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Abstract
As the issues of privacy and trust are receiving
increasing attention within the research com-
munity, various attempts have been made to
anonymize textual data. A significant subset
of these approaches incorporate differentially
private mechanisms to perturb word embed-
dings, thus replacing individual words in a sen-
tence. While these methods represent very im-
portant contributions, have various advantages
over other techniques and do show anonymiza-
tion capabilities, they have several shortcom-
ings. In this paper, we investigate these weak-
nesses and demonstrate significant mathemati-
cal constraints diminishing the theoretical pri-
vacy guarantee as well as major practical short-
comings with regard to the protection against
deanonymization attacks, the preservation of
content of the original sentences as well as the
quality of the language output. Finally, we
propose a new method for text anonymization
based on transformer based language models
fine-tuned for paraphrasing that circumvents
most of the identified weaknesses and also of-
fers a formal privacy guarantee. We evaluate
the performance of our method via thorough
experimentation and demonstrate superior per-
formance over the discussed mechanisms.

1 Introduction

Computational authorship attribution approaches
ranging from rule-based methods measuring
character-level n-gram frequencies (Kešelj et al.,
2003) to models incorporating deep learning
(Shrestha et al., 2017) make it possible to identify
the authors of a given text. While these technolo-
gies enable valuable applications such as support-
ing historians in their research, they can potentially
be exploited by attackers to identify the originators
of sensitive data and thus diminish the privacy of in-
dividuals. To protect the anonymity of users whose
data is being shared online and used by companies
and researchers, methods that anonymize the writer
of given texts are necessary and of interest within

the research community and a variety of industries,
specifically those handling personal information
such as healthcare or financial services.

Previous work in the field of authorship ob-
fuscation mainly focuses on two different tasks,
namely learning anonymous textual vector repre-
sentations for downstream tasks (Coavoux et al.,
2018a; Weggenmann and Kerschbaum, 2018; Fer-
nandes et al., 2019; Mosallanezhad et al., 2019;
Beigi et al., 2019) and the development of mecha-
nisms that transform the input sentence to remove
properties revealing the author and thus output
human-readable text. Works within the second
category (Feyisetan et al., 2019, 2020; Xu et al.,
2020b; Bo et al., 2021) typically follow a common
word level framework which is characterized by
the differentially private individual perturbation of
word embeddings and the subsequent sampling of
new words that are close to the perturbed vectors
in the embedding space. Also, the majority of re-
cent work proposing new methods for authorship
obfuscation deals with the optimization and cali-
bration of noise sampling mechanisms (Xu et al.,
2020a) or the definition of new distributions to sam-
ple noise from (Feyisetan et al., 2019) as opposed
to the development of entirely new methods.

In this paper, we thoroughly investigate the ca-
pabilities of word level anonymization from the
theoretical perspective of differential privacy (DP)
(Section 3.1), in terms of the language quality of
its output (Section 3.2) as well as from a utilitarian
perspective considering the ability to protect the
privacy of people whose data is being used. Specif-
ically, we extend the experimentation in papers
proposing the discussed methods by testing their ca-
pability to mitigate deanonymization attacks using
state-of-the-art methods on the widely used IMDb
movie review and Yelp business review datasets
(Section 5). We find that the technical constraints
applied to fulfill DP in the local model cause strong
limitations, and, more importantly, observe that,
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despite the formal guarantees, such methods of-
fer little protection against advanced deanonymiza-
tion attacks. For this reason, we advocate for ap-
proaches granting more flexibility to the text gener-
ation process and, motivated by experiments show-
ing that human rewritings of texts gathered through
crowdsourcing successfully anonymize the origi-
nal authors (Almishari et al., 2014), propose an
anonymization approach based on paraphrasing
(Section 4) that maintains the advantages and the
theoretical privacy guarantee of the discussed meth-
ods, evades most of the identified drawbacks and
outperforms word level mechanisms in our experi-
ments.

2 Background

The majority of proposed text anonymization meth-
ods rely on a common framework that applies DP
on a per-word level by perturbing individual word
embeddings (Feyisetan et al., 2019, 2020; Xu et al.,
2020b,a, 2021). In this section, we introduce the
concept of DP and give an overview of the com-
monly used word level framework.

2.1 Differential Privacy
DP has been introduced by Dwork et al. (2006)
under the name ε-indistinguishability. Its goal is to
give semantic privacy by quantifying the risk of an
individual that results from participation in data col-
lection. In the original, central model, we assume
the collected data is stored in a central database
with one record per participant. If we consider ad-
jacent databases that differ by at most one record
(pertaining to one individual), a differentially pri-
vate query on both databases should yield match-
ing results with similar probabilities, i.e., answers
that are probabilistically indistinguishable. This is
achieved via random mechanisms on the universe
of datasets D that return noisy query results, thus
masking the impact of each individual.

Definition 1 (ε-DP) Let ε > 0 be a privacy param-
eter. A random mechanismM : D → R fulfills
ε-DP if for all adjacent databases D,D′ ∈ D, and
all sets of possible outputs R ⊂ suppM,

Pr[M(D) ∈ R] ≤ eε · Pr[M(D′) ∈ R].

