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Abstract

Given a context knowledge base (KB) and a
corresponding question, the Knowledge Base
Question Answering task aims to retrieve cor-
rect answer entities from this KB. Despite so-
phisticated retrieval algorithms, the impact of
the low-resource (incomplete) KB is not fully
exploited, where contributing components (i.e.
key entities and/or relations) may be absent
for question answering. To effectively address
this problem, we propose a contrastive regular-
ization based method, which is motivated by
the learn-by-analogy capability from hu-
man readers. Specifically, the proposed work
includes two major modules: the knowledge
extension and sMoCo module. The former
aims at exploiting the latent knowledge from
the context KB and generating auxiliary infor-
mation in the form of question-answer pairs.
The later module utilizes those additional pairs
and applies the contrastive regularization to
learn informative representations, that making
hard positive pairs attracted and hard nega-
tive pairs separated. Empirically, we achieved
the state-of-the-art performance on the We-
bQuestionsSP dataset and the effectiveness of
proposed modules is also evaluated.

1 Introduction

The task of Knowledge Base Question Answering
(KBQA) refers to answering a question given a
background knowledge base (KB). A large number
of studies on KBQA can be cast into two main-
stream categories: semantic parsing (SP) and in-
formation retrieval (IR) based. The former focuses
on parsing questions into symbolic logic forms,
such as query graph (Hu et al., 2018) and skeleton
grammar (Sun et al., 2020), before identifying fi-
nal answer(s) from the KB. The IR approach, on
the other hand, aims to perform semantic matching
between topic entities from questions and candi-
date answers within the KB (Xiong et al., 2019;
Sun et al., 2019; Saxena et al., 2020; Yadati et al.,

2021). This paper is on a novel method for infor-
mation retrieval based KBQA.

Approaches to IR-based KBQA usually follow
a three-step process, including question analysis,
subgraph reasoning and answer matching. At first,
the question analysis is to understand reasoning
instructions behind questions for extracting topic
entities and involved relations, etc. The second
step is performed to retrieve relevant entities and
relations (as subgraphs of the context KB) accord-
ing to reasoning instructions, and further formu-
late candidate answers. The last step is to iden-
tify the best answer by estimating and ranking the
semantic-relationship matching score between the
given question and candidates.

However, existing IR-based matching pays insuf-
ficient attention to the low resource (incom-
pleteness) nature of KB, where contributing com-
ponents (i.e. neighboring entities, key relations
and/or reasoning path) may be absent. The limit
or lack of enough information poses challenges
for the subsequent effective question answering.
Some work have been proposed to utilize auxiliary
information, such as extra question-related texts
(Sun et al., 2019) and pre-trained KB embeddings
(Saxena et al., 2020), which unfortunately could in-
troduce noisy and misleading facts, not to mention
the extra computational cost.

Notably, when human performs QA reason-
ing, one could infer other cases from one simi-
lar instance. Even with a new question, experi-
enced readers could still make a guess using sim-
ilar concepts or facts from their current knowl-
edge, and potentially discriminate candidate an-
swers from different aspects. For instance, given
a question of “What state did Al Gore
represent?”, one could infer from his working
experience (i.e. The Tennessean (News))
and/or the graduate university (i.e. Vanderbilt
University), to further predict the correct an-
swer of Tennessee.
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Figure 1: Overview of the proposed learn-by-
analogy framework for KBQA, where latent knowl-
edge is exploited and represented as the form of QA
pairs. The sMoCo module is then applied to extract
informative features for question answering.

Inspired from the aforementioned learn-by-
analogy process, we propose a novel KBQA
framework as illustrated in Fig. 1, which includes
two major modules: knowledge extension and
sMoCo. The former aims to expand knowledge
from the existing KB to discover latent information.
That is, hidden knowledge is exploited and manip-
ulated in a form of question-answering pairs via
making use of existing relations and entities (simu-
lating human readers to use similar concepts/facts).
The sMoCo adopts the contrastive learning mech-
anism, with the ultimate aim of capturing dis-
criminative features from correct and misleading
question-answering pairs (simulating human’s in-
ference skill). Furthermore, different from tradi-
tional contrast methods, the proposed sMoCo is
particularly designed to utilize hard positive and
negative pairs, which further improves the model
generalizability. 1

