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Abstract

Training a deep reinforcement learning-based
dialogue policy with brute-force random sam-
pling is costly. A new training paradigm was
proposed to improve learning performance and
efficiency by combining curriculum learning.
However, attempts in the field of dialogue pol-
icy are very limited due to the lack of reliable
evaluation of difficulty scores of dialogue tasks
and the high sensitivity to the mode of progres-
sion through dialogue tasks. In this paper, we
present a novel versatile adaptive curriculum
learning (VACL) framework, which presents
a substantial step toward applying automatic
curriculum learning on dialogue policy tasks.
It supports evaluating the difficulty of dialogue
tasks only using the learning experiences of
dialogue policy and skip-level selection accord-
ing to their learning needs to maximize the
learning efficiency. Moreover, an attractive fea-
ture of VACL is the construction of a generic,
elastic global curriculum while training a good
dialogue policy that could guide different di-
alogue policy learning without extra effort on
re-training. The superiority and versatility of
VACL are validated on three public dialogue
datasets.

1 Introduction

Deep reinforcement learning (DRL) as a promising
method has impressive achievements for dialogue
policy learning (Young et al., 2013; Gasic et al.,
2013; Su et al., 2018; Zhang et al., 2019; Lubis
et al., 2020; Wang et al., 2021; Zhao et al., 2021b).
But current DRL-based dialogue policy approaches
mostly remain brute-force random sampling train-
ing, improving their performance at the expense
of high interaction costs (Jiang et al., 2015; Ren
et al., 2018; Narvekar and Stone, 2019; Narvekar
et al., 2020). Inspired by human education, a novel
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training paradigm, curriculum learning (CL), is
proposed to improve learning performance and ef-
ficiency through training a model on a designed
sequence of training tasks, rather than an arbitrary
random sampling (Svetlik et al., 2017; Weinshall
et al., 2018; Fan et al., 2018; Racanière et al., 2019;
Green et al., 2019). Although many empirical stud-
ies demonstrated beneficial effects of CL, reporting
in the field of dialogue policy remains very limited
(Zhao et al., 2021a; Liu et al., 2021).

One reason for the slow adoption of such ap-
proaches is the absence of a reliable evaluation
of the difficulty score of a dialogue task (Wein-
shall and Amir, 2018). On the other hand, the high
sensitivity to the mode of progression through di-
alogue tasks makes it difficult to adaptively select
the dialogue task at the appropriate difficulty for
the current dialogue policy (Graves et al., 2017).

In this paper, we propose a versatile adaptive cur-
riculum learning (VACL) framework, which con-
sists of two main components: One is a difficulty
measurer that evaluates the difficulty of dialogue
tasks only using learning experiences of the dia-
logue policy (also refer to student model) and ranks
them by difficulty to obtain a global curriculum,
exempting from the limitation of unable human-
defined difficulty. A generic, elastic global curricu-
lum is available after the end of training. The other
is a training scheduler that supports skip-level se-
lection on the global curriculum according to the
learning needs of the student model to maximize
the learning efficiency. The skip-level selection
could either choose a harder task to avoid wasting
time on too easy tasks or return to an easier task
to prevent forgetting. Besides, an attractive feature
of VACL is the construction of a generic, elastic
global curriculum while training a good dialogue
policy that could guide different dialogue policy
learning without extra effort on re-training. Our
model is model-agnostic, in the sense that it can be
incorporated into different student models.
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In summary, the main contributions of this pa-
per are three-fold: 1) We propose a novel VACL
framework, which presents a substantial step to-
ward applying automatic curriculum learning on
dialogue policy tasks. 2) We explore the versatility
of VACL that it succeeds in training a good dia-
logue policy while building a generic curriculum to
guide diverse student learning without extra effort
on re-training. To our knowledge, it is the first to
demonstrate the extra value of curriculum learn-
ing in dialogue policy tasks. 3) We validate the
superiority and versatility of VACL on three public
dialogue datasets. Additionally, we analyzed the
ranking of the generic global curriculum, which
gave us some inspiration to refine the difficulty
criteria for dialogue tasks.