To make a query function f : D → R differ-
entially private, noise is calibrated to the query’s
sensitivity, i.e. its maximal change over all pairs
of adjacent datasets D ∼ D′ ∈ D. For instance,
the L2-sensitivity as used for the Planar Laplace

mechanism (Chatzikokolakis et al., 2013; Andrés
et al., 2013; Koufogiannis et al., 2015) is

∆2f := max
D∼D′

‖f(D)− f(D′)‖2.

In the local model (Duchi et al., 2013), noise is
added locally at the data source, before the data
is collected and stored in a central database. A
basic example is randomized response (Warner,
1965), where each survey participant either pro-
vides a truthful or a random answer depending on
the flip of an (unbiased) coin. The local model
makes the strong assumption that any two inputs
are considered adjacent, which often makes it diffi-
cult to achieve a satisfying privacy-utility trade-off.

2.1.1 Generalization with metrics
A limitation with DP is that the indistinguishabil-
ity is achieved between two inputs on a per-record
level regardless of their actual values. This can be
especially problematic in the local model, where
each user might just submit one single record, in
which case a DP mechanism with small privacy pa-
rameter ε would enforce each submitted record to
be indistinguishable from any other, thus rendering
the collected data essentially useless. Chatzikoko-
lakis et al. (2013) argue that in some scenarios, the
(in)distinguishability between two databases as en-
forced by a privacy mechanism should depend on
the values themselves instead of the number of dif-
fering records. They hence propose a generalized
notion of privacy on metric spaces where a mech-
anism run on nearby elements results in similar
output probabilities:
Definition 2 (Metric privacy) Let ε > 0 be a pri-
vacy parameter. On a metric space (X , d), a mech-
anismM satisfies εd-privacy if for all x,x′ ∈ X
and all R ⊂ suppM,

Pr[M(x) ∈ R] ≤ eε·d(x,x′) · Pr[M(x′) ∈ R].

In other words, the indistinguishability level of two
points x,x′ is bounded by ε times their distance.

Note that we recover the original notion of cen-
tral DP on the space of databases X = D if we
use the record-level edit distance d±1, as datasets
x,x′ ∈ D differ by at most one record if and only
if d±1(x,x′) ≤ 1. Similarly, the local model is
obtained for d(x,x′) ≡ 1. This motivates the fol-
lowing broader and formal definition of adjacency:
Definition 3 In a metric space (X , d), we call two
inputs x,x′ ∈ X adjacent (with respect to d) if
d(x,x′) ≤ 1. We write this as x∼d x′ (or x∼x′

if d is understood from the context).
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2.2 Word perturbations for anonymization

The methods investigated in this paper apply word
embedding perturbation mechanisms to change in-
dividual words in a sentence, following εd-privacy
with a distance metric defined for sentences x,x′.
In essence, the common word level framework
works as follows: Given an input sentence x =
(x1, x2, ..., xn), each token xi is mapped to an
n-dimensional pretrained word embedding φ(xi).
Subsequently, an n-dimensional noise vector η is
sampled from a multivariate probability distribu-
tion pε(η) and added to the word embedding to
obtain a noisy vector φ̂i. The current word xi
then gets replaced by a word x′i whose embed-
ding φ(x′i) is close to the noisy embedding φ̂i.
Given a distance metric d, commonly d(x,x′) =∑n

i=1‖φ(xi) − φ(x′i)‖ for sentences x,x′ of the
same length, the mechanism fulfills εd-privacy.
The general mechanism is outlined in Algorithm 1
and the proofs are outlined in the referenced papers.

Algorithm 1: Word level DP framework
Input : Text x = (x1, x2, . . . , xn), parameter ε
Output: Anonymized text x′ = (x′1, x

′
2, ..., x

′
n)

for i ∈ {1, 2, . . . , n} do
Compute embedding φi = φ(xi)
Sample noise η ∼ pε(η)
Compute perturbed embedding φ̂i = φi + η
Find near word x′i within embedding space
Insert x′i for xi in the output

3 Limitations of word level privacy

DP mechanisms operating on a word-by-word ba-
sis follow a comparably simpler and more straight-
forward algorithmic approach than deep learning
models for text anonymization. This has many ad-
vantages such as lower computational expense as
well as the mechanism’s independence of the tar-
get dataset and domain: Most deep learning based
approaches need to be trained for each dataset and
set of authors individually as they require author
labels to construct adversarial training objectives
(Shetty et al., 2018; Xu et al., 2019). In contrast,
the approaches discussed in this paper are dataset-
independent and can thus be deployed immediately
without a need for further training for new authors
and datasets.

The simple methodology does however have its
shortcomings as well. In this section, we exam-
ine these weaknesses from a theoretical standpoint
taking into account both DP properties and proper-

ties of the language output before assessing their
effects experimentally in Section 5.

3.1 DP related constraints
We consider a mechanism M that operates on a
text x = (x1, . . . , xn) on a word-by-word basis,
i.e.,M(x) = (M(x1), . . . ,M(xn)).

Length constraints A word level mechanismM
will produce an output that has the same length
as its input. However, typical texts and sentences
come in varying lengths, say x = (x1, . . . , xn)
and x′ = (x′1, . . . , x

′
m) with n 6= m. Now if we

consider an outcome set Zn consisting of all length-
n sequences (including x), we obtain

1 = Pr[M(x) ∈ Zn] 6≤ eε Pr[M(x′) ∈ Zn] = 0.

