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Abstract training, which is prohibitively expensive. The re-

Fine-tuning a pre-trained language model us-
ing annotated data has become the de-facto
standard for adapting general-purpose pre-
trained models like BERT to downstream
tasks. However, given the trend of larger pre-
trained models, fine-tuning these models for
each downstream task is parameter-inefficient
and computationally-expensive deeming this
approach sub-optimal for adoption by NLU
systems. In recent years, various approaches
have been proposed for parameter efficient
task adaptation such as Adaptor, Bitfit, Prompt
tuning, Prefix tuning etc. However, most
of these efforts propose to insert task spe-
cific parameters in-between or inside interme-
diate layers of the pre-trained encoder result-
ing in higher computational cost due to back-
propagation of errors to all layers. To mitigate
this issue, we propose a light but efficient, at-
tention based fusion module which computes
task-attuned token representations by aggre-
gating intermediate layer representations from
a pre-trained network. Our proposed fusion
module trains only 0.0009% of total parame-
ters and achieves competitive performance to
the standard fine-tuning approach on various
tasks. It is also decoupled from the pre-trained
network making it efficient during computa-
tion and scalable during deployment. Last but
not the least, we demonstrate that our proposed
attention-fusion mechanism can transfer effec-
tively to different languages for further re-use
and expansion.

1 Introduction

Aligned with recent advancements in deep learn-
ing research, most state-of-the-art (SOTA) NLU
models are built upon neural networks, especially
using transformer(Vaswani et al., 2017) based ar-
chitectures. However, these models require a large
amount of domain-specific labeled examples for
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cent adoption of self-supervised pre-training and
transfer learning mitigates the issues stemming
from scarcity of labeled data (Yang et al., 2017;
Chen et al., 2019), by pre-training with unsuper-
vised tasks established upon massive unlabeled cor-
pora (Devlin et al., 2019; Liu et al., 2019; Radford
et al., 2019; Raffel et al., 2020). The resulting
models encode syntactic and semantic linguistic
information and can be fine-tuned with limited la-
beled examples on downstream NLU tasks, such
as Question-answering (QA) (Rajpurkar et al.),
Textual-entailment (Dagan et al., 2006), Slot Label-
ing (SL) (Chen et al., 2019) etc. Fine-tuning is a
commonly used method that adapts a pre-trained
model to a downstream task and has been shown to
achieve SOTA results in various NLU tasks. How-
ever, in the presence of larger pre-trained mod-
els and many downstream tasks, fine-tuning the
whole model for each downstream task is ineffi-
cient and expensive due to reasons such as higher
memory consumption since gradient and optimizer
states need to be stored for all parameters, higher
computational cost since error needs to be back-
propagated through all layers and bigger cost of
hosting large models for each task.

Parameter efficient domain adaptation has been
an area of interest in recent literature comprising of
various approaches such as Adaptor (Houlsby et al.,
2019), Bitfit (Ben-Zaken et al., 2021), DiffPrune
(Guo et al., 2020), Prompt tuning (Lester et al.,
2021; Liu et al., 2021) etc. Most of these efforts
propose to insert or append task specific parame-
ters in-between or inside of the pre-trained encoder
layers, we refer these approaches as early-fusion
techniques, as task specific parameters are fused
inside the pre-trained network. Some drawbacks
of early fusion based methods are: during training,
loss has to be back-propagated to all layers mak-
ing them slower; hard to scale in NLU systems as
pre-trained encoder and task specific modules are
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tightly coupled together. In comparison to early fu-
sion, one can place task specific modules after the
pre-trained network, so the pre-trained network is
untouched regardless of downstream tasks, we refer
to this as late-fusion. One late-fusion option is to
concatenate (Cao et al., 2020) all layers from a pre-
trained network and project to a lower dimension
for task-specific decoders. However, the projec-
tion matrices can be considerably big with larger
models, e.g., concatenation then projecting hidden
layers of a BERT-large model to a dimension of
256 amounts to 6.2 million parameters leading to
increased computational cost. These challenges
hinder the progress of deploying SOTA transfer
learning based models to downstream NLU sys-
tems.

To address these challenges, we propose
attention-fusion, a light but effective task-specific
late-fusion based module, for adapting pre-trained
models to downstream NLU tasks. Our proposed
architecture decouples general purpose pre-trained
models from downstream task-specific decoder lay-
ers with an attention-fusion module. The fusion
module enables decoders to effectively adapt hid-
den representations from intermediate layers of the
pre-trained network.