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first
to advance the contrastive learning-based al-
gorithm to resolve the KBQA task; the pro-
posed method is motivated by the learn-by-
analogy capability from human readers;

• Simulating the human capability of utilizing
similar facts, the proposed knowledge exten-
sion module explores the context KB to cap-
ture latent knowledge and further manipu-
lates them as the task-related question-answer
pairs;

• A novel contrast algorithm (sMoCo) is further
introduced to simulate human inference ca-

1The source codes is publicly available at https://github.
com/JakeyMei/sMoCo

pability; compared to existing methods, the
proposed one mainly relies on hard positive
and negative pairs during the training process.
Related theoretical analysis is also provided
for the discussion of its applicability and sen-
sitivity;

• Experimental evaluations show that the pro-
posed algorithm outperforms state-of-the-arts,
in particular with the low-resource cases. We
also conduct comprehensive ablation studies
to characterize the proposed algorithm, by in-
vestigating the impact from the knowledge
extension and hard positives/negatives.

2 Related work

2.1 KBQA

Knowledge Base Question Answering (KBQA) is
one of the most popular and challenging research
topics for machine reading comprehension (MRC).
Aiming at determining correct answer(s) given the
background knowledge base (KB) and one ques-
tion, a large amount of research efforts have been
put forward to supplement the KBQA task via ei-
ther semantic parsing (SP) or information retrieval
(IR) based strategies. The work from (Hu et al.,
2018; Sun et al., 2020), for instance, belongs to
the former, which introduced the state-transition
and skeleton-based parsing approach to convert the
target question into a semantic graph and structural
tree, respectively, before querying answers.

Another line of studies aims to retrieve answers
by following a more end-to-end training style, that
is, to learn representations of the target question
and candidate answers. KDReader from (Xiong
et al., 2019) performed an attention-based fusion to
combine the question and answer features. PullNet
(Sun et al., 2019) employed the question-related
content as a guideline to extract supporting compo-
nents (entities and relations from KB). The work
of (Saxena et al., 2020) utilized the pre-trained KB
embeddings. In addition, Han et al. proposed a
hypergraph-based reasoning strategy with dynamic
relation and entity embeddings (Han et al., 2020).
Similarly, RecHyperNet (Yadati et al., 2021) ap-
plied recursive hypergraphs to form groups (rela-
tions and entities with similar semantic) in the KB.
With well-represented features, a matching step is
usually followed to identify/rank the best candi-
date(s).

Despite some promising results from the afore-
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mentioned feature learning and matching, less work
has been put forward to explore underlying/hidden
knowledge from the context KB. We argue that
making full use of those existing but latent knowl-
edge is beneficial to the subsequent QA task.

2.2 Contrastive learning

Contrastive learning (CL) has attracted a lot of
attention in the recent several years, which utilizes
input data itself as the additional supervision signal
for training (Chen et al., 2020a; Grill et al., 2020;
Chen and He, 2021; He et al., 2020; Chen et al.,
2021; Zhu et al., 2021). Specifically, for an input
sample (anchor) xi and an encoder f(·), the overall
contrastive loss is formulated as follows:

sim
(
f(xi), f(x

+
i )
)
� sim

(
f(xi), f(x

−
i )
)
,
(1)

where sim(·, ·) is a user-defined similarity func-
tion, and x+

i and x−i are contrastive pairs of pos-
itive and negative, respectively. The training pur-
pose via the contrastive loss is to form informa-
tive features (i.e.z+/−

i = f(xi)) such that posi-
tives stay close to anchors and negatives are pushed
away. Yet, existing CL methods fail to differentiate
the pair significance, while the proposed method
focuses on hard contrastive pairs.

3 Methodology

The illustration of our framework is shown in Fig 2.
The KBQA task has been formulated as searching
for optimal entities, given the question q and the
external KB (i.e. a set of triples (eh, r, et) repre-
senting head entity, semantic relationship and tail
entity, respectively).

