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Abstract

In most Vision-Language models (VL), the
understanding of the image structure is en-
abled by injecting the position information (PI)
about objects in the image. In our case study
of LXMERT, a state-of-the-art VL model, we
probe the use of the PI in the representation
and study its effect on Visual Question An-
swering. We show that the model is not ca-
pable of leveraging the PI for the image-text
matching task on a challenge set where only
position differs. Yet, our experiments with
probing confirm that the PI is indeed present
in the representation. We introduce two strate-
gies to tackle this: (i) Positional Information
Pre-training and (ii) Contrastive Learning on
PI using Cross-Modality Matching. Doing so,
the model can correctly classify if images with
detailed PI statements match. Additionally to
the 2D information from bounding boxes, we
introduce the object’s depth as new feature for
a better object localization in the space. Even
though we were able to improve the model
properties as defined by our probes, it only has
a negligible effect on the downstream perfor-
mance. Our results thus highlight an impor-
tant issue of multimodal modeling: the mere
presence of information detectable by a prob-
ing classifier is not a guarantee that the infor-
mation is available in a cross-modal setup.

1 Introduction

Pre-trained Vision-Language models (Tan and
Bansal, 2019; Lu et al., 2019; Yu et al., 2021; Chen
et al., 2020) reached strong performance in many
multimodal tasks such as Visual Question Answer-
ing (Antol et al., 2015; Hudson and Manning, 2019;
Bigham et al., 2010) or Visual Inference (Johnson
et al., 2017; Suhr et al., 2019). All these models use
the Transformer architecture (Vaswani et al., 2017)
and make use of several pre-training strategies like
Masked Cross-Modality Language Modeling (MM)
and Cross-Modality Matching (CMM) similar to

masked language modeling and next sentence pre-
diction (Devlin et al., 2019) in NLP.

Because the attention mechanism treats its inputs
as unordered sets, Transformer-based NLP models
need to use position encodings to represent the mu-
tual position of the tokens, so that the models can
grasp the sentence structure. The mutual position
of objects is equally important for understanding
the structure of an image. VL models differ in how
they represent objects in the image, typically repre-
sented as sets of object features and PI. Therefore,
object detectors are used to obtain bounding box
information for all objects. In many models, the
upper left and lower right corners of the object’s
bounding box are used as 2D information to create
a learnable positional encoding. In addition to the
spatial but flat 2D values, we determine the depth
of the objects in the image and make it available
as an additional feature. Until now, VL models
recognize the objects on a flat map but not in the
real three-dimensional context.

We found that the current LXMERT model is
capable of forwarding PI through the model but
is not capable to use it to solve image-text match-
ing tasks where positional keywords are replaced
by their counterparts. Introducing two new pre-
training strategies, we target these unimodal and
multimodal evaluation schemes and improve prob-
ing results. Yet, we did not get any perfomance
increase on the downstream tasks. This is most
likely due to the small fraction of position-related
text in the pre-training corpus and suboptimal re-
sults of the object detector. Regarding PI type, it
seems to be sufficient to input object center values
which is far less than most VL model input today.

2 Positional Information in VL Models

In NLP, the importance of word order is given great
attention (Ke et al., 2021; Wang and Chen, 2020).
Different methods exist, including analytical po-
sition encodings (Vaswani et al., 2017), learnable
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PI Type Models
∅ CLIP
x1, y1, x2, y2 LXMERT, M4C
x1, y1, x2, y2, a

wh ViLBERT,
Unicoder-VL,
ERNIE-ViL

x1, y1, x2, y2, w, h OSCAR
x1, y1, x2, y2, w, h, a UNITER

Table 1: Positional information in Vision-Language
models. Most models use the upper left and lower right
of the object’s bounding box (x1, y1, x2, y2). Some
models add the absolute (a) or relative object area ( a

wh )
in combination with the image width (w) and height
(h). The object depth (d) is not used and ∅ denotes no
PI.

additive embeddings (Devlin et al., 2019) or the rel-
ative the attention query (Shaw et al., 2018). There
is no equivalent research that would specifically
approach PI in VL models. However, the position
of the objects is considered in almost all common
Transformer-based approaches.