To examine the effectiveness of attention-
fusion mechanism, we conduct experiments on
popular language understanding tasks, including
QQP (Quora Question Pair), QNLI (Question-
answering NLI), SST-2 (Stanford Sentiment Tree-
bank), CONLL-03 (Name Entity Recognition) and
a multilingual Spoken Language Understanding
(SLU) (Tiir et al., 2002; Huang and Chen, 2019)
task using mATIS dataset. Our results demonstrate
that attention-fusion module achieves comparable
performance to fine-tuning approach while only
tuning a small amount of parameters. Our attention-
fusion approach is a late-fusion based mechanism,
thus, exhibiting lower computation cost since back-
propagation is limited to task-specific fusion mod-
ule and decoder layers. Furthermore, we empiri-
cally show that the task-specific attention-fusion
module is transferable across languages. We aim to
release our code on Github to support further exper-
imentation. In summary, our primary contributions
are three-fold:

* Propose a light but efficient task-specific late-
fusion module called attention-fusion, which
is capable of aggregating representations from
intermediate layers of the pre-trained model

to adapt to a downstream NLU task.

* Demonstrate the benefit of the proposed mod-
ule by evaluating both accuracy and computa-
tion efficiency on various tasks.

* Analyze how the attention-fusion module in-
teracts with pre-trained models and show that
such a module is task-specific and can transfer
effectively to different languages.

2 Related Work

The importance of efficiently fine-tuning and de-
ploying pre-trained networks to NLU systems has
gained wider recognition. In this section, we dis-
cuss various approaches proposed in literature.
Model Compression and Distillation One re-
search direction focuses on building compact pre-
trained networks with techniques like model com-
pression (Bucilua et al., 2006; Ganesh et al., 2020),
pruning (Gordon et al., 2020; Han et al., 2016;
Wang et al., 2019b), quantization and knowledge
distillation (Hinton et al., 2015). DistilBERT (Sanh
et al., 2019) and TinyBERT (Jiao et al., 2020) sug-
gested using knowledge distillation framework to
train a smaller student network by matching the
layer outputs with a larger teacher model. ALBERT
(Lan et al., 2019) attempted to reduce parameters
through weight-sharing across all transformer lay-
ers and factorizing the embedding matrix. Zafrir
etal. (2019) applied an 8-bit integer quantization to
reduce BERT model size by 4x. However, these ap-
proaches still suffer from sub-optimal performance
in accuracy when the model size gets smaller.
Lightweight Fine-tuning Another line of re-
search focuses on using a small amount of extra pa-
rameters along with the pre-trained network. Some
popular methods include: Adaptor, proposed by
Houlsby et al. (2019), suggested to insert a task
specific bottleneck module between pre-trained net-
work layers. Other ideas suggest to re-parameterize
the pre-trained network partially: Ben-Zaken et al.
(2021) proposed to tune only bias-terms of the pre-
trained network for each task; Guo et al. (2020)
formulates task-specific fine-tuning as learning a
diff vector that is added to the pre-trained network,
both shown to match the full fine-tuning approach
on accuracy while only using less than 0.1% train-
able parameters; more recently, Lester et al. (2021);
Liu et al. (2021) suggested appending extra prompt
tokens to layers of the model to control output
while keeping the network frozen. There are also
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efforts focusing on using intermediate layers of the
pre-trained network for different tasks, Peters et al.
(2018) proposed to learn a weighted sum represen-
tation from the intermediate layers of the model
, while Cao et al. (2020) suggested concatenating
the intermediate layers of the pre-trained network.

Probing in Transformers The significant per-
formance gain brought about by pre-training has
emphasized the need to better understand the co-
relation between pre-trained network architecture
and resulting language representations. Studies
(Tenney et al., 2019b,a; Kovaleva et al., 2019) sug-
gest that pre-trained models can encode a range of
syntactic and semantic information in different lay-
ers of the network. Complex linguistic structures
are represented hierarchically in the higher layers
of the model. In comparison, simple language clues
are encoded in lower layers. Inspired by these find-
ings, we propose a task-specific attention-fusion
architecture, to more effectively utilize hidden rep-
resentations with different granularity from pre-
trained networks.