3.1 Knowledge extension module

Most existing KBQA work, unfortunately, focuses
on the inference accuracy by offering sophisticated
reasoning models. They have neglected the low
resource nature of KB, from which key reasoning
paths could be absent. Note that, experienced hu-
man readers could still utilize knowledge from limit
but similar circumstances to infer correct answers.
As such, this paper argues that it is beneficial to
leverage hidden knowledge, from the context KB
(even incomplete), for the subsequent QA process.
That is the main aim for the proposed knowledge
extension module.

Notably, knowledge extension serves the same
role as data argumentation. Yet, this knowledge

…

sMoCo

Classifier

𝑸, 𝑨, KB

Backbone
𝑸𝒔, 𝑨𝒔, KB

Knowledge extension

Identification

Figure 2: Overview of the proposed framework for
KBQA which consists of four modules. First, the
knowledge extension module is introduced to explore
hidden knowledge from the context KB and produce
new QA pairs. Second, a backbone module is applied
to extract latent representations, after which the sMoCo
module is employed, utilizing only hard contrastive
pairs, to ensure that the similarity (of feature repre-
sentations) between correct QA pairs is maximized by
contrasting to that of inaccurate ones. At last, an over-
all identification module is utilized to identify the best-
matching answer.

extension task is nontrivial. In the domain of im-
age processing, argumentation can be carried out
by using randomized operations, such as image
rotation, cut-off, and scaling. However, in the con-
text of KB, it is impractical to simply randomize
knowledge, which could lead to meaningless or
inaccurate information.

Intuitively, we propose to create new KB-
relevant QA pair(s) from available triple(s) us-
ing an unsupervised manner. By doing so, we
can alleviate the aforementioned challenge by not
only effectively utilizing existing knowledge facts,
but also providing additional samples for train-
ing the QA model. In this regard, we implement
the knowledge-extension module using a template-
oriented strategy2.

Template
Triple: (<Psou River><fb:geography.river.origin> <Greater Caucasus>)
Desc.: <X> originates from <Y>
Extended question Wh + [eh] + Desc.[r] ?: Where Psou River originates from?
Answer: Greater Caucasus

Path

Template
Triple: (<Asia><location.location.contains><Nepal>)
Description:[X] include [Y]
Extended question Wh + A + B + ?: What countries are included in the continent of Asia?
Answer: Nepal.

Figure 3: Example of producing the template-oriented
QA pairs.

Given an known triple of (eh, r, et), as the
example illustrated in Figure 3. The relation
of fb:geography.river.origin is associ-
ated with a factual description (Desc.[r]), that
can be interpreted as [X] originates from

2This strategy can also be viewed as the task of question genera-
tion. As such, some general generation techniques (Chen et al.,
2020b; Bi et al., 2020) may help if complicated questions (with
multiple hops) are preferred and we leave the investigation to
future work.
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[Y] ([X] and [Y] is the placeholder for eh and
et respectively). Then, we produce a template
question “[Wh] + [eh] + Desc.[r]?”, where
Desc.[r] is the relation description. The [Wh]
component belongs to one of the types (such as
who, where, and when), depending on the tag of
et (such as person, location, and time).

3.2 Backbone module

We adopt KDReader from (Xiong et al., 2019) as
the backbone module. For a given question q,
KDReader firstly retrieves relevant entities from
the context KB, according to topic entities eq from
q, and further formulates entity embeddings Ge.
Secondly, with the question embedding Qq, a clas-
sifier C is trained via optimizing the following loss
function:

LMatching = SoftMax(C(Ge, Qq)). (2)

3.3 sMoCo module

Learning distinguishable features to match correct
entities with the given question lies at the heart of
KBQA, for which we accordingly propose a new
contrastive learning algorithm in this module. Yet,
majority contrast methods are characterized by a
slow momentum encoder (Ep) and an independent
queue (Q) with thousands of negative samples. De-
spite its simplicity, the existing design poses the
following problems: (i) the slow encoder Ep could
produce easy positive samples (highly similar to
anchors); similarly (ii) the lengthy queue Q may
contain easy negative samples (highly different
to anchors).