In LXMERT (Tan and Bansal, 2019) the upper
left and lower right corners of the object are used
to encode its position. The same is true for M4C
(Hu et al., 2020). Other models also use the relative
area fraction of the objects as an additional feature.
Although the network should be able to determine
this feature, it is explicitly added, as in case of
ViLBERT (Lu et al., 2019), Unicoder-VL (Li et al.,
2020a), and ERNIE-ViL (Yu et al., 2021). UNITER
(Chen et al., 2020) uses – in addition to the objects’
corners – the absolute object area and the image
width and height. OSCAR (Li et al., 2020b) uses
bounding box and image height and width. Only
CLIP (Radford et al., 2021) does not use PI, al-
though they use another pre-training concept. See
Table 1 for an overview. To our knowledge, there
is no structured analysis of PI in VL models.

Current models use only 2D object information.
By introducing depth as a new feature, we represent
objects in the 3D space. This is not only important
to be able to define the distances between objects
but also to have a more meaningful understanding
of the object sizes. Using the area of the bounding
box without depth information does not add the ac-
tual object size information since the sizes depend
on the depth localization of the object.

3 Evaluation of Positional Information

To determine the capability of current models with
regard to PI, we experiment with three evaluation
methods. Firstly, we perform an intrinsic evalua-
tion to determine whether the PI passes through
the model. Secondly, we test if the models are ca-
pable of utilizing PI using the CMM task. Lastly,
we report extrinsic results for GQA downstream
task (Hudson and Manning, 2019) on different data
subsets. We report the results of the probing exper-
iment in Section 5.

For our experiments, we use four types of PI.
An empty set (∅) acts as a baseline. Object cen-
ter values (x, y) act as a coarse identification of
where the object is located. Moreover, we evaluate
x1, y1, x2, y2, which is the standard representation
of bounding boxes and is also often used in VL
models. This PI description contains information
about object width, height, and area. Therefore,
we ignore further settings that add these types to
the input in our evaluation. Since we are also inter-
ested in analyzing depth, we investigate the setting
x1, y1, x2, y2, d as well.

Mutual Position Evaluation. In the intrinsic
evaluation task, we test if PI is forwarded through
the whole model. We use nine different pairwise
classifiers for different mutual positions, which are
applied to all detected objects. LXMERT uses a
fixed number of 36 objects as its input. This leads
to a total number of 9× 36× 36 = 11, 664 classi-
fications for each input image.

We use six classifiers for 2D spatial relations
(operate on X and Y coordinates) and three for
depth information (Z coordinate). The tasks are
(1) whether the center of one object is more to the
left than that of another object, (2) the same if the
center is closer to the bottom, (3) whether one ob-
ject is completely left of the other object (without
an overlap), (4) and the same for being completely
below the other object, (5) whether one object is
completely inside the other bounding box, (6) and
if there is no overlap in the X and Y dimension.
Regarding depth, the model needs to correctly clas-
sify (7) if one object is more in the foreground
regarding the median value, (8) if one object is in
between the inner 50% of the other object using
all pixel values, and (9) if all depth values of one
object are significantly smaller than the values of
the other object at a significance level of 0.05 using
a t-test.
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Original caption: “A
student works on an

academic paper at her
desk, computer screen

glowing in the
background.”

Figure 1: Pre-training data with image and description
with a PI keyword. For contrastive evaluation the key-
word is replaced by its counterpart (i.e. “foreground”).

These classification tasks have the same inputs
as the Masked Object Prediction task (see Sec-
tion 4.1.1) and are also constructed in the same
manner (see Appendix A.1). An overview of the
visual pre-training tasks is provided in Figure 3. Be-
cause this is a probing task, the classification head
(PI head) is not updated during pre-training. After
the training process has finished, all model parame-
ters are frozen and only the weights in the PI heads
are updated for 1 epoch. The average accuracy of
all 11,664 classification tasks is reported on the MS
COCO validation dataset. In doing so, we evaluate
the unimodal capabilities of the model to forward
information through the whole Transformer. The
detailed results are presented in Appendix A.6.

Contrastive Evaluation on PI using CMM.
The CMM classifier can successfully match images
and captions (91% accuracy on the balanced pre-
training validation data). However, this says little
about the type of information considered during the
classification. To better assess if PI is used by the
model, we build a challenge set consisting of pairs
of contrastive examples. We filter the validation
data for samples with keywords indicating spatial
relation between objects and only keep those which
are replaceable by antonyms (see Appendix A.2).