3 Approach

In this section, we describe the proposed task-
specific fusion model architecture, which aug-
ments general-purpose pre-trained models with
task-dependent attention on encoded representa-
tions in multi-granularity and with prediction lay-
ers for NLU tasks. The attention-fusion module
aims to improve performance and parameter ef-
ficiency by sharing parameters of the pre-trained
model with other tasks.

3.1 Late-Fusion vs. Early-Fusion

Most of the existing methods adopt early-fusion
for task adaptation, by either inserting light-weight
task-specific module or appending prompts inside
the pre-trained encoder; or tuning only a small por-
tion of the parameters from the pre-trained network
to adapt to a downstream task. With early-fusion,
the light-weight module can take advantage of the
depth of the pre-trained network, to adjust model
output to downstream task. One drawback of early-
fusion based approaches is that the task specific
module is tightly coupled with the pre-trained net-
work, making the training process costly and slow.
Early-fusion based methods require loss/error to
be back-propagated to all layers of the pre-trained
network since light tune-able modules reside in
each layer of the network. One solution to address

this inefficiency is to adopt late-fusion, where the
entire pre-trained network is kept frozen, and the
task-specific module is placed after the pre-trained
encoder. In such a setting, pre-trained network is
de-coupled from the downstream task, training loss
is only back-propagated to task-specific parame-
ters i.e attention-fusion module and decoder layers,
make the training process more efficient.
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Figure 1: The architecture of the proposed task-specific
attention-fusion module. It also depicts the share-
ability of a pre-trained network among different tasks.

3.2 Model Architecture

We propose attention fusion, a late-fusion mod-
ule to utilize hidden representations from a share-
able, general-purpose pre-trained model, such as
BERT (Devlin et al., 2019) and RoBERTa(Liu et al.,
2019), for downstream tasks adaptation. Figure
1 visualizes the proposed architecture, including
the fusion layer and how it fits into a pre-trained
network (in our case, BERT-large or multi-lingual
BERT). The parameters in the pre-trained network
(including the embedding layer), colored in blue,
are frozen, making the pre-trained model shareable
with other tasks. The pre-trained encoder takes a se-
quence of tokens as input and generates an encoded
representation for every token at each layer. The
task specific decoding network, colored in green,
is tailored per downstream task. For NLU tasks,
decoders typically include a feed-forward layer and
a softmax layer for the final output. The attention
fusion module, also colored in green, connects the
pre-trained encoder to the task-specific decoder.
This fusion module is used to extract useful fea-
tures from the intermediate (and final) layers of the
pre-trained encoder for the task-specific decoder.
During training, errors are propagated only to the
task-specific parts (the green components in the fig-
ure) hence it is memory and computation efficient.
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The fusion module is also extremely light weight,
for a BERT-large model, the attention fusion mod-
ule only adds 0.0009% of the total parameters of
pre-trained encoder.

The proposed approach is scalable when the sys-
tem grows to include more tasks, as the most com-
putation and memory-intensive component, the en-
coder, is shared and frozen, while the task-specific
decoder and attention fusion module is decoupled
from the pre-trained network and trained on each
downstream task. Moreover, with the addition of
a fusion module, we can achieve comparable per-
formance to fine-tuning, without adapting the pre-
trained network by surfacing the pertinent informa-
tion already encoded and buried in the intermediate
layers, for different downstream tasks.

3.3 Attention-Fusion Module

The encoded representation of a token is achieved
by focusing on different layers of a pre-trained net-
work for a given downstream task. The focus on dif-
ferent layers of the network shifts based on the task
at hand. To attend to the corresponding token-level
representation across different layers for a given
downstream task, we propose an attention-fusion
module to learn task-specific token representation,
by pooling intermediate layer representations at a
token level. More specifically, for each task, we
use an attention query vector, denoted as Q°. This
query vector is a task-specific representation which
can be either learned during training or adopted
from a pre-trained one (learned on the same task
but same/different datasets). We further denote the
representation of token i at layer j as V; and the

attention weight of token i at layer j for task t as
J

a; (t), which can be calculated as:
o exp(@QVY)
O Sem@vy
at) =3 olOV; @)
j=1

Thus, the contextual representation of token i
for task t, denoted as ¢;(t), can be calculated as
weighted sum of token i across all vertical layers.
We denote such attention-based pooling mecha-
nism as attention-fusion in our experiments. The
re-computed fused token representation is then pro-
jected and connected to feed-forward layers and
final softmax layer.