This contradicts the definition of pure DP and in
case of approximate DP (cf. Definition 1) would
require δ = 1 which is clearly not negligible.

To comply with these strong DP requirements,
word level DP mechanisms such as Feyisetan et al.
(2019, 2020) commonly simply limit the privacy
guarantee to cover only sequences Zn of a fixed
length n, i.e., no formal guarantee among sentences
of different lengths is provided. Consequently,
the output is also fixed to length n, which affects
the language capabilities of such mechanisms and
severely limits the scope and expressiveness of the
resulting sentences, particularly for human readers.

Linear growth of privacy budget For an ε-DP
mechanismM, its output probabilities given two
adjacent inputs have to be bounded by exp(ε).
Suppose M processes each word xi of a text
x = (x1, . . . , xn) independently, using a fixed-
length output strategy as described in the preced-
ing section, with a given output z = (z1, . . . , zn).
Then Pr[M(x) = z] =

∏n
i=1 pi where pi :=

Pr[M(xi) = zi]. Similarly, a second text x′ has
output probabilities p′i = Pr[M(xi) = zi], so we
have pi ≤ eεp′i, and hence

Pr[M(x) = z] =

n∏

i=1

pi ≤
n∏

i=1

eεp′i

= enε Pr[M(x′) = z].

Therefore, the total privacy budget required byM
to privatize the entire sequence is bounded by nε
and thus may grow linearly with its length.

Metric privacy hides this effect in the metric,
since deviations in the mechanism’s output proba-
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bilities are bounded by exp(εd(x,x′)). By choos-
ing a metric d that grows larger as the length of
sentences increases, strong deviations can now be
captured by the metric d, so the privacy budget
ε as its co-factor appears smaller. For instance,
Feyisetan et al. (2020) use a metric d(x,x′) =∑‖φ(xi) − φ(x′i)‖ for strings based on embed-
dings φ, which results in more summands and thus
larger distances for longer strings, but not neces-
sarily larger distances for different writing styles:
Consider the following sentence pairs (x,x′) and
(y,y′) written by two authors each:

x = “Today I feel great”

x′ = “I feel great today”

y = “Today I feel great and will get a coffee”

y′ = “I feel great and will get a coffee today”

Given a non-degenerate metric d, we have both
d(x,x′), d(y,y′) > 0 since the sentences are syn-
tactically different. One could infer that the author
of the first sentence within both pairs tends to put
expressions of time in the beginning whereas the
other author places them at the end, but beyond
that, there are arguably no differences in terms of
writing style or author-revealing information one
could deduce from both sentence pairs. Yet, we will
likely have d(x,x′) < d(y,y′) due to the induced
growth of the distance for longer sentences. Hence,
while the distance metric does reflect differences
between sentences in a somewhat meaningful way,
it is prone to absorb the actual privacy loss even if
the writing style is almost unchanged, thus leading
to values of ε that are perceived as small.

Shortcomings of the local model In many likely
scenarios for authorship obfuscation methods, the
intention is to share obfuscated texts with other,
benign entities for further processing. For a DP
mechanism, this essentially corresponds to the lo-
cal model where it transforms each text individually
to an obfuscated output. The assumption then is
that the obfuscation allows only privacy-insensitive
processing so that subsequent results and infer-
ences do not harm the privacy of the texts’ authors.

Note that the DP guarantee in the local model
differs substantially from what is expressed by the
definition in the original central model: A central
DP mechanism would aggregate the texts (records)
from multiple individuals into a single result. By
the definition of adjacency, central DP hides the im-
pact of each individual’s contribution in the result

by making it probabilistically indistinguishable (as
determined by ε) whether an outcome was obtained
with or without an individual’s data. In contrast, for
local DP, any two inputs are considered adjacent,
so by definition, it needs to be indistinguishable
whether an output was produced by one input or
another. This strong condition makes it thus ques-
tionable if such data is still useful for an analyst.

Due to the nature of local DP, it typically intro-
duces large amounts of noise and requires large
amounts of data to still get meaningful results
(Wood et al., 2020). A workaround often used
in practice when only limited data is available is
to use a larger privacy budget ε than one would
normally consider sufficiently privacy-preserving
in the central model (Qin et al., 2016; Desfontaines,
2021). While this does permit the obfuscated data
to remain useful to a benign analyst, it may also
be useful to an attacker to infer privacy-sensitive
information, as the formal guarantee of local DP
does not specifically prevent such undesired or ma-
licious inferences, especially when ε is large.

To alleviate the strictness and implications im-
posed by the local model, some approaches refer to
metric privacy (Chatzikokolakis et al., 2013) as gen-
eralization of the original definition. Metric privacy
(cf. Definition 2) brings about a change in the defi-
nition how the privacy loss ε is interpreted in rela-
tion to the introduced metric and normally leads to
seemingly smaller ε values; however, changing to
metric privacy by itself does not imply any change
to the inner workings of the mechanism. We hence
argue that it is less an improvement, but more a
relaxation of the privacy guarantee that still shares
the same fundamental criticism of local DP, e.g.,
our observation at the start of this section where the
metric grows with the length of the text and thus
hides the linear growth of the privacy budget.