We run two evaluation setups: (1) We replace all
image descriptions with a random caption of a dif-
ferent image (following the LXMERT pre-training
strategy). (2) We take the image and for all cap-
tions we replace the PI keyword with its antonym,
e.g., substitute background with foreground and
vice versa. See Figure 1 for an example. This task
determines if the model is able to understand PI
in a multimodal fashion. In both cases, we only
have samples with “no match” ground truth values
(which is our positive class)1, and consequently we
report recall only.

1Hence, we have FP = TN = 0.

Downstream Task Evaluation. Finally, we de-
termine the performance of the model on a down-
stream task. We use GQA, since it is a carefully bal-
anced image question answering dataset, where PI
plays a role. We report the 1- and 5-best accuracy.
Moreover, we evaluate (top 1) accuracy of data sub-
sets where X, Y, and Z coordinates are important.
We do this by selecting questions where specific PI
keywords are present (see Appendix A.3).

Since keyword search does not work perfectly
(e.g., Which color is the bag on the back of the
woman?), we employ zero-shot text classification
using a BART model2 (Lewis et al., 2020). For
zero-shot classification we need a candidate label,
which is used as input to determine if both texts
(i.e. caption and candidate label) fit together. We
experimented with different labels and found that
the simple keyword “position” works best for our
use case.

Downstream evaluation is done on the GQA test-
dev split, which has 12,578 samples, hence, an
change of 0.1% is equivalent with approximately
13 more correctly classified samples. For the sub-
sets where X, Y, Z keywords are present, the dataset
size is 2,050, 1,203 and 1,349 respectively. For the
zero-shot subset (indicated with P) the sample size
is 1,349.

4 Model and Data

4.1 Model

Our experiments are built upon LXMERT – a
Transformer-based model with two separate en-
coders for image and text modality and one cross-
encoder to join both. LXMERT was the only model
in the top-3 leaderboard in both the VQA v2.0 2019
and GQA 2019 challenge, which is why we use
this model as the basis for our work. Details are
provided in Section 4.1.1. A detailed description
of how the object’s depth feature is determined is
provided in Section 4.1.2.

4.1.1 Base Model
LXMERT uses Faster R-CNN with ResNet-101
for the object detection task, originally introduced
by Anderson et al. (2018). The object detec-
tor is trained on Visual Genome (Krishna et al.,
2017) predicting 1,600 objects with 400 different
attributes (mostly adjectives). For LXMERT the
model extracts the 36 most confident objects with

2https://huggingface.co/facebook/
bart-large-mnli
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the region-of-interest features fj , the object class
cj , attribute aj and the positional information pj ,
where j indicates the object indexes j = 1, . . . , 36.
The feature map (R36×2048) and the bounding box
coordinates (R36×4) are passed to two separate lin-
ear models with weight matrix W and bias b. The
output is further processed by two layer normaliza-
tions (LN) and finally both results are averaged:

f̂j = LN(WF fj + bF ) p̂j = LN(WP pj + bP )

vj = (f̂j + p̂j)/2

This leads to a unified embedding vj ∈ R36×768

representing the content of the objects and the po-
sitions at the same time. The image data is further
processed in a BERT-style encoder.

On the language side, the text input is processed
in a BERT-style encoder as well. Both outputs
are merged in a cross-modality encoder (X-Enc)
and passed to the output heads, where the losses
for each pre-training strategy are calculated. The
LXMERT architecture can be investigated in Fig-
ure 2.

The same pre-training strategies are used,
namely Masked Cross-Modality Language Mod-
eling (MM), Cross-Modality Matching (CMM), Vi-
sual Question Answering (VQA), and Masked Ob-
ject Prediction. The last one is composed of three
tasks: two classification tasks to predict the ob-
ject classes and attributes (ObjClassif, AttrClassif ),
and a regression task to predict the feature vector
(FeatRegr). See Tan and Bansal (2019) for all de-
tails. Note that all pre-training strategies explicitly
focus on the object features fj , cj , and aj and not
on the PI. The same is true for other VL models
listed in Table 1. See Figure 3 for an illustration of
all visual pre-training tasks.