There are other ways to extract token representa-
tions from an encoder. Peters et al. (2018) proposed

all layers be combined with a weighted average
pooling operation, c; = E]L:o sjhg ;. The weight
vector is optimized as part of the task model, so
that it may preferentially mix contextual informa-
tion represented in different layers of the model for
the task. We refer to this approach as linear-fusion.
Cao et al. (2020) proposed to concatenate all BERT
layers, then project to a feed forward layer before
passing to decoders. We refer to this approach as
concat-fusion. For comparison purposes, we add
linear-fusion and concat-fusion as our baseline al-
ternatives for late-fusion approaches.

4 Experiment

We evaluate attention-fusion as well as other popu-
lar light-weight fine-tuning approaches on 5 popu-
lar general language understanding tasks.

4.1 Dataset

Sentiment Analysis: We use the SST-2 dataset be-
longing to GLUE benchmark (Wang et al., 2019a)
to perform a single sentence binary classification
task. We report accuracy on the developement set.

Paraphrase Similarity: We use the QQP dataset
belonging to GLUE benchmark to perform a
sentence-pair binary classification task. We report
accuracy on the developement set.

Natural Language Inference: We use the QNLI
dataset belonging to GLUE benchmark to perform
a sentence-pair multi-class classification task. We
report accuracy on the developement set.

Named Entity Recognition: We use the CoNLL-
2003 dataset which is a widely adopted NER bench-
mark(Tjong Kim Sang and De Meulder, 2003). We
report micro-f1 score on the test set.

Spoken Language Understanding: We use the
public mATIS (Mansour and Batool, 2020) dataset
to perform Intent Classification (IC) and Slot Label-
ing (SL) tasks. The dataset is originally transcribed
in English and then manually translated into four
languages: EN, FR, DE and ES; thus, the ontology
of the data in all 4 languages is the same. We report
micro F1 score on the test set.

4.2 Experiment Setup

For monolingual tasks, we compare the proposed
attention-fusion module on four popular general
language understanding tasks: QQP, QNLI, SST-2
and CONLL-03 with:
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Table 1: Results on monolingual English tasks comparing attention-fusion module against various light weight fine-
tuning approaches. We report accuracy metric on each of these tasks (higher scores indicate better). Additionally,
we also present the percentage of trainable parameters for each of these approaches as well as fusion type. Score
shown in bold with underscore indicates best score across all, while bold font indicates best score among light-
weight fine-tuning approaches. * indicates accuracy from dev set. For results on Bitfit, Diff-Prune, Prompt-tuning
vl and v2, we quote the numbers listed in the paper if available, otherwise, we produce the numbers using their

code and settings.

Model Fusion type % params QQP* QNLI* SST-2* CONLL-03 AVG
Fine-tune None 100% 90.2 91.5 93.4 92.8 92.0
Last-layer None 0% 75.9 60.3 83.0 88.3 76.9
Adaptor Early 3.6% 87.1 91.8 91.9 89.1 90.0
Bitfit Early 0.08% 85.6 91.8 93.3 89.5 90.1
Diff-Prune Early 0.1% 85.2 92.7 93.3 90.0 90.3
Prompt-tuning Early 0.015*% 80.0 85.7 92.4 81.9 85.0
Prompt-tuning v2  Early 0.36'% 86.6 91.0 93.6 90.2 90.4
Linear-fusion Late 0.000008%  78.4 72.1 85.7 90.6 81.8
Concat-fusion Late 0% 87.6 88.4 92.3 90.1 89.6
Attention-fusion Late 0.0009% 87.9 88.2 93.3 90.9 90.1

Table 2: Results on public mATIS datasest for IC and SL tasks using the proposed task specific attention-fusion
architecture and baseline models. All models are trained on full size training data in four languages. Results are
F1 scores (higher scores indicate better results). Score shown in bold with underscore indicates best score across
all, while bold font indicates best score among light-weight fine-tuning approaches.