3.2 Language constraints

Aside from weaknesses concerning the privacy
guarantee of DP, mechanisms operating on a per-
word level pose two significant shortcomings in
terms of their language generation capability. First,
smaller privacy budgets resulting in stronger noise
added to the original data tend to cause a high
amount of grammatical errors. Secondly, the
lack of syntactic changes to the original sentences
caused by the nature of such mechanisms consider-
ably limits the linguistic variety and thus opportuni-
ties to deceive an adversary and provide anonymity
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Figure 1: Percentage of word type changes caused by
the mechanism introduced by Feyisetan et al. (2020)

for the authors of the texts.

Grammatical errors increase as privacy bud-
get shrinks Word level mechanisms perturb ev-
ery token xi in a sentence independently of the
rest of the text as opposed to common autoregres-
sive sequence-to-sequence models where p(xi) =
p(xi | xi−1, . . . , x1). This makes it difficult to
maintain consistency and renders them unable to
rectify grammatical errors induced by replacing
a word with one of a different word type, e.g., a
noun with an adjective. To estimate the effect of
this, we approximate the likelihood of word type
exchanges for various ε values: Using the WordNet
database1 (Miller, 1995; Fellbaum, 2010), we as-
sign words from the GloVe vocabulary (Pennington
et al., 2014) one or multiple of the word type labels
adjective, adverb, noun and verb. Subsequently,
we apply the word perturbation mechanism pro-
posed by Feyisetan et al. (2020) on a randomly
selected set of 1,000 tokens and use the assigned
type labels to measure whether the word type was
changed2 or not.

As Fig. 1 shows, a significant percentage of word
type changes occur even when using comparably
large ε values such as 8 or 10 that grant only little
privacy protection according to our evaluation in
Section 5: With 17.3% and 7.8% of word types
being changed with the respective epsilon values,
a word type change and thus most likely a gram-
matical error would be induced at every 5.8th and
12.8th token, respectively.

1Terms of use and license information: Appendix A.1
2In case of multiple word type labels for a single token

(e.g. noun and verb for “escape”), we only interpreted the
perturbation as a word type change if the sets of word types
of the original word and the new word were disjoint.

Lack of syntactic changes As described in Sec-
tion 3.1, operating on a word-by-word basis causes
severe limitations to the format of the perturbed
output sentences. Due to the imposed inflexibil-
ity of the text generation process, the discussed
mechanisms lack the ability to rewrite given sen-
tences by changing their syntactic properties such
as word positioning and sentence length and thus
mostly have to rely on lexical changes for obfus-
cating author-revealing features, which is highly
unfavorable. For instance, if a person’s writing
style is characterized by heavy use of subordinate
clauses resulting in very long sentences, it may be
more effective to shorten sentences than merely
changing individual words.

Due to these limitations, word level methods
may never achieve proper anonymization, as even
syntactic features alone without any semantic infor-
mation are sufficient for authorship identification:
Notably, Tschuggnall and Specht (2014) show that,
given a collection of syntactic trees of texts written
by various authors, individual style profiles can be
learned to infer the authors of unseen sentences.
Moreover, learned representations of syntax trees
have proven to be effective for various authorship
attribution tasks (Hitschler et al., 2017; Zhang et al.,
2018; Jafariakinabad et al., 2019). Consequently,
an effective anonymization mechanism should be
able to change the syntactic properties of its input
texts in order to take away important clues that
adversaries could exploit to identify authors.

4 Anonymization through paraphrasing

While existing works on text anonymization that
focus on word level perturbations represent very
important contributions, they have some significant
weaknesses as described in Section 3. In the follow-
ing, we attempt to address the identified problems
by proposing fine-tuning of large language models
for paraphrasing as an alternative text anonymiza-
tion method.

4.1 Generating paraphrases

Authorship obfuscation has been framed as a para-
phrasing problem in various works with different
attempts to generate adequate rewritings (Rao and
Rohatgi, 2000; Keswani et al., 2016; Bevendorff
et al., 2019; Mahmood et al., 2019). While compu-
tational approaches do not always show satisfying
results, Almishari et al. (2014) demonstrate that
rewritings of reviews gathered through crowdsourc-

871



ing reflect strongly different stylometric features
from the source reviews while preserving the origi-
nal content and concealing the author successfully.

Crowdsourcing is highly laborious and cannot
always be applied in real-world scenarios. There-
fore, we aim at imitating the rewriting behavior
of humans through a large-scale transformer-based
(Vaswani et al., 2017) language model: We fine-
tune GPT-2 (Radford et al., 2019) to generate
paraphrases following the training procedure intro-
duced by Witteveen and Andrews (2019). The Stan-
ford Natural Language Inference (SNLI) Corpus
(Bowman et al., 2015) provides training data con-
sisting of pairs of sentences with five crowdsourced
labels, each indicating whether the two sentences
are semantically entailed or not. We construct a
paraphrase dataset by only keeping sentence pairs
with all five labels indicating entailment.

4.2 Balancing privacy and utility
As pointed out by Brennan et al. (2012), the black
box nature of authorship obfuscation via round-
trip and consequently also monolingual transla-
tion affects controllability of our system negatively.
Therefore, in the following we demonstrate how
varying the temperature in the word sampling stage
of GPT-2 can be used to inject noise into our model,
hereby balancing the privacy-utility trade off.