We used the original implementation of
LXMERT3 and only made minor changes. We
introduced dropout with p = 0.1 in the IQA head.
Further, we tested different training hyperparam-
eters to find a good ratio between model perfor-
mance and training time. Our final pre-training
model setup has a batch size of 2048 with a learn-
ing rate of 10−4 (with the same learning rate sched-
uler), the fine-tuning model has a batch size of
32 and a learning rate of 10−5. Introducing Py-
Torch’s DistributedDataParallel in the code and
using 8 instead of 4 GPUs reduced the pre-training
time from approximately 8.5 days to 41 hours. We

3https://github.com/airsplay/lxmert/

Img

Depth Estimator

Object Detector VisEnc

Txt LgnEnc
X-Enc Targets

Figure 2: Architecture of the LXMERT model (blue)
with depth information extension (gray). LXMERT
uses object detection from Anderson et al. (2018) and
has 5 visual, 9 language and 5 cross-modality (X-Enc)
layers.

dj

pj

fj

LXMERT

pj < pi, dj < di

fj

cj

aj

Figure 3: Visual components for the pre-training phase
(text components omitted). Input data (fj , pj) to
the visual encoder and training targets (fj , cj , aj) for
LXMERT’s pre-training strategies are indicated in blue.
Our additional depth data dj and PI pre-training labels
(PIP) are colored gray.

used the pre-training weights reported in the pa-
per and not in the corresponding repository (see
Appendix A.4).

4.1.2 Depth Information
The datasets used for training LXMERT do not pro-
vide any depth information. To obtain depth values
for each pixel in the image, we used MiDaS v2.14

(Ranftl et al., 2020) – a state-of-the-art algorithm
for monocular depth estimations. It is trained on
diverse datasets from indoor and outdoor environ-
ments, containing static and dynamic images and
images of different quality. Hence, it fits the var-
ious picture types in our datasets. See Figure 4a
for an original COCO image and Figure 4b for the
depth information provided by the MiDaS model.

The depth predictions from MiDaS can be any
real number. Large numbers indicate close objects,
and small numbers refers to distant objects. We lin-
early normalized each pixel xi with 1− xi−min(x)

max(x)
to obtain 0 for the closest pixel and 1 for the most
distant one for each individual image.

Since the rectangular bounding boxes do not sur-
round the objects perfectly, we experimented with
the object’s center value, the mean and median as
heuristic. We finally used the median, due to its
robustness. Furthermore, it would be conceivable

4https://pytorch.org/hub/intelisl_
midas_v2/
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(a) Original image (b) Depth estimation

Figure 4: We use a monocular depth estimator to obtain
a pixel-level depth prediction. We normalize the output
that 0 (yellow) indicates the value that is at the very
front and 1 for the furthest pixel (violet).

to additionally take the standard deviation as a mea-
sure for uncertainty if the object is on specific depth
plane or spans over a larger distance. This issue can
be avoided with panoptic segmentation (Kirillov
et al., 2019), which we leave to the future work.

4.2 Data

Following the original LXMERT setup, our models
are pre-trained using the MS COCO (Lin et al.,
2014) and Visual Genome (VG; Krishna et al.,
2017) data in conjunction with some Visual Ques-
tion Answering task (VQA). There are in total
9.18M image-caption pairs with 180K unique im-
ages. The average sentence length per caption is
10.6 words for MS COCO and 6.2 words for VG.
The sentences are short and do not provide many
details. Using 10 words, only the main occurrence
of the image can be described. See examples in
Appendix A.5.

In Table 2, we show the relative occurrence of
PI keywords (see Appendix A.3). Pre-training data
do not have a lot of PI in the captions or questions.
Only Y keywords appear more often (11.2%) in
MS COCO and X keywords in VQA (10.7%). This
is different in GQA, which we use for downstream
evaluation. In the train part, there are many X
keywords, but only a few Y and Z keywords. The
distribution in the testdev set is different. Here, the
number of X, Y, and Z questions is high.

LXMERT was also evaluated on VQA v2.0
(Goyal et al., 2017) and NLVR2 (Suhr et al., 2019).
VQA v2.0 has PI relations (under 3%), so we do
not run an analysis on this dataset. NLVR2 has po-
sitional relations, but PI keywords are often part of
the left/right image assignment and do not indicate
objects within an image according to our definition
of PI. Moreover, the presence of multiple images
rules out a clean analysis of PI.