Notably, existing methods fail to differentiate
easy and hard positives/negatives. We argue
that the contribution of easy ones to the contrastive
loss is trivial, while the significance from hard ones
is the success toward the contrastive learning. As a
result, we propose a screening-based Momentum
Contrast method (termed sMoCo) via screening
hard contrastive pairs.

To illustrate this idea, let zi and P represent the
i-th anchor feature and the set of corresponding
positives. We propose to select only one hard pos-
itive from P , say zh,+i , with the lowest similarity
to zi. On the other hand, we select hard negatives
according to their similarity to zi to form a subset
I− (with I− ∈ Q). More precisely, ∀zh,−i ∈ I−

and ∀zn ∈ Q, we have

s(zh,−i ) > s(z−i ),∀z−i ∈ Q, z−i /∈ I−,
and

∑

zh,−i ∈I−

s(zh,−i ) = λQ
∑

zn∈Q
s(zn), (3)

where s(·) is the normalized inner product (for
simplicity say s(zh,−i ) = 〈zh,−i , zi〉), and λQ is a
screening term. As such, the proposed contrastive
loss for zi is formulated as follows:

LsMoCo = − log
e〈z

h,+
i ,zi〉

e〈z
h,+
i ,zi〉 +

∑
j∈I− e

〈zj ,zi〉

(4)
In addition to utilizing the proposed hard positive

zh,+i and hard negatives I−, we further consider a
liner combination of updating zn from the negative
queue Q via:

zn = λUzi + (1− λU )zh,+i , (5)

where λU ∈ [0, 1] is a hyperparameter.
Comparison with existing contrastive meth-

ods. The mainstream approaches for implementing
contrastive learning include SimCLR (Chen et al.,
2020a), MoCoV1/2 (He et al., 2020), MoCoFT
(Zhu et al., 2021), MoCoV3 (Chen et al., 2021),
SimSiam (Chen and He, 2021). Although our ap-
proach shares similar idea of utilizing positives
and/or negatives as the above, our algorithm is dif-
ferent in the following: (i) the majority existing
work neglects the difference of easy and hard con-
trastive pairs; for instance, MoCoV1/2/3 and Sim-
Siam only considers one positive, while SimCLR
selects the easiest one (with the highest similarity
with anchors) with the presence of multiple posi-
tives; meanwhile, they take all available negatives
into account. By contrast, ours is particularly inter-
ested in hard positives and negatives; (ii) MoCoFT
applies feature-level transformation (FT) to gen-
erate hard positives/negatives, which in fact has
no direct impact for/from encoders; another draw-
back then lies in the sensitivity of those FT hyper-
parameters, that further reduces its generalization
capability; Similarly, SimSiam is also significantly
impacted by the hyperparameters to produce pos-
itives, as no negative exists; and (iii) for updating
the negative queue, the proposed update can be cast
as a linear combination of SimCLR and MoCos,
where other methods (such as MoCoFT) require
one entire queue for each single anchor, that is
computationally expensive. The aforementioned
difference is also summarized in Table 1.
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Table 1: Comparison between sMoCo and existing
methods, where |b|, |Q|, 1-E and 1-H represents the
batch size, queue size, one easy and one hard positive,
respectively.

P Q UpdateQ
SimCLR 1-E |b|-2 zn = zi

MoCoV1/2 1 |Q| zn = z+i
MoCoFT 1-H |Q| zn = λzi + (1− λ)Q
MoCoV3 1 |b|-2 zn = zi
SimSiam 1 × ×
sMoCo 1-H In,− zn = λUzi + (1− λU )z

h,+
i

3.4 Analysis
We present the sensitivity analysis hereafter to jus-
tify the choice of the screening parameter (or λQ
from Eq. (3)). Note that the traditional contrastive
loss, for the i-th anchor, is defined as follows

Lc = − log
e〈z

h,+
i ,zi〉

e〈z
h,+
i ,zi〉 +

∑
j e
〈z−j ,zi〉

. (6)

Denoting s+i = e〈z
h,+
i ,zi〉 and s−i =

∑
j e
〈z−j ,zi〉,

Eq. (6) can be written more concisely as

Lc = − log
s+i

s+i + s−i
= log(1 +

s−i
s+i

). (7)

We then quantify the screened proportion as ε ∈
[0, 1) for negative samples, and note that

ε = 1− λQ.

