best performing CIDEr result reported by the
model in Li et al. (Li et al., 2021). Note that our
S-OSC model contains one learning-based sorting
network supervised by the ground-truth order ex-
tracted from KG and the ground-truth sentence. We
also report our model’s results under the ground-
truth order during inference time (denoted as "S-
OSC-GT") which serves as the upper bound for
our sorting performance. From the comparison of
our model with predicted order "S-OSC" and our
model with ground-truth order "S-OSC-GT", we
can see that our model results with predicted order
are close to the results with ground-truth order with
the result gaps less than 1.2 points in most metrics,
which shows the advantage of our learning-based
sorting network for generating KG description or-
der.

Results on DART are shown in Table 2. From
previous models’ results, we can see that pre-
training on the large corpus (e.g., "T5-Large" and
"Bart-Large") brings significant result improve-
ment compared to "Seq2Seq-Att" and "End-to-End
Transformer". Our S-OSC model further achieves
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Datasets DART
Metrics B-4 METEOR MoverScore BERTScore BLEURT
Seq2Seq-Att (Nan et al., 2020) 29.66 0.27 0.31 0.90 -0.13
End-to-End Transformer (Ferreira et al., 2019) 27.24 0.25 0.25 0.89 -0.29
T5-Large (Ribeiro et al., 2020a) 50.66 0.40 0.54 0.95 0.44
BART-Large (Ribeiro et al., 2020a) 48.56 0.39 0.52 0.95 0.41
JointGT (Ke et al., 2021) 54.24 0.44 0.64 0.96 0.59
S-OSC(ours) 62.01 0.43 0.64 0.96 0.49
S-OSC(ours)-GT 64.53 0.44 0.66 0.96 0.51
Table 2: The results of different models on DART dataset.
new state-of-the-art results in all five metrics com- Methods B-4 R-L CIDEr Chrf++
pared to these pre-training based models (e.g., §-0sC 63.10 800 540 810
" o . wlo CP 59.15 778 499  78.0
T5-Large") with B-4 score improved by 11.35 wloPOSand SC  59.80 777 501 781
points, METEOR score improved by 0.03 points, wlo POS 61.00 785 510 786
wio SC 61.06 789 521 79.1

Moverscore improved by 0.1 points, BERTScore
improved by 0.01 points, and BLEURT improved
by 0.05 points. JointGT outperforms all the previ-
ous baseline models. Compared with JointGT (Ke
et al., 2021), our model can also obtain an improve-
ment of 7.77 points in B-4 score. This result also
validates the effectiveness of our model in improv-
ing the fluentness and authenticity of the generated
sentences with the proposed learning-based sort-
ing network and consistency enhancement under
the POS syntactic and semantic context constraints.
Similar to the results on WebNLG, our model S-
OSC with predicted order can achieve the perfor-
mance close to that with ground-truth order.

4.5 Ablation Study

In this section, we conduct extensive experiments
on WebNLG to evaluate various factors in the word
copy or prediction during sentence generation, e.g.,
the POS generator and semantic context (SC) scor-
ing. We compare our full S-OSC model with the
following variations: without word copy compo-
nent and just use the predicted word from Word De-
coder at each time step (w/o CP), without POS in-
formation in copy probability prediction (w/o POS),
without semantic context scoring in copy probabil-
ity prediction (w/o SC), without POS tag informa-
tion and semantic context scoring in copy probabil-
ity prediction (w/o POS and SC) and relying on the
last hidden states to predict the copy probability
as in previous methods (Koncel-Kedziorski et al.,
2019; See et al., 2017). From the results in Table 3,
we can observe that: (1) By removing the word
copy component and directly taking the predicted
word from Word Decoder at each time step (w/o
CP), the results drop significantly by 3.95 points in

Table 3: Ablation analysis for copy or prediction com-
ponent in our model on WebNLG. S-OSC here is under
the ground-truth order.

B-4, 2.2 points in R-L, 0.41 points in CIDEr and 3
points in Chrf++. (2) We then consider incorporat-
ing the copy prediction component, but just rely on
the last hidden states to predict the copy probability
as in previous methods (Koncel-Kedziorski et al.,
2019; See et al., 2017) without POS tag information
and semantic context scoring in copy probability
prediction (w/o POS and SC). The results improve
slightly in all the metrics compared with that of
"w/o CP". (3) We then evaluate the effectiveness
of POS syntactic information and semantic context
scores in improving the quality of the generated
sentences by removing each of them at a time.