Dataset X Y Z
MS COCO 2.9 11.2 6.5
VG 3.4 3.8 4.6
VQA 10.7 3.3 4.0
GQA train 28.4 5.3 4.9
GQA testdev 16.3 9.6 10.7

Table 2: Occurrence of positional keywords in per-
cent in pre-training (top lines) and downstream datasets
(bottom lines).

5 Probing Results

This section shows the results of the experiments
described in Section 3.

Mutual Position Evaluation. We determine
whether PI can be passed through the model us-
ing the classifications of the PI head. Results are
shown in Table 3 (top lines). The accuracy is only
80.0% for no PI, but over 88% for the remaining
types. This confirms that the model is able to for-
ward PI through the whole Transformer layer stack.

Interestingly, the model is often capable of cor-
rectly classifying the mutual position of objects,
although PI is not used as the model input. This is
most likely due to the high correlation between the
object categories and their positions. For example,
“shoes” are usually at the bottom and in the fore-
ground. The object detector is not powerful enough
to detect small objects in the background in general.
“Sky” and “clouds” are usually at the top and in the
background of the image. Detected objects such as
“kitchen” or “office” often span the whole image
width and therefore have their center in the middle
of the X axis. The latent image representation fj
can be used as a proxy for object types.

In addition to that, we can see that with more
PI the accuracy of this task increases by more than
eight percent points and has a peak at 89.7% for
the input setting x1, y1, x2, y2, d. Switching from
object centers to bounding boxes only has a minor
impact. Yet, adding depth improves accuracy on
the three Z related tasks (see Appendix A.6), which
boost the overall performance.

Contrastive Evaluation on PI using CMM. To
further evaluate the use of PI in VL models, we
test if the model can utilize the information using
the CMM task. Table 4 (top lines) shows that the
original setting with dissimilar image-text pairs can
be predicted almost perfectly – the recall is always
above 96%. Hence, this pre-training strategy be-
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PI XYZ XY Z
Input Acc Acc Acc

Pr
ob

in
g ∅ 80.0 81.5 77.1

x, y 88.5 92.1 81.1
x1, y1, x2, y2 88.7 92.4 81.3
x1, y1, x2, y2, d 89.7 92.2 84.7

Pr
e-

tr
ai

ni
ng ∅ 88.2 88.9 82.1

x, y 91.6 94.4 86.0
x1, y1, x2, y2 92.1 94.9 86.5
x1, y1, x2, y2, d 93.9 94.8 92.2

Table 3: Mutual Position Classification Evaluation:
Mean accuracy of all 9 mutual classification tasks
(XYZ), 6 XY tasks, and 3 Z tasks for pre-trained
models for different PI inputs. Upper lines for plain
LXMERT and lower lines with our version (PIP, CL;
see Section 6).

haves as expected for the normal data provided.
Yet, the model cannot apply fine-grained details
from textual PI. It is not capable of correctly re-
jecting that, for example, “A student works on an
academic paper at her desk, computer screen glow-
ing in the foreground.” does not fit to the image
from Figure 1. The recall is steadily below 2%.

The model is able to pass through PI in the vi-
sual Transformer part but is not able to use it in a
cross-modal fashion for solving problems. This is
probably due to the fact that fine-grained matching
does not play a role during pre-training. CMM
is not constructed as indicated above (i.e., back-
ground vs. foreground) but to select completely
dissimilar statements like "A man sits before a light
meal served on the table of a travel trailer” to the
image in Figure 1. To overcome this problem, we
need more advanced negative sampling, i.e. cap-
tions that are closer to the original image-text pairs.

Downstream Task Evaluation. We evaluate
downstream performance on GQA testdev with
four different subsets targeting X, Y, Z keywords
and general positional (P) samples. The results (in
Table 5 top lines) reveal that using any type of PI is
better or equally good than not using it (except for
Y in x1, y1, x2, y2). Although the improvements
are small, they indicate that PI is indeed helpful in
this downstream task.