By removing a given proportion of negative sam-
ples, it is equivalent to reduce s−i to s̃−i by a suitable
value of ε such that s̃−i = (1 − ε)s−i . Hence the
perturbed loss function L̃c becomes

L̃c(ε|ri) = log (1 + (1− ε)ri) , (8)

where ri =
s−i
s+i

. The perturbed loss is caused by ε

and L̃c(0|ri) recovers the original loss in Eq. (7).
Therefore the sensitivity of the function in Eq. (8)
at (ε = 0) determines the change to the loss by
introducing screening. The first order Taylor ex-
pansion shows that:

L̃c(ε|ri) = L̃c(0|ri) +
∂L̃c
∂ε
|ε=0[ri] · ε+O(|ε|2),

where O(|ε|2) is the negligible higher order term
when ε is approximate zero. Note that L̃c(0|ri) =
Lc, i.e. the original loss. Plugging in the partial

derivatives evaluated at ε = 0 with ri (∂L̃c∂ε |ε=0[ri]),
i.e. −ri

ri + 1
,

we obtain

L̃c(ε|ri) ≈ Lc −
riε

ri + 1
. (9)

Remark 1. The perturbation (or the difference in
loss aroused by screening) is approximately −riεri+1 ,
which is an apparent reduction to the original loss
Lc as all variables in Eq. (9) are positive.

Furthermore, it is worth noting that normal-
ized similarities are between [−1, 1], that is,
〈zh,+i , zi〉 → 1, and 〈z−j , zi〉 → −1 at the con-
vergence of the optimization, and hence

ri → e−2|Q| > |Q|
9
,

where |Q| is the size of the negative queue or num-
ber of negative samples. In many contrast methods
(He et al., 2020; Zhu et al., 2021; Chen et al., 2021),
Q consists of thousands of negatives, which leads
to ri � 1.

At last, combining ∂L̃c
∂ε |ε=0[ri] with the value of

ri, we obtain

∂L̃c
∂ε
|ε=0[ri] ≈ −1,

and the perturbation is approximately −ε at con-
vergence.

Remark 2. The perturbation indicates that that if
we screen out a small proportion of negative sam-
ples, say 1−λQ (or ε), the function loss is reduced
by approximately that much. In other words, the
sample screening connects to the loss reduction di-
rectly. Although we discussed only ideal situation
where the contrast reaches maximum, similar result
exists in expectation sense as well because a large
value of |Q| outweighs less contrast in negative
and positive similarities.

Notably, the above perturbation analysis is per-
formed at 0 requiring ε to be small or even close
to zero (say ε ∈ [0.01, 0.1]), and hence satisfies
this condition.The loss function change caused by
screening will eventually transfer to gradients to the
model parameters. Our results indicates the scaling
factor in front of the final gradients. Nonetheless,
when ri is too large, it saturates the loss function to
the “plateau” stage where gradients are small and
hence the aforementioned analysis results hold.
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3.5 Overall identification

With the matching and contrastive loss from the
Backbone and sMoCo modules, we propose the
following joint loss for the overall identification:

LIdentification = LMatching + λsMoCoLsMoCo,
(10)

where λsMoCo is a penalty term3.

4 Experiment

4.1 Setup

The WebQuestionsSP datasets is employed (Yih
et al., 2016) with a total of 4737 questions, that are
answerable through the Freebase KB. This entire
KB consists of 601,145 distinct entities, 568 differ-
ent relations, 1,261,849 unique triples. Followed
by the work from (Xiong et al., 2019; Saxena et al.,
2020), the low-resource KB settings have been con-
structed by down-sampling a percentage of facts
in the background KB (we randomly retain a triple
with probability of 0.1, 0.3, and 0.5). Accordingly,
the resultant datasets are referred as KB0.1, KB0.3,
KB0.5 and KBFull (original), respectively, and Ta-
ble 2 shows the statistics of those four datasets.

Table 2: Summary of four adopted datasets, where #e,
#r and #triples is the averaged number of entities, re-
lations, and triples per question, respectively.