Compared to full S-OSC model, without POS
information in copy probability prediction (w/o
POS), the results drop by 2.1 points in B-4, 1.5
points in R-L, 0.3 points in CIDEr and 2.4 points
in Chrf++. Compared to full S-OSC model, with-
out semantic context scoring in copy probability
prediction (w/o SC), the results drop by 2 points in
B-4, 1.1 points in R-L, 0.2 points in CIDEr and 1.9
points in Chrf++. Both "w/o POS" and "w/o SC"
improve consistently compared to previous copy
policy in "w/o POS and SC".

To further reveal more details about our model,
we conduct extra ablation studies regarding the
following questions. (1) How does triplet structure
encoding in the sorting network help the model
compared with direct node encoding without triplet
structure context? (2) How does our model perform
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Methods B-4 R-L CIDEr Chrf++

GT 63.10 80.0 54 81.0
TS 61.90 79.3 53 79.7
NS 60.00 77.0 5.1 78.0
RS 55.20 720 4.7 76.0

Table 4: The results of sorting order on WebNLG. TS
denotes the triple-level sorting order, NS is the node-
level sorting order (Li et al., 2021) and RS represents the
random sorting order. The same symbols are as below.

80

<3 4-6 >7
The number of triplets in knowledge graph

Figure 5: The B-4 results in three groups with different
KG sizes on DART dataset for different sorting orders.

for different triplet numbers in KG? (3) How does
the sliding window size in semantic context scoring
function affect the model performance?

(1) Triplet structure encoding in sorting net-
work. To show the effect of triplet structure en-
coding (triple-level) in our sorting network, we
investigate the performance of direct node encod-
ing without triplet structure (node-level), as well
as our S-OSC model’s results with random sort-
ing order. Results on WebNLG are shown in Ta-
ble 4 and the upper bound result is shown with
ground-truth order (GT). From Table 4, sorting
with triple-level sorting order "TS" outperforms
random sorting order "RS" significantly, and also
outperforms node-level sorting order "NS" by 1.9
points in B-4, 2.3 points in R-L, 0.2 points in CIDEr
and 1.7 points in Chrf++, showing the advantage of
triplet structure encoding compared to node encod-
ing without triplet structure context. The results on
DART dataset show similar trend and are reported
in supplementary material.

(2) Different Knowledge Graph Sizes. To verify
the effect of our S-OSC model performance on dif-
ferent KG sizes, we split the test dataset into three
subsets according to the size of the KG, i.e., the
number of triples in KG is less than 3, between 4
and 6, and more than 7, and reports results on each
subset. DART is selected for experiment due to its
wide distribution of KG sizes. The results of B-4 in
each subset are plotted in Figure 5, showing that as

621

601 —
< 581
0 56

52+
50

4 5 6
dliding window size

N A

S\

Figure 6: The B-4 results of different sliding windows
on WebNLG dataset.

the number of triples in KG increases, the difficulty
of sorting and KG-to-text generation increases and
the B-4 results generally decrease in all three meth-
ods ("GT", "RS" and "TS"). Also, our model’s
superiority exhibits significant improvement in all
three subsets with different KG sizes (comparing
"TS" with "RS"). Other metric results show similar
trend and are reported in supplementary material.

(3) Sliding window size in the semantic context
scoring. We plot the B-4 results for different slid-
ing window sizes of semantic context scoring func-
tion on WebNLG dataset, shown in Figure 6. From
Figure 6, the model achieves the best performance
when the sliding window size is 3. Other met-
ric results show similar trend and are reported in
supplementary material. Thus, we set the sliding
window size to 3 in the experiments.