The best top 1 and X subset results are achieved
by x, y input type. This might be due to the fact
that most object relations are distinct and center
values are sufficient to track this relationship. For
example, the question “Is the boy in white left or

PI Permuted Permuted
Input caption PI words

Pr
ob

in
g ∅ 97.4 1.4

x, y 96.5 0.3
x1, y1, x2, y2 96.8 1.7
x1, y1, x2, y2, d 97.1 1.2

Pr
e-

tr
ai

ni
ng ∅ 96.8 78.1

x, y 97.7 79.5
x1, y1, x2, y2 97.7 79.3
x1, y1, x2, y2, d 97.1 79.5

Table 4: Contrastive Evaluation: Recall of the original
CMM tasks with random captions (left) and text-image
pairs with substituted PI antonyms (right). Upper lines
for plain LXMERT and lower lines with our version
(PIP, CL; see Section 6).

Figure 5: Bounding box predictions for the 36 objects
used in LXMERT. Descriptions contain predicted label
and attribute with confidence scores.

right of the ball?” is more common than asking
ambiguous questions, for example, where bound-
ing boxes intersect (“Is the left boy in yellow left or
right of the ball?”, see Figure 5).

The PI input x1, y1, x2, y2, d received the best
results for the Y and Z subsets. Although the im-
provements are small, it shows that our new depth
feature can help solve the Z task. But also, the
improvement on Y can be attributed to the depth
input. Due to the graphical perspective, objects at
the top correlate with the background and objects
at the bottom with the foreground (see Figure 4b).
Here, object depth can act as a top/down proxy.

For the downstream evaluation, we need to keep
in mind that the underlining object detector is not
perfect. Therefore, we face the issue that objects
asked for in the questions are not always a part
of LXMERT’s visual input. Moreover, our con-
trastive evaluation scheme shows that LXMERT
has difficulties to properly matching image and
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text representation in a multimodal fashion. This
can explain the small margin of improvements. The
increase of top-1 accuracy is not reflected in the
top-5 accuracy.

6 From Probing to Pre-training

In the previous section, we evaluated the role of PI
in pre-trained LXMERT. In this section, we use
the probing tasks as a part of model pre-training
to improve weaknesses that we identified in the
previous section. Alongside the established strate-
gies, we add two tasks to learn mutual positions
and fine-grained PI details in captions utilizing the
CMM task. These strategies are elaborated below.

Positional Information Pre-training (PIP).
Currently, all pre-training strategies rely on the
visual features (fj , cj , aj) rather than on the PI.
Only in a small fraction of the pre-training captions
and questions positional keywords are present, as
Table 2 shows. Hence, we add a new pre-training
strategy which exclusively focuses on PI.

We take the PI head used in Mutual Position
Evaluation and add it as a new classification task
which is updated during pre-training. We weight
PIP by 10, since the initial loss is noticeably lower
than the losses of the other strategies. Until now
only visual representation of the object features,
labels and attributes was part of pre-training. Using
PIP, we introduce an explicit unimodal connection
between the PI input and the PI output, which was
not previously available (see Figure 3).

Contrastive Learning using CMM (CL). Dur-
ing pre-training in classical CMM in 50% of all
cases the caption is replaced with another random
image description. This is similar to the main pre-
training concept of CLIP. Yet, doing so, the model
only learns to distinguish dissimilar text and im-
ages. There are no small differences in the captions
that the model needs to be aware.

In line with Contrastive Evaluation on PI using
CMM, we make CMM more complex. In 50% of
all captions with PI keywords the word is replaced
by its counterpart, so that it has to learn fine-grained
PI differences during pre-training. Dissimilar to
PIP, this pre-training strategy only affects a small
portion of the pre-training samples, since PI key-
words are rare. Yet, it operates on both modalities
and hence is able to connect both data types. This
idea can also be extended to other attributes (such
as color, material, shape using VG’s Scene Graph).

Results. Using both pre-training strategies, we
train new models for all four PI input types. We
assess the models using the same three evaluation
schemes as the plain LXMERT model before.