Model Intent Classification Slot Labeling

EN ES DE FR AVG | EN ES DE FR AVG
Fine-tune 9746 96.15 96.60 96.63 96.71 | 96.94 9152 9641 9520 95.02
Last-layer 91.60 8845 90.10 91.57 90.43 | 93.22 88.73 9234 91.84 91.54
Linear-fusion 94.69 95.64 9430 94.18 9470 | 9523 9136 96.35 9478 94.43
Concat-fusion 97.76  96.68 96.24 97.85 97.13 | 96.53 91.61 96.21 94.69 94.76
Attention-fusion | 97.39 96.39 9630 97.22 96.83 | 9691 92.07 96.54 95.09 95.15

* two baselines: a standard fine-tuning mech-
anism that trains the entire network on the
downstream task (denoted as fine-tune), and
the case where the pre-trained encoder is kept
frozen and only the parameters in decoder lay-
ers are fine-tuned (denoted as last-layer)

different late-fusion mechanisms such as
concat-fusion and ELMo style linear-fusion.

light-weight fine-tuning techniques proposed
in literature such as Adaptor, Bitfit, Diff-
prune, Prompt-tuning v1 and v2.

We evaluate the multilingual and cross-lingual ca-
pabilities of attention fusion module on IC and
SL tasks using mATIS dataset under two learning
regimes: using full-sized training data and few-shot
learning.

For monolingual tasks, we use a BERT-large en-
coder from public available gluonnlp; for multilin-
gual tasks, we use an in-house pre-trained mBERT
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base encoder trained on 8 languages. Both pre-
trained models are trained on public data, includ-
ing Wikipedia, Books corpus, and CommonCrawl
corpus. For decoders, we use two feed forward
layers of hidden size 256, and a softmax layer for
sequence classification task, a CRF layer followed
by a softmax layer for sequence labeling tasks.

Throughout our experiments, we train all mod-
els (baselines and variations of fusions) with mini-
batch sizes ranging between 16 to 64, on 2 Nvidia
Tesla V100 GPUs. We adopt Adam optimizer for
all our experiments and use a learning rate of 2e-5
for the fine-tune baseline and 2e-3 for other late-
fusion models. For all experiments, we report mean
statistic of 3 random seeds run.

LOptimal prompt length usually ranges from 20 to 100
tokens, we use an average of 50 tokens to estimate number of
extra parameters.

2 Although concat-fusion doesn’t insert additional pa-
rameters explicitly, it does increase the size of the overall



Table 3: Results on public mATIS dataset evaluating the attention-fusion architecture in few-shot transfer learning
setting for IC and SL tasks. Comparing to last-layer and fine-tuned mBERT baselines. Numbers in the table are F1

scores on IC and SL, averaged across target languages.

Intent Classification Slot Labeling
source — target last-layer fine-tune attention-fusion | last-layer fine-tune attention-fusion
EN—-DE/ES/FR | 84.67 97.06 96.09 89.06 95.72 94.48
DE—EN/ES/FR | 85.38 96.76 96.14 87.39 94.72 92.96
FR—DE/ES/EN | 82.78 96.99 96.73 86.55 92.62 91.75
ES—DE/EN/FR | 80.89 96.90 96.76 84.72 92.48 90.16

5 Results and Discussion

In this section, we present the results on mono-
lingual and multilingual tasks, compare the training
efficiency and analyze the interactions of attention
fusion with different layers across different tasks.

5.1 Evaluation on Monolingual Tasks

Table 1 compares the performance of attention-
fusion module with various light-weight fine-
tuning approaches proposed in literature on QQP,
QNLI, SST-2 and CONLL-03 datasets. We quoted
numbers on Bitfit, DiffPrune, Prompt-tuning and
Prompt-tuning v2 from their published results,
while for Adaptor, we reproduced results using
code and settings suggested by the authors since
their published numbers are on test set only. For
late-fusion baselines, we compare against ELMo
style linear-fusion and concat-fusion. We also
record the percentage of additional trainable pa-
rameters to demonstrate the computational cost
associated with each approach. Across all tasks,
the attention-fusion module sees a significant im-
provement of an average 13.2 absolute points com-
pared to the last-layer baseline model which indi-
cates the need to harness intermediate layers rep-
resentation of a network for a downstream task.
Among the different lightweight fine-tuning mech-
anisms, attention-fusion achieves the best perfor-
mance on QQP and CONLL-03 tasks, comparable
performance on SST-2, while seeing a degrada-
tion of 4 points on QNLI, we hypothesis NLI task
requires some hierarchical mapping of semantic
features from representation space, thus limited
performance of late-fusion based methods on such
a task. On an average, attention-fusion is 1.9 ab-

model. When the concatenated hidden representations are
utilized by the decoder, it increases the size of FFN lay-
ers in the decoder, for a BERT-large model with 1024 hid-
den size and 24 layers, the first FFN layer in the decoder is
(1024 * 24) * decoder_hidden_units which is 24x the size
of FFN layer in other approaches.