In an autoregressive generative model, an output
text x = (x1, . . . , xn) is generated by sampling
the next word xi from conditional probabilities
pi = p(xi | x1, . . . , xi−1, z) modeled by the de-
coder network, where z is context information (e.g.,
representing an encoding of the input sentence to
be obfuscated) to initialize the decoder. The vec-
tor pi = (pi,j)

|V|
j=1 represents the probabilities of

producing the j-th word vj of the predefined vo-
cabulary V at the i-th position in the sequence. The
probabilities are typically obtained through the soft-
max function from a logit vector ui ∈ R|V| in the
last layer of the decoder, which can be controlled
by a temperature parameter T > 0 as follows:

pij := softmax(ui) =
exp
(ui,j
T

)
∑

k exp
(ui,k
T

) (1)

A higher temperature T results in a smoother
distribution that brings the resulting probabilities
of all words closer together and thus impacts the
variability and probabilities of the resulting sen-
tences. In our experiments in Section 5, we vary
the temperature when sampling text to evaluate this
effect.

Sampling from softmax as differential privacy
mechanism Note that sampling from the softmax
distribution with temperature T can be interpreted
as a DP mechanism, namely as an instance of the
Exponential mechanism by McSherry and Talwar
(2007). It applies to both numerical and categorical
data and requires a “measure of suitability” for
each possible pair of input and output values:
Definition 4 (Quality function) A map q : X ×
Y → R is called quality function from X to Y
where we interpret the value q(x, y) as measure
of suitability of an output y ∈ Y for a given input
x ∈ X . The sensitivity ∆q of the quality function q
is its largest possible difference given two adjacent
inputs, over all possible output values:

∆q := max
y∈Y

max
x1∼x2

(
q(x1, y)− q(x2, y)

)

Given an admissible rating function q with finite
sensitivity ∆q, the Exponential mechanism is de-
fined as follows:
Definition 5 (Exponential mechanism) Let ε >
0 be a privacy parameter, and let q : X × Y → R
be a rating function. The Exponential mechanism
is a random mechanism E : X → Y that is defined
by the probability distribution function

Pr[E(x) = y] =
exp
(

ε
2∆q

q(x, y)
)

∫
y′ exp

(
ε

2∆q
q(x, y′)

)
dy′

.

A discrete version of the Exponential mechanism
for countable Y can be obtained by replacing the
integral with a sum; it is thus defined by the proba-
bility mass function

Pr[E(x) = y] =
exp
(

ε
2∆q

q(x, y)
)

∑
y′ exp

(
ε

2∆q
q(x, y′)

) . (2)

The Exponential mechanism E fulfills ε-DP as
shown by McSherry and Talwar (2007, Theorem 6).

By comparing Eqs. (1) and (2), we immediately
recognize that sampling from the softmax proba-
bilities pi = (pi,1, . . . , pi,|V|) amounts to running
an instance of the Exponential mechanism with
ε = 2∆q/T and the quality function determined
by the logits vector ui ∈ R|V| as

qi((x1, . . . , xi−1, z), vj) = ui,j , 1 ≤ j ≤ |V|,
at each iteration i when sampling the next word xi.
Therefore, our generative paraphrasing model nat-
urally forms a locally differentially private mech-
anism that also enjoys formal privacy guarantees:
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The total privacy budget amounts to ε · n where n
is the length of the generated paraphrase. Finally,
note that we obtain a finite sensitivity ∆q ≤ 1 by
constraining the decoder layer so that the logits in
its output fulfill 0 ≤ ui,j ≤ 1.

While this approach is still subject to the im-
plications of the local model, and its total privacy
budget ε · n may still grow linearly in the length
of the produced output, it avoids the language and
fixed output length constraints of previous word
level privacy mechanisms stated in Section 3.

5 Evaluation

We argue that despite formal guarantees, the pri-
vacy preservation capabilities of mechanisms that
are deployed in real world applications should also
be tested from a practical standpoint. Previous
works measure anonymization capabilities using
a variety of evaluation metrics: Feyisetan et al.
(2020) use the privacy auditor proposed by Song
and Shmatikov (2019), whereas Xu et al. (2021)
measure the ability of an adversary to reconstruct
the original sentence, and Xu et al. (2020b,a) count
the amount of changed words.

Unfortunately, these methods are rarely tested
under the scenario of a strong attacker aiming to
identify the authors of the obfuscated texts. While
Feyisetan et al. (2019) measure the identification
performance of an authorship attribution model,
their adversary (Koppel et al., 2011) only relies
on counting character 4-grams and does not ade-
quately reflect the capabilities of a strong attacker
who can train more powerful classifiers. Besides,
attacks are almost always evaluated only in a static
(non-adaptive) setting, meaning that the attack
model is only trained on the original data and can-
not adapt to the perturbed data. Since any seri-
ous method should avoid “security (or privacy) by
obscurity”, we must assume that the obfuscation
mechanism is known to the attacker who can easily
create perturbed data themselves.

In the following evaluation, we consider two ex-
emplary methods following the word level frame-
work, namely perturbing Euclidean GloVe embed-
dings (Pennington et al., 2014) through Laplace
noise as proposed by Feyisetan et al. (2020), the
perturbation of hierarchical Poincaré embeddings
(Nickel and Kiela, 2017) through hyperbolic noise
as proposed by (Feyisetan et al., 2019), as well as
our paraphrasing approach proposed in Section 4.
To address the discussed issues in previous evalua-

tion methodologies, we employ recent state-of-the-
art methods to compare the privacy-utility trade-
offs and analyze the performance of the approaches
not only in a static, but also in an adaptive setting.