Results of Mutual Position Evaluation are shown
in Table 3 (bottom lines). We observe an increase
in accuracy for all input types. The largest is for
the empty input type with an accuracy of 88.2%,
indicating the high correlation between feature fj
and position pj . For the other versions improve-
ments are smaller. In Table 9 in the Appendix, the
accuracies for each of the nine classification tasks
are displayed. The largest increase can be seen
for the empty input type with up to 23.1 percent
points for task (1) of the 9 mutual position classi-
fication tasks. For classifications based on depth,
the best improvements are 9.7 percent points for
task (7) and 8.0 percent point for task (9) utilizing
x1, y1, x2, y2, d. This shows that the presence of
depth is useful as expected.

In the original LXMERT version, the probe on
Contrastive Evaluation on PI using CMM showed
that the model is not able to solve this task suc-
cessfully. Recall was steadily below 2 percent. In-
troducing the CL pre-training strategy increases
matching accuracy to over 78 percent, as shown in
Table 4 (bottom lines). In CMM, we are now able
to perform matching between visual and textual
representations regarding PI. As a consequence,
we successfully force the model to connect both
types in a multimodal manner.

Downstream Task Evaluation. The third eval-
uation is the downstream task and results are shown
in Table 5 (bottom lines). In the two former probes,
our extended pre-training helped the model to solve
these tasks. However, interestingly, this is not the
case for GQA evaluation. The best results for
the top 1 and subset tasks are obtained by plain
LXMERT. Only in the (not official) best 5 accu-
racy, evaluation our version achieves better results.
One reason for this may be that our PIP weight is
too high and needs to be tuned in further studies.

We found that PI has much less impact on down-
stream results as previously thought. Simple object
centers are often sufficient. Bounding box data,
which add object width, height and area, do not
add the desired information that the models can
utilize. Adding depth is marginally useful on the Z
task, which suggests that this feature is useful.
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PI Input Top 1 X Y Z P Top 5

Pr
ob

in
g ∅ 58.1 65.7 62.0 46.4 58.0 85.0

x, y 59.4 69.6 62.0 49.6 60.2 85.0
x1, y1, x2, y2 59.0 66.2 61.8 49.4 58.9 85.3
x1, y1, x2, y2, d 58.6 66.0 62.4 50.0 58.4 85.1

Pr
e-

tr
ai

ni
ng ∅ 58.8 68.7 60.4 48.5 59.0 85.1

x1, y1 58.8 68.7 60.4 48.5 59.0 85.1
x1, y1, x2, y2, 58.7 67.6 61.5 48.3 58.6 85.4
x1, y1, x2, y2, d 58.7 67.8 62.0 49.1 59.0 85.8

Table 5: Evaluation on GQA testdev: Model comparison of plain LXMERT models (top lines) and our version
with PIP and CL pre-training (bottom lines) for different PI Input types. Evaluation on Top 1 and Top 5 accuracy,
moreover on subsets focusing on X, Y, and, Z keywords only and questions that focus on position (P) using zero-
shot classification. Underlined numbers indicate the best overall model per column and bold numbers indicate the
best model per block and column.

7 Conclusions

Current VL models make use of different PI in-
puts without evaluating their impact. In our work,
we inspect the effect of such PI input types and
investigate depth as a new input extension. In the
original setting, the model is able to forward the
positional information through the whole Trans-
former layer stack, but it cannot utilize it in the
contrastive evaluation and only marginally in the
downstream task. Overall, having any type of PI is
helpful, though object-center values are often suffi-
cient. However, object features fj are already good
proxies for where objects are located. Because this
can be based on spurious correlations, we propose
pre-training methods that should make the model
rely on PI directly.

We introduced two new pre-training strategies.
Firstly, Positional Information Pre-training to en-
sure that data is passed through the model prop-
erly and does not need to rely on feature corre-
lations. This operates on visual component only
and increases performance on the corresponding
intrinsic evaluation task. Moreover, we introduce
Contrastive Learning on PI using CMM. In doing
so, we connect PI in the textual and visual modal-
ity. As a result, the model is now able to succeed
in the contrastive evaluation task. However, these
improvements do not affect the downstream perfor-
mance on GQA.

It is not enough to add different features
unchecked, trusting they are properly utilized by
the Transformer. In line with BERTology (Rogers
et al., 2020; Clark et al., 2019; Tenney et al., 2019),
studies are important to understand better what
a model is capable. The same is true for pre-

training strategies. It is not sufficient to add new
pre-training strategies, although they look promis-
ing. With our probing experiments, we tried to re-
ceive a better understanding of the inner workings
of LXMERT. We see the importance to investigate
differences between general concepts and impact
on a downstream task.