solute points behind the fine-tune approach and
achieves comparable performance against other
early-fusion approaches while only training a small
fraction (0.0009%) of parameters. Among late fu-
sion methods, ELMo style linear-fusion is behind
attention fusion by 8.3 absolute points, with signif-
icant degradation in pair-utterance tasks like QQP
and QNLI, indicating that using identical weight
assignment for all tokens in the sequence is a sub-
optimal approach and requires a more flexible and
nuanced fusion mechanism. Concat-fusion shows
comparable performance to attention-fusion but it
is not as light-weight as attention-fusion due to
extra parameters being added to project the con-
catenated layers to the downstream decoders.

5.2 Evaluation on Multilingual Tasks

Table 2 shows the performance of mBERT models
on IC and SL tasks with different types of late-
fusion modules applied, along with fine-tune and
last-layer baselines on four languages in the mA-
TIS dataset. We observe a significant improvement
in performance for both IC and SL tasks across
all languages (an average of 6.4 absolute F1 score
increase in IC and 3.6 absolute F1 score increase
in SL) using attention-fusion compared to the last-
layer model. Attention-fusion also achieves com-
parable performance to fine-tune model in both
IC and SL tasks (an average of 0.12 absolute F1
score increase in IC and 0.13 absolute F1 score
increase in SL). Linear-fusion and concat-fusion
also outperforms the last-layer, demonstrating the
effectiveness of utilizing intermediate layer repre-
sentations of the encoder.

With the rising popularity of NLU systems, there
is a need to expand them to new languages. An
open challenge with language expansion is the
scarcity of annotated data in the new language. A
popular way to tackle this challenge is through
transfer learning; thus, we examine the language
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Figure 2: The distribution of attention weights for Intent Classification and Slot Labeling tasks on EN, ES, DE and

FR languages of mATIS dataset.

transfer-ability of our proposed architecture in a
few-shot learning setting compared to the base-
line models. We measure F1 score on IC and SL
tasks on four languages (EN, FR, DE, and ES)
for the public mATIS dataset. We create a few-
shot dataset for each one of the four languages
by down-sampling the original training dataset to
5% of the original size. Table 3 summarizes the
IC and SL performance of models fine-tuned on
full-sized training data in the source language plus
few-shot data in the target language, and evalu-
ated on the target language. For example, EN ->
FR indicates a model fine-tuned on full-size EN
data and few-shot FR data, and evaluated on the
FR dataset. We observe attention-fusion improves
transfer-ability over last-layer baseline by a large
margin (an average increase of 13 points F1 score
for IC and 5.4 points F1 score for SL), achieving
comparable performance with the fine-tune model
on IC. Even though the F1 scores are lower than
that of fine-tune model for SL in DE and ES, using
attention-fusion allows for language expansion at a
significantly lower cost, compared to the fine-tune
baseline. The overall result suggests that attention-
fusion can effectively improve knowledge transfer
across languages.

5.3 Training Efficiency

In this section, we examine the training efficiency
through number of trainable parameters and con-
vergence speed of attention-fusion in compari-
son with other methods. A popular approach is
Adapter in which the number of extra parameters is
num_layers x (2 x m x d+m+ d) , for BERT-
large, m=1024, num_layers=24, with bottleneck
dim of 256, results in 12.6 million trainable param-
eters. Bitfit adjusts the parameters of bias terms

== attention-fusion == linear-fusion last-layer == Dbitfit

0.4

0.2

Training loss on SST-2

Training Time (minutes)

Figure 3: The loss convergence speed of attention-
fusion mechanism against other early and late fusion
approaches on SST-2 task.

in Query, Key, Value matrices, as well as projec-
tion and feed-forward module among all layers, for
BERT-large, this amounting to 270 K trainable pa-
rameters. Prompt-tuning appends prompts to the
first layer or to all layers (Liu et al., 2021), the pre-
ferred length of the prompt ranges from 20 to 100
tokens, for BERT-large, the trainable parameters
is (1024 x prompt length) if prompt is inserted
into the first layer, or (1024 x prompt length x
num layers) when inserted to all layers. In com-
parison, the attention-fusion mechanism is more
efficient than other early-fusion based methods due
to the following reasons:

* it uses a query vector of the same size as the
pre-trained encoder hidden dimension (e.g.,
1024 parameters for BERT-large) which adds
significantly fewer parameters for training
compared to early-fusion mechanisms

* the size of the fusion module does not grow
with the number of layers in the pre-trained
network unlike some other approaches
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Table 4: Cross-lingual transfer: IC and SL results with pre-trained attention-fusion from EN on DE/ES/FR dataset.
For baseline we train attention fusion with in-target language data. We report F1 scores on IC and SL tasks.