4.6 Human Evaluation

We conduct the human evaluation on WebNLG to
further evaluate the generated text. In this paper,
we adopt the same human evaluation criteria as
Chen et al. (Chen et al., 2019), i.e., Factual cor-
rectness including Supp (counting the number of
facts that co-exist in the KG and generated text)
and Cont (counting the facts in the generated texts
missing from or contradicting with KG), Language
naturalness including NF (evaluating the accuracy
and fluentness of generated sentences). In addition
to using absolute score at 5-point metric in NF, we
also use relative ranking scores (termed NA). We
randomly select 100 knowledge graphs for human
evaluation. Five native English speakers volunteer
to score all the 100 knowledge graphs. Table 5
reports the results”. We can observe that: the gener-
ated texts of our S-OSC model are more authentic

2Cohen’s kappa coefficients for the first two factors are
0.79, 0.83,0.75,0.76.
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Datasets WebNLG DART

Malaysia Antares rocket

S _1 MANUFACTURER 3 Yuzhnoye
o AN, A 2, Design Office
V\'b& < (‘Or’)z \‘ﬁb\‘ ; lOGA/
Knowledge ) ES ®  Malaysian s NG
graph J 2 Malay 5 2 L
2 E 20141028 @ 4 20130421
° A

Abu Zahar Ujang
4 Malaysian Indian

2 Mid Atlantic Regional
Spaceport Launch Pad 0

is a leader in
there are ethnic groups called
and

Ground-Truth
text

, where

The , made by
had its initial flight
10/28/2014 . It was launched at

and final flight on

Linearized KG

from other Lietal.: (11— 3 —>2— 4 Bart-Large: (1 —> 3 —> 4 —>(B—» 2
methods
Generated text | Li et al. : The leader of is called jusuf | Bart-Large: the manufactured the
from other kalla and are an ethnic group which was launched on at
methods there. the
Linearized KG i 2 @@ 1 3 4 2 5
from ours
created the
is the leader of T
Generated whose initial flight took place at

where and
text from ours

are ethnic groups .

and final
flight on 10/28/2014 .

Figure 7: Two examples from WebNLG and DART. The text in color is corresponding to the KG nodes. The
generated texts in red color indicate that the generated texts contract with KG.

Methods Supp.t Cont.] NF{ NA?T
ground-truth 3.82 0.10 475 293
Lietal.(Lietal,2021) 3.48 0.33 37 210
S-0OSC 3.71 0.15 425 248

Table 5: The results of human evaluation on WebNLG
dataset.

and consistent with KG than the method in Li et
al. (Lietal., 2021).

4.7 Qualitative Analysis

We show two qualitative examples from WebNLG
and DART in Figure 7. From the example of
WebNLG, we can see that the previous method
in Li et al. (Li et al., 2021) generates the wrong de-
scription order with node 3 and node 2 exchanged
positions. This causes the generated sentence from
Liet al. (Li et al., 2021) containing the wrong text
"jusuf kalla" noted in red color and missing the text
"Malaysian Indian", while our S-OSC method gen-
erates the right order and consistent sentences. In
the example from DART, though our S-OSC model
generates relative inferior order with node 2 and
node 5 exchanged positions, relying on our strong
sentence generator with syntactic constraint and
semantic consistency constraint, our model is able
to generate semantic consistent sentence to the KG
with the right words copied from KG. However,
in this example, Bart-Large (Ribeiro et al., 2020a)
still misses some key word description from KG,

e.g., "the final fight on 10/28/2014" and "Launch
Pad 0", though conditioned on the right predicted
order, showing the inferior performance of their
copy or prediction module in sentence generation.

5 Conclusion

This paper proposes a learning-based sorting net-
work to obtain the optimal description order for
KG-to-text generation. Additionally, our model
incorporates POS generator and semantic context
scoring to selectively copy words from KG and im-
prove the word authenticity in generated sentences.
Extensive experiments show that our model outper-
forms previous state-of-the-art approaches. In the
future, we will introduce casual inference into the
model to further improve the reasoning ability.
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Datasets WEBNLG
Metrics B-4 R-L CIDEr Chrf++
Baselines! 57.00 7520 4.20 75.00
Lietal.(Lietal.,2021) 61.88 75.74 6.03 79.10
S-OSC(ours) 61.90 79.30 5.30 79.70

0-1

Genertor | >0111..

Table 1: Results for different models on WebNLG
dataset. B-4 and R-L are short for BLEU-4 and ROUGE-

0-1 sequence

was established in

Figure 1: The steps of obtaining the 0-1 sequence. When
the KG node exists in the text, all mentions of the node
are masked as 1, otherwise 0.