We see two major issues for PI in VL models.
Firstly, the pre-training data contains too little frac-
tion of sentences with PI content. Hence, espe-
cially the CL pre-training strategy has not enough
samples to learn from. Secondly, the used object
detector is not very powerful (see predictions in
Figure 5). Newer detection models like VinVL
(Zhang et al., 2021) might help to have a better im-
age representation, which consequently leverages
performance regarding PI context.
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A Appendix

A.1 PI Classification Head

The PI head is build up in the same manner
as the other visual heads, i.e. Dense →
Activation → Layer Normalization
→ Dropout → Dense.

A.2 PI Antonyms

For Contrastive Evaluation, we replace some PI
keywords with its antonyms.

We substitute left with right, above with below,
under with over, foreground with background, be-
fore with behind and vice versa.

A.3 PI Keywords

In Table 6 we list all PI keywords used in our eval-
uations.

Dim. Keywords
X left, right, beside, besides, alongside, side
Y top, down, above, below, under, beneath,

underneath, over, beyond, overhead
Z behind, front, rear, back, ahead, before,

foreground, background, before, forepart,
far end, hindquarters

Table 6: Overview of positional keywords regarding
dimension.

A.4 Pre-training Weights

In Table 7 we compare pre-training weights
from LXMERT paper (Tan and Bansal, 2019)
and the repository version (https://github.
com/airsplay/lxmert/).

Version M
L

M

C
M

M

O
bj

C
la

ss
if

A
tt

rC
la

ss
if

Fe
at

R
eg

r

V
Q

A

Paper 1 1 1 1 1 1
Repository 1 1 6.6 6.6 6.6 1

Table 7: Overview of pre-training weights in publica-
tion and GitHub version.

A.5 Text Examples

In Table 8 we provide examples from pre-training
and downstream tasks with highlighted keywords.
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Dataset Example Length
MS COCO A very clean and well decorated empty bathroom 8

A panoramic view of a kitchen and all of its appliances. 11
Surfers waiting for the right wave to ride. 8
Two dogs are laying down next to each other. 9
A red stop sign with a Bush bumper sticker under the word stop. 13

VG separate kitchen areas in a home 6
older red Volkswagen Beetle car 5
a woman walking down the sidewalk 6
A bag in the woman’s left hand 7
stones under wood bench 4

GQA Are there both a television and a chair in the picture? 11
That car is what color? 5
On which side of the picture is the lamp? 9
Is the table to the left or to the right of the appliance in the center? 16
Is there a bookcase behind the yellow flowers? 8

Table 8: Text examples from different datasets with word counts. Italic stands for PI keywords that are wrongly
selected and bold words are correctly detected.

PI Input (1) (2) (3) (4) (5) (6) (7) (8) (9)
∅ 65.0 84.1 82.1 89.9 95.6 72.3 77.7 75.3 78.4
x, y 95.1 95.6 96.2 96.1 95.8 74.1 83.3 75.7 84.4
x1, y1, x, 2, y2 94.3 95.2 96.8 97.0 96.0 75.0 83.5 75.8 84.6
x1, y1, x, 2, y2, d 94.0 95.0 96.6 96.8 96.0 74.9 88.7 76.3 89.1
∅ 88.1 89.4 92.6 93.5 95.9 74.1 83.9 77.7 84.8
x, y 98.7 98.8 98.3 98.3 96.1 75.9 89.3 78.4 90.4
x1, y1, x, 2, y2 98.8 98.9 98.7 99.5 96.3 77.0 89.7 78.9 90.9
x1, y1, x, 2, y2, d 98.9 98.9 98.6 99.0 96.3 77.2 98.4 81.0 97.1

Table 9: Average accuracy per classification task (1-9) in Mutual Positional Evaluation for plain LXMERT (top
lines) and our version (bottom lines).

A.6 Mutual Positional Evaluation Details
In Table 9 we provide detailed results for all 9
mutual PI tasks. Tasks (1)-(6) relate to X and Y
coordinates and tasks (7)-(9) to Z coordinates. The
numbering is explained in Section 3.
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