Dataset #e #r #triples
KB0.1 152.5 51.3 184.8
KB0.3 182.3 54.8 567.1
KB0.5 183.5 56.1 837.3
KBFull 191.2 56.7 1484.2

To make a fair comparison, the hyperparameter
setting of the backbone module is adopted explic-
itly from (Xiong et al., 2019), such as implement-
ing the 300-d GloVe embeddings for question enti-
ties, maximal number of neighboring entity as 50,
maximal question length as 10. The matching loss
has been implemented using binary cross-entropy
loss with 0.1 smoothing factor. In addition, the
mini-batch size is 16, the Adam optimizer with a
learning rate setting of 0.001, and the number of
training epoch is set as 100. For the implemented
knowledge extension module, factual descriptions

3There are another two training strategies, including pre-train
and alternate. The former is to update the model first using
LsMoCo before fine-tuning with LMatching , while the latter
is to train the model with LMatching for (Nt − 1) iterations
and switch to LsMoCo once, for every Nt iterations. We leave
these as the future work.

about entity and relation are available publicly4.
Meanwhile, we generate three additional QA pairs
for one single QA input. For the sMoCo, the mo-
mentum rate is 0.99, τ = 0.07, λsMoCo = 0.2,
λQ = 0.95, λU = 0.4, and the negative queue
capacity is set as 10000. The proposed model is
trained on a machine with four Tesla V100 GPUs.
The Hits@1 score is used to measure the perfor-
mance.

4.2 Main Results

We compare the proposed with different meth-
ods, including the baseline model (i.e. KDReader
(Xiong et al., 2019)) and state-of-the-arts (i.e. Pull-
Net (Sun et al., 2019), 2HR-DR (Han et al., 2020),
EmbedKGQA (Saxena et al., 2020), and RecHyper-
Net (Yadati et al., 2021)). The comparison results
over 10 trails are shown in Table 3.

Table 3: Results in Hits@1 obtained by sMoCo and
existing methods re-implemented for four test sets. The
number within the bracket indicates the original result
reported by the paper.

Algorithm KB0.1 KB0.3 KB0.5 KBFull

KDReader 33.5(33.6) 42.6(42.6) 52.8(52.7) 67.4(67.2)
PullNet 33.7 42.8 52.1(51.9) 68.0(68.1)
2HR-DR 33.5 42.5 52.0(52.2) 66.9(67.0)
EmbedKGQA 34.3 41.5 53.2(53.2) 67.0(66.6)
RecHyperNet 34.5 43.1 53.6(53.7) 68.4(68.4)

sMoCo 36.1 44.2 54.1 69.2

sMoCo shows superior performance compared
to the state-of-the-arts via achieving a considerable
margin. For instance, competing with the strongest
baseline RecHyperNet, the proposed method out-
performs by 2.55%, 0.93%, 1.17% with respect to
KB0.3 KB0.5 and KBFull. It is also worth noting
that sMoCo obtains the highest performance boost
with KB0.1 (7.76% and 4.63% compared to the
baseline and RecHyperNet), which demonstrates
its strong capability of handling the extreme low-
resource KB.

In addition, to further evaluate the improvement
from sMoCo, we also compare ours with cutting-
edge contrastive learning techniques, including
SimCLR (Chen et al., 2020a), MoCoV1 (He et al.,
2020), MocoFT (Zhu et al., 2021), MoCoV3 (Chen
et al., 2021), and SimSiam (Chen and He, 2021).
Again, the backbone module from KDReader is

4Description about entities and relations can be found
https://developers.google.com/freebase and https://free-
pal.appspot.com/, respectively
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implemented for all contrastive methods for a fair
comparison. In addition, hyperparameters for em-
ployed contrastive methods are set to similar as
sMoCo: the momentum rate is 0.99, τ = 0.07, |Q|
= 10000, while the prediction head is implemented
as a 2-layer MLP with a 512-hidden dimension.

Table 4: Average Hits@1 results (10 trials) obtained by
sMoCo and other contrastive learning methods.