Positive numbers indicate improvement over baseline.

Cross-lingual transfer Intent Classification Slot Labeling

DE ES FR AVG | DE ES FR AVG
in-target language fine-tuning (baseline) | 95.96 96.68 97.18 96.52 | 95.58 91.06 94.79 94.48
in-target language fine-tuning with 9478  96.10 96.55 96.44 | 9554 9113 9479 94.48
pre-trained fusion vector trained on EN

¢ it uses a late-fusion mechanism, in which
the backward-pass and model update are per-
formed only to the fusion module and decoder
layers resulting in faster training.

In Figure 3, we report training loss over time for
attention fusion and some other methods. We chose
BitFit to represent an early-fusion approach due to
its simplicity and effectiveness, and linear-fusion
as an alternate late-fusion mechanism. We train all
models with same number of GPUs and batch size,
as well as adopt learning rate suggested by pub-
lished paper. As shown in the plot, attention-fusion
converges faster than BitFit, we hypothesis this is
because late fusion does not need to back-propagate
loss to all layers; hence making it faster to train and
converge. last-layer is the least performant given
it doesn’t harness intermediate representations; on
the other hand, despite using intermediate layers,
linear-fusion does not perform as good as attention
fusion, suggesting the effectiveness and efficiency
of the task-specific attention mechanism.?

5.4 Analysis on Attention-fusion

In this section, we analyse the role and nature of the
attention-fusion module. We visualize the distribu-
tion of attention weights after the softmax operation
for different layers of mBERT in Figure 2. Along
with the 12 layers of the mBERT-base encoder, we
also attend to the embedding layer. Hence, the X-
axis of all plots indicates layer 1-13, with 1 being
the embedding layer and 13 being the 12th layer of
BERT. The Y-axis denotes the attention weight as-
sociated with a layer. The attention weights across
layers sum up to 1.0.

We show the attention weight distribution for IC
and SL tasks in Figure 2 to investigate the learned
attention patterns for different tasks. We observe

3For other approaches, our results showed attention-
fusion is 4x faster than prompt-tuning v1& v2 and 1.5x faster
than Adaptor when training with original released implemen-
tation. Due to differences in underlying training infrastructure,
we did not report these results in Figure 3.

that the attention-fusion module attends to mBERT
layers differently for different tasks. IC focuses on
mid-late layers while SL focuses on early and mid-
layers. The result demonstrates that the learned at-
tention weights vary across tasks and thus attention-
fusion can improve task adaptability with its flex-
ibility in using intermediate representations. We
hypothesize that IC relies on higher-level semantic
information, while SL attends to both token-level
embedding input from lower layers as well as con-
textual information from higher layers.

We also visualize the weights learned for IC and
SL tasks on four languages Figure 2 to compare
the attention patterns across languages. We ob-
served that all languages learn similar attention
weight distribution for different mBERT layers
for each of the tasks. This observation explains
the language transfer-ability of the attention-fusion
model as described in the previous section. To
further demonstrate that the attention-fusion mod-
ule is task-specific and language-agnostic, we take
a pre-trained attention-fusion module trained on
EN language, freeze it and use it for different lan-
guages such as DE, FR and ES. We then compare
this with the baseline in which the attention-fusion
module is trained and evaluated on the same target
language. As shown in Table 4, we observe compa-
rable results against baseline; this suggests that the
attention-fusion module is task-dependent and can
transfer effectively across different languages.

6 Conclusion

With the rising popularity of transfer learning in
NLU, the challenge of adapting pre-trained mod-
els to NLU tasks effectively and efficiently is be-
coming increasingly relevant. To address this chal-
lenge, we propose a light yet efficient task-specific
attention-fusion module which enables parameter
sharing and efficient fine-tuning for downstream
tasks. We demonstrate that our proposed late-
fusion module achieves comparable performance
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to other popular methods as well as the fine-tuning
approach, while using less tune-able parameters per
task. We also show that the task-specific attention-
fusion module is transferable across languages, en-
abling language expansion work in NLU at a much
lower cost.
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