5.1 Evaluation metrics

We argue that an anonymization mechanism de-
ployed in real world applications should provide
protection against advanced deanonymization at-
tacks, preserve the core information of the original
data (e.g., sentiment for product reviews), be se-
mantically similar to the original sentences and of
high quality in terms of language.

We measure the first two properties using both
static (i.e., trained on source data) and adaptive
(i.e., trained on data perturbed by the respective
mechanism) BERT-based (Devlin et al., 2019) au-
thor and sentiment classifiers by fine-tuning the
pretrained language model’s top three layers and
using a two-layer classifier for the author and senti-
ment labels. BERT has proven to be successful for
both sentiment classification (Sun et al., 2019) and
authorship attribution (Fabien et al., 2020) and thus
represents a suitable model for both tasks. We re-
port all classification results in terms of Matthews
Correlation Coefficient (MCC) (Matthews, 1975;
Gorodkin, 2004). An MCC score of +1 means per-
fect predictions whereas 0 indicates random guess-
ing. MCC is more suitable to assess classification
performance than accuracy (Chicco and Jurman,
2020) as it is not easily fooled by biased classifiers
in case of imbalanced datasets.

To assess the trade-off between attack (author-
ship attribution) and utility (sentiment analysis),
we measure each method’s relative gain based on
the original and obfuscated classification scores:
Let Ao, So represent the MCC scores of the author
and sentiment classifiers based on the original data,
and similarly, let Ap, Sp represent the scores on
perturbed data normalized to the range [0, 1]. Then
we define its relative gain as γ := Sp/So−Ap/Ao.

To measure semantic similarity between the
anonymized and original sentences, we compute
the cosine similarity of their representations ob-
tained by SBERT (Reimers and Gurevych, 2019),
which is a model that has been optimized for captur-
ing semantic similarity between textual inputs. For
language quality, we compute the average perplex-
ity (PPL) of the pretrained GPT-2 (Radford et al.,
2019) over the output sentences of each model.
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Table 1: Performance of authorship and sentiment classifiers trained and evaluated on data generated by anonymiza-
tion mechanisms as measured by MCC scores. Best trade-offs are identified by the relative gain metric introduced
in section Section 5.1

original GloVe embeddings Poincaré embeddings Paraphrase (ε = 1/T )

Privacy budget ε ∞ 6 8 10 12 0.5 1 2 8 0.05 0.1 1.0 10

IMDb:
Author (static) 0.98 0.12 0.20 0.28 0.33 0.87 0.88 0.88 0.89 0.19 0.21 0.22 0.22
Author (adapt.) 0.98 0.58 0.79 0.90 0.95 0.97 0.97 0.98 0.98 0.62 0.63 0.64 0.66
Sentim. (static) 0.71 0.21 0.32 0.43 0.50 0.53 0.52 0.52 0.53 0.37 0.40 0.40 0.42
Sentim. (adapt.) 0.71 0.22 0.37 0.52 0.60 0.56 0.54 0.56 0.56 0.40 0.42 0.41 0.43
SBERT CS 1.00 0.30 0.49 0.70 0.85 0.66 0.67 0.68 0.68 0.58 0.61 0.62 0.63
PPL 44.5 5003 3544 1414 512 431 384 330 310 37.2 34.8 34.4 33.9

Yelp:
Author (static) 0.80 0.12 0.23 0.40 0.49 0.59 0.61 0.60 0.62 0.22 0.35 0.37 0.38
Author (adapt.) 0.80 0.32 0.47 0.62 0.68 0.72 0.73 0.73 0.75 0.35 0.35 0.37 0.39
Sentim. (static) 0.51 0.14 0.20 0.27 0.33 0.35 0.37 0.36 0.37 0.20 0.21 0.23 0.24
Sentim. (adapt.) 0.51 0.17 0.26 0.34 0.43 0.44 0.45 0.45 0.46 0.32 0.30 0.30 0.33
SBERT CS 1.00 0.29 0.43 0.60 0.76 0.35 0.37 0.38 0.38 0.49 0.51 0.54 0.54
PPL 99.7 13427 8555 3061 1534 1248 1232 1155 1116 148 143 138 132

5.2 Implementation Details
We implement both mechanisms proposed in the pa-
pers by Feyisetan et al. (2020, 2019) using numpy.
Concretely, we use 50-dimensional GloVe (Pen-
nington et al., 2014) vectors as our Euclidean em-
beddings and train 50-dimensional Poincaré em-
beddings on our own. For the latter, we extract
∼1,300,000 word tuples representing hypernymy
relationships for IMDb and ∼1,800,000 tuples for
Yelp from WebIsADB3 (Seitner et al., 2016) by
removing words with less than 10 occurrences and
keeping only tuples contained in the GloVe vocab-
ulary as well as the respective review dataset4.