Algorithm KB0.1 KB0.3 KB0.5 KBFull

SimCLR 34.5 42.9 52.9 67.3
MoCoV1 34.5 43.2 52.8 67.8
MocoFT 35.4 43.6 53.3 67.9
MoCoV3 35.0 43.4 53.3 68.1
SimSiam 34.5 43.2 52.9 67.5

sMoCo 36.1 44.2 54.1 69.2

Table 4 clearly demonstrates the superiority of
applying contrastive based methods, as averaged
results (over 10 trials) show all methods achieve
better performance compared to the baseline model
(i.e., KDReader). In particular, contrastive meth-
ods perform specifically well with low-resource
KBQA, as they lead to from 2.98% to 7.76% av-
eraged improvement for KB0.1 (higher than other
three cases). This result indicates the advantage
of using contrastive learning for extremely low-
resource KBQA tasks. Additionally, the proposed
sMoCo outperforms existing methods, by achiev-
ing a notable accuracy (50.9 for overall averaged
Hits@1) compared to that of SimCLR(49.4), Mo-
CoV1(49.6), MocoFT(50.1), MoCoV3(50.0), and
SimSiam(49.5), respectively.

4.3 Ablation study

Experiments are conducted to validate contribu-
tions from proposed modules, mainly the knowl-
edge extension (KE) and sMoCo module. To high-
light the low-resource nature of KG, we are par-
ticularly interested in the performance on datasets
of KB0.1 and KB0.3. Again, all the results are
reported as an averaged Hits@1 over 10 trials.

On knowledge extension module. To begin
with, we consider the impact from the proposed
knowledge extension (or data argumentation) by
treating additional QA pairs as training samples,
while no contrastive learning (sMoCo) is applied.

Results in terms of different numbers of addi-
tional pairs (|Q|a) are then summarized in Table
5. Compared to the baseline (KDReader), the ad-
vantage of KE is observed from the performance

Table 5: Performance against different numbers (|Q|a)
of additional QA pairs (without sMoCo).

|Q|a KB0.1 KB0.3

baseline 33.5 42.6
1 33.9 42.9
3 33.7 43.1

improvement. With |Q|a = 3, for instance, the
model produces 38.4 for Hits@1 on average. Not
surprisingly, the model performance is enhanced by
the proposed KE (via providing additional training
samples). In the following, we fix |Q|a = 3 for KE
and analyze the contrastive module.

Notably, compared to traditional method (such
as MoCoV1), sMoCo is different from three as-
pects: 1) adopting hard positive and 2) negative
samples for estimating the contrastive loss, and 3)
queue updating with hard positives (anchors). We
accordingly perform ablation study on individual
aspect to manifest their efficacy and the results
are summarized in Table 6. In particular, for com-
parison purposes we take “KE” and “MoCoV1”
to represent the result from the knowledge exten-
sion module and normal contrastive learning, as
the baseline; “+hard positive” differs from Mo-
CoV1 by using one hard positive; “+hard negative”
considers a subset of hard negatives while main-
taining a 95% of total sum, in addition to “+hard
positive”; “+queue updating” further applies the
proposed combination strategy to update negatives
iteratively.

Table 6: Ablation study on hard positive, hard negative,
and queue updating from the proposed sMoCo.

Model Variants KB0.1 KB0.3

KE 33.7 43.1
MoCoV1 34.5 43.2
+hard positive 34.8(↑ 0.3) 43.4(↑ 0.2)
+hard negative 35.7(↑ 0.9) 43.8(↑ 0.4)
+queue updating 36.1(↑ 0.4) 44.2(↑ 0.4)

Results from Table 6 show contributions from
individual aspect to the final performance, which
evidently states their effectiveness. At first, not sur-
prisingly, all four contrastive variants improve the
overall performance compared to KE, which again
demonstrate the superiority of forming discriminate
features to separate positives and negatives. Addi-
tionally, we observe the step of “+hard negative”
brings the biggest performance boost, followed by
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“+queue updating”. The result highlights the signif-
icance of maintaining and utilizing hard negatives
for contrastive learning, instead of employing a
large negative queue as existing methods.