1 0-1 Generator

In order to make the generated text more consistent
with the KG, we use a 0-1 generator to obtain the
ground-truth of copy or prediction order, where 0
represents a token from generation and 1 from KG.
The steps are as shown in Figure 1.

2  Ground-Truth Sorting Order

The description sorting order is essential for the
generation process. In this paper, we sort the order
according to the triple-level. Taking Figure 1 as an
example, we can obtain three triplets, i.e., (AWH
Engineering College, COUNTRY, India), (AWH
Engineering College, ESTABLISED, 2001) and
(AWH Engineering College, CITY, Kuttikkattoor).
In the reference sentence, the triple (AWH Engi-
neering College, CITY, Kuttikkattoor) appears first,
(AWH Engineering College, COUNTRY, India)
appears second and (AWH Engineering College,
ESTABLISED, 2001) last. Thus, we can form the
order 2,0,1 for the providing KG. Note that, we
only record the position of the triplet where it first
appeared regardless of many times.

L, respectively. Baseline is the reproduced results of Li
et al. (Li et al., 2021). Bold and underline represent the
best and the second best performing results. (the same
term is used below)

3 Code Re-implementation

We re-implement the author’s code in Li et al. (Li
et al., 2021) as our baseline. It can be observed
from Table 1 that our S-OSC model outperforms
the baseline and the results of Li et al. reported
from their paper in three evaluation metrics,B-4, R-
L and Chrf++ metrics. Although Li et al. achieves
the best CIDEr score in their reported results, this
score is not replicable and our S-OSC still obtains
1.1 point higher than that of the replicated baseline.

4 Triplet Structure Encoding in Sorting
Network on DART (Nan et al., 2020)

From Table 2, encoding with triple-level sorting
order "TS" outperforms random sorting order "RS"
significantly, and also outperforms node-level sort-
ing order "NS" by 1.35 points in B-4, 0.01 points
in METEOR, 0.02 points in BERTScore and 0.13
points in BLEURT, showing the advantage of
triplet structure encoding compared to node en-
coding without triplet structure context.

5 Different Knowledge Graph Sizes

Table 4 shows that when the number of triples in
KG increases, the difficulty of sorting and KG-to-
text generation increases (see "GT" and "TS") and
our model’s superiority exhibits more relative im-
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Methods | B-4 METEOR MoverScore BERTScore BLEURT
GT 64.53 0.44 0.66 0.96 0.51
TS 62.01 0.43 0.64 0.96 0.51
NS 60.66 0.42 0.64 0.94 0.38
RS 58.67 0.42 0.62 0.93 0.34
Table 2: The results of sorting order on Dart
Methods | B-4 R-L CIDEr Chrf++ 7 Global and Local POS Information
With local POS | 63.10 80.00 5.40 81.0 . .
With global POS | 6128 7932 528 792 We further introduce two forms of POS tag infor-

Table 3: Performance comparisons of our model with
different POS information (local POS and global POS)
on WebNLG dataset.

AN
AN

4 5 6 2
iding window size

Qw
Q0w

ding window size

» RN
SO NN\

4 5 6 2
Sliding window size

4 5 6
Sliding window size

Figure 2: The results of different sliding windows on
WebNLG dataset under B-4, R-L, CIDEr and CHrf++
metrics.

provement (comparing "TS" with "NS"). When the
size of knowledge graphs is lower than three, these
orders have similar performances. This is mainly
due to the fact that less triplets have less effect
for the model. However, "TS" significantly out-
performs "NS" and "RS". Moreover, as the results
reported in Table 4, "TS" consistently outperforms
"RS" and "NS" in terms of METEOR and Mover-
Score metrics, and obtains similar performance to
"GT" in BERTScore and BLEURT metrics.

6 Sliding Window Size in Semantic
Context Scoring

As the B-4 result reported in the main paper, the
other metric results in Figure 2 also show that the
model achieves the best performance when the slid-
ing window size is 3.

mation, i.e., the global tag information (the final
last hidden state of POS generator) and local tag in-
formation (the last hidden states of POS generator
at each time step). The results of the comparison
are reported in Table 3.

We can observe that the model equipping with
local POS information performs better than that of
equipping with global information. This is mainly
because the local POS information can provide
more fine-grained syntactic information. Thus, it
can further ensure the authenticity of the generated
sentences.
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