When encountering out-of-vocabulary (OOV)
words, Algorithm 1 cannot assign embeddings and
thus not perturb them, which violates DP. Also,
merely removing the words does not change this
as it changes the length of the output text while
DP is only fulfilled for texts of the same length.
For GloVe embeddings, a relevant effect in terms
of experimental results is not present as the large
vocabulary covers almost all words we encounter.
The vocabulary size of our Poincaré embeddings is
however limited (∼ 10,000) and, following Feyise-
tan et al. (2019), does not contain stopwords. As
we aim to compare methods outputting human-
readable texts and the removal of stopwords clearly
affects readability, we instruct the mechanism to

3Terms of use and license information: Appendix A.1
4As the procedure was not fully described in the paper, we

increased (by factor ≥ 10) the training data of the original
work, hereby having a larger vocabulary and more variation in
the perturbations. We do so to minimize the risk of bad results
merely due to implementation issues.

simply ignore OOV words. The results for remov-
ing OOV words can be found in Table 3 in the
appendix.

For GPT-2 and BERT, we use the pretrained
checkpoints from the HuggingFace transformers
library (gpt2, bert-base-uncased; 117M, 110M pa-
rameters) and fine-tune each instance on a single
NVIDIA T4 GPU.

5.3 Datasets

We conduct experiments using IMDb movie re-
views (Maas et al., 2011) and Yelp business re-
views5 which contain author and sentiment labels
in the form of ratings on the scale of 1-10 and 1-5,
respectively. For both sources, we keep data from
ten users with the most reviews, hereby obtaining
dataset sizes of 10,000 for IMDb and 15,729 for
Yelp. We simplify sentiment labels by rating movie
reviews with ≥ 5 points and business reviews with
≥ 3 points as positive and the rest negative.

5.4 Results

Table 1 shows that paraphrasing significantly out-
performs word-level mechanisms in terms of pro-
tection against adaptive adversaries. When evalu-
ating privacy and utility for static classifiers, it be-
comes apparent that small perturbations are enough
to trick author classifiers. Therefore, for static clas-
sifiers, mechanisms with weak word-level pertur-
bations caused by smaller ε values show an equal
trade-off on IMDb and a slightly better trade-off on
Yelp reviews as they better preserve the sentiment

5https://www.yelp.com/dataset/
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than the stronger changes caused by our model. No-
tably, paraphrasing shows better semantic preserva-
tion as well as higher language quality as measured
by PPL when comparing it to word-level mecha-
nisms calibrated for comparable privacy protection
against the author classifier. This is also visible in
the exemplary outputs provided in Table 2.

6 Related work

Other DP mechanisms for text Earlier mech-
anisms for differentially private text obfuscation
settled for simpler output representations: Weggen-
mann and Kerschbaum (2018); Fernandes et al.
(2019) employ Bag-of-Words (BoW) models and
produce term-frequency vectors as output. Simi-
larly, obfuscated dense vector representations are
obtained in (Beigi et al., 2019) by perturbing the
output of an encoder network. While not human-
readable, these vector representations can be shared
for automated processing, such as topic or senti-
ment inference and machine learning. To generate
human-readable text, Bo et al. (2021) employ an
encoder-decoder model similar to ours, but with-
out paraphrasing, and sample output words using
(a two-set variant of) the Exponential mechanism
(McSherry and Talwar, 2007). Weggenmann et al.
(2022) propose a differentially private variation of
the variational autoencoder and use it as a sequence-
to-sequence architecture for text anonymization.

Authorship obfuscation without DP Ap-
proaches not following DP range from rule-based
algorithms relying on human-engineered text
perturbations such as synonym replacements or
word removals (Bevendorff et al., 2019; Mahmood
et al., 2019) to methods incorporating deep
learning. Models of the latter typically incorporate
discriminator networks to penalize generating
author-revealing information (Shetty et al., 2018;
Xu et al., 2019). Similar to DP mechanisms,
previous work is concerned with learning private
text vector representations (Coavoux et al., 2018b).

Differentially private optimization Differen-
tially private optimization algorithms such as DP-
SGD and related methods (Song et al., 2013; Bass-
ily et al., 2014; Abadi et al., 2016) have emerged as
effective methods for protecting the training data
of a model. Recent work has shown that both gen-
erative and discriminative language models can
effectively be trained with these optimization ap-
proaches (Li et al., 2021; Yu et al., 2021) and there-

fore represent an important contribution for pro-
tecting against data leakage of language models
(Song and Raghunathan, 2020; Carlini et al., 2021).
These methods can be seen as complementary to
the approaches discussed in this paper which pro-
tect data during inference.

7 Conclusion

We discussed and demonstrated the weaknesses
of word level DP mechanisms and proposed a
paraphrasing model circumventing most of these.
We find that our approach outperforms word level
mechanisms in terms of protection against adap-
tive adversaries, while the latter should be favored
against weaker adversaries. Future work could
address integrating auxiliary adversarial losses to
paraphrasing systems or enabling paraphrases that
better preserve the core information of the source
text.

8 Ethical Considerations

Abuse of Anonymization Mechanisms Text
Anonymization is an important field of research for
the protection of privacy of individuals as well as
for enabling freedom of speech. Still, anonymiza-
tion mechanisms may be exploited for negative
causes. Specifically, guaranteed anonymity on
the internet might lead individuals to spread hate
speech. Furthermore, mechanisms as ours can be
used to anonymously generate and spread fake re-
views or fake news. Important areas of research
fighting these problems include hate speech and
toxicity detection (Djuric et al., 2015; MacAvaney
et al., 2019) as well as fake review detection
(Mukherjee et al., 2013; Barbado et al., 2019) and
fake news detection (Shu et al., 2017; Ruchansky
et al., 2017).