On hard positives. We then consider the indi-
vidual impact from hard positives by fixing the rest
setting of sMoCo, such as screening hard nega-
tives (λQ = 0.95) and updating Q with λU = 0.4.
Precisely, four utilization, including “1-pos” (em-
ploying only one positive like MoCoV1/2), “3-pos”
(with three positives), “1-easy” (picking up the
most similar/easy positive like SimCLR), and “1-
hard” (the proposed), are considered, while their
comparison is illustrated in Fig. 4.

1-pos 3-pos 1-easy 1-hard25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0

Hi
ts

@
1

35 35.2 35.1 36.1

43.4 43.7 43.5 44.2

KB0.1
KB0.3

Figure 4: Comparison among four different ways of
utilizing positives in sMoCo.

Notably, applying more positives (i.e., “3-pos”)
performs competitively than cases with only one
positive (either “1-pos” or “1-easy”). One reason
could be the variety of positives helps in avoiding
the model collapsing (that is, positives becomes
very similar to anchors). Additionally, focusing on
the hardest one achieves the best result, as shown
in “1-hard”, as it forces the model to pay attention
to the positive far away from the anchor.

On hard negatives. Next we fix to use “1-hard”
and evaluate the impact from negatives (by testing
different λQ, in line with the analysis presented
in Section 3.4). Note that with a large λQ, more
negatives are included in the loss calculation. In
particular, with λQ = 100%, sMoCo applies all
negatives (same as MoCoV1/2/FT).

Table 7: Performance comparison in terms of hard neg-
atives as a function of λQ.

λQ 100% 99% 97% 95% 90%

KB0.1 34.5 34.7 35.2 36.1 35.5
KB0.3 43.5 43.6 43.6 44.2 43.8

Table 7 shows the improvement by utilizing
hard negatives, from which the model with the
full queue (λQ = 100%) achieves the worst result.

Additionally, the best performance is observed with
λQ = 95%, approximately 2000 negatives. This
findings clearly suggest that it is unnecessary to
have a large number of negatives for a performance
gain, not to mention its computational cost with a
huge queue.

On updating negatives. At last, by fixing “1-
hard” and λQ = 95%, we investigate the impact
of updating negatives via changing λU . As dis-
cussed before, will a small λU (=0), sMoCo adopts
positives directly to replace previous negatives like
MoCoV1/2; on the other hand, sMoCo behaves
similar to SimCLR or MoCoV3 if λU = 1.

0 0.2 0.4 0.6 0.8 1.0
Penalty regularizer U

30.0
32.5
35.0
37.5
40.0
42.5
45.0

Hi
ts

@
1

35.3 35.7 36.1 35.4 35.1 35.3

43.5 43.8 44.2 43.2 43.6 43.1

KB0.1
KB0.3

Figure 5: Model accuracy obtained from sMoCo as a
function of λU via updating Q .

Fig. 5 shows the model accuracy based on dif-
ferent settings of λU . Results indicate that the pro-
posed combination of positives and anchors (with
λU = 0.4) could bring in the performance boost
(than that of λU = 0 or 1). Note that for KBQA,
there exists QA pairs requiring same entities and
relations. Using previous positives or anchors to
replace previous negatives could mislead the model
to separate them into different feature spaces. By
contrast, the proposed updating maintains a good
balance of forming hard but informative negatives.

5 Conclusion

We present a novel KBQA model that particularly
tackles the low-resource (incompleteness) nature
of the context knowledge bases (KBs). The pro-
posed model is characterized by a knowledge exten-
sion and a sMoCo module, that is motivated by the
learn-by-analogy capability of human readers. Pre-
cisely, the former extends existing knowledge via
producing additional question-answer pairs, which
are further utilized by the sMoCo module. The
latter appropriately learns informative representa-
tions that grouping hard positives and pushing away
hard negatives. Empirically, in comparison to exist-
ing approaches, the proposed algorithm produces
the state-of-the-art performance on the WebQues-
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tionsSP benchmark, in particular with the extreme
incomplete KBs. In future work, we will extend the
proposed idea to explore more contrastive behav-
ior of utilizing hard positives and negatives. More
importantly, sMoCo is agnostic to the downstream
tasks, i.e., we could incorporate it into other appli-
cations.
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