Bias in Large Language Models Large lan-
guage models such as GPT-2, which our proposed
approach is based on, often inherit biases towards
various demographics from the large amount of
data they are trained on (Sheng et al., 2019; Abid
et al., 2021). These biases can cause unforeseen
effects when generating language output and could
potentially alter statements of authors whose texts
are being anonymized. An increasing amount of
work is aiming to understand and tackle such biases
in language models (Vig et al., 2020; Liang et al.,
2021).
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Evaluation Fairness In this paper, we evaluate
our approach experimentally and compare its per-
formance to mechanisms proposed in previous re-
search works. Since no code was publicly released
for the approaches we are comparing ours to, we
implemented the mechanisms ourselves. While we
replicated the original systems as close as possi-
ble to the description in the papers using all the
information available, we cannot guarantee that
they are exactly the same as not all the information
about preprocessing and implementation details is
publicly available.
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A Appendix

A.1 Information about terms of use for data
In this section, we provide information and refer-
ences about the terms of use and licenses of each
dataset we are using.

WordNet Wordnet can be downloaded and ac-
cessed online without specifically requesting ac-
cess and can be used for research and also commer-
cial applications in accordance with the WordNet
3.0 license: https://wordnet.princeton.
edu/license-and-commercial-use

WebIsADB WebIsADB can be downloaded and
accessed online without specifically requesting ac-
cess. The dataset is licensed under a Creative Com-
mons Attribution-Non Commercial-Share Alike
3.0 License: http://creativecommons.
org/licenses/by-nc-sa/3.0/

IMDb IMDb movie reviews can be downloaded
and accessed online without specifically requesting
access. Unfortunately, we could not find informa-
tion about license specifications. More information
is available at https://ai.stanford.edu/
~amaas/data/sentiment/

Yelp Researchers aiming to use the Yelp
dataset have to sign the terms of use (https:
//s3-media3.fl.yelpcdn.com/assets/srv0/

engineering_pages/bea5c1e92bf3/assets/

vendor/yelp-dataset-agreement.pdf).
For commercial use, researchers should
contact Yelp via dataset@yelp.com.
More information is available at https:
//www.yelp.com/dataset.
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Table 2: Exemplary output of anonymization mechanisms for Yelp data

Exemplary Reviews for Yelp

Original:
This store is so adorable . In addition to baked goods they offer sandwiches for breakfast and lunch .
The turkey sandwich was excellent . The textures were perfect though, especially for
the almond amaretto cookie . It had the right balance of chewy
with a slight amount of crunch.

Euclidean embedding perturbations (ε = 8):
designated store is work adorable making top tubular continue watered goods do offer salad ranging
breakfast filling 5,000-a carries original turkey sandwich was excellent parts national textures
were play never neighbors with for part mustard amaretto cookie hatred
make had a direction balance end sugary another a erratic amounts of one-off today

Euclidean embedding perturbations (ε = 10):
fact store is ’re granny his in health they dish goods kept offer sandwiches giving dinner besides
lunch result the turkey sandwich given delivering . the textures ten captures .
then especially own the apricot izola cookie on be had the right footing of chewy
with a slight amount in crunch at

Poincaré embedding perturbations (ε = 1):
this flag is so adorable . in abundance to waffles chunk they many slimy for eggs and
peppery . the vindaloo stickers was excellent . the blt were splurge gun ,
especially for the quail amaretto crunch . it had the quantity
observation of crisp with a trotter simple of crunch .

Poincaré embedding perturbations (ε = 2):
this patient is so adorable . in stuff to asparagus walk-up they con jets for pricy and tamale .
the petite cook was excellent . the rang were steal train , especially for the updated amaretto soak .
it had the say many of containing with a slight land of cans .

Paraphrased (ε = 0.1):
There is a cute store. There is a sandwich being served by the sandwich shop. The sandwich is tasty.
The two textures are alike. There were chews on the chem.

Paraphrased (ε = 1):
There’s adorable store in this photo. In addition to baked goods they offer sandwiches for
breakfast and lunch. This was a great sandwich.
The desserts taste delicious! The food was chewy.
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Table 3: Results for hyperbolic perturbations (Feyisetan et al., 2019) when removing out-of-vocabulary words.

original Poincaré embeddings

Privacy budget ε ∞ 0.5 1 2 8

IMDb:
Author MCC (static) 0.98 0.03 0.12 0.07 0.12
Author MCC (adapt.) 0.98 0.67 0.69 0.68 0.69
Sentim. MCC (static) 0.71 0.27 0.30 0.31 0.28
Sentim. MCC (adapt.) 0.71 0.35 0.40 0.38 0.39
SBERT CS 1.00 0.32 0.33 0.33 0.34

Yelp:
Author MCC (static) 0.80 0.14 0.14 0.15 0.16
Author MCC (adapt.) 0.80 0.32 0.35 0.34 0.36
Sentim. MCC (static) 0.51 0.17 0.18 0.20 0.20
Sentim. MCC (adapt.) 0.51 0.21 0.23 0.24 0.25
SBERT CS 1.00 0.54 0.54 0.56 0.57
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