2 Related Work

Inspired by the human education process, it is not
new to apply curriculum learning into dialogue
policy tasks to restructure the training process of
dialogue agents (Selfridge et al., 1985). There are
two categories for those approaches, one at the ex-
periences replay level for data exploitation and the
other at the task level for data collection (Portelas
et al., 2020). This paper focus here on the second
kind of study.

The methods at the experience replay level can
be considered as a ranking of the transitions, which
can be implemented by transition selection or tran-
sition modification. Prioritized experience replay
(PER), a typical transition selection method, biased
selects transitions with higher TD-error (Schaul
et al., 2016). However, PER is highly sensitive
to parameter changes, too large parameter changes
make it difficult for PER to convergence. Hindsight
experience replay (HER) controls the distribution
of training transitions by creating successful dia-
logue experiences from failed ones (Lu et al., 2019).
However, not all failed experiences are equally use-
ful for improving dialogue agents. Some provide
limited help in reaching the complete tasks, while
some are too similar to each other and thus redun-
dant to be learned entirely.

In contrast, there are very limited attempts
on researches at the task level. Zhao et al.
(2021a) presented preliminary attempts, namely
Automatic Curriculum Learning-based Deep Q-
Network (ACL-DQN). The ACL-DQN achieves
teacher-student co-evolution by incorporating a
teacher model to leverage the over-repetition re-
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Figure 1: Proposed VACL framework.

wards and the feedback from the student model to
optimize its curriculum by means of RL. But it re-
mains the drawback of RL, that is, training a good
teacher model from scratch may require more ex-
perience than learning a good student model. Thus,
the method equips the RL-based teacher model
with different hand-crafted courses to assist it in
customizing good curriculums even in the early
training phase. However, the equipped courses pre-
suppose user goals1 can be ordered by the number
of slots in user goals, whereas in reality, they may
vary along with multiple factors (Kim and Choi,
2018), an observation that has been verified in our
experiment. Recently, Liu et al. (2021) has pro-
posed a novel Scheduled Dialog Policy Learning
(SDPL) approach to assess the difficulty of user
goals using the dialogue state differential space
and scale the capacity of the training goal set pro-
portionally as the training time increases. However,
such a difficulty measurer is highly affected by
the training dynamics of the model itself, making
its curriculum only applicable to the model being
trained this time. This implies that user goals that
were not or less learned typically be more difficult,
and retraining may yield different orders. And the
pacing function in SDPL ignores the learning feed-
back of dialogue policies, resulting in forgotten
problems and performance impairment.

3 Proposed Methods

The overall framework of the Versatile Adaptive
Curriculum learning is shown in Figure 1, which in-
cludes two sub-modules: A difficulty measurer that
measures the difficulty of user goals and ranks them
by difficulty to obtain a global curriculum. After
the end of training, a generic, elastic global curricu-

1In the field of dialogue policy, each user goal is considered
a dialogue task. Readers can refer to Appendix .1 for details
on the user goal.
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Figure 2: Training scheduler schematic.

lum is available to guide different students learn-
ing without extra efforts on re-training; A training
scheduler model that follows the global curriculum
and adaptively curriculum-conditioning according
to the learning needs of the student model to maxi-
mize learning efficiency. We will describe the two
modules in detail and the implementation of the
integrated VACL algorithm in what follows.

3.1 Difficulty Measurer

In the context of human education, the distribution
of students’ exam scores reflects the difficulty of
the test. We build on this intuition for construct-
ing a difficulty measurer to evaluate the difficulty
of user goals by calculating the average cumula-
tive reward of their related samples. The greater
the average cumulative returns, the better students’
mastery of this user goal, which means that this
user goal is easier for the student. Hence, we de-
fine user goal difficulty as:

Definition 1. (User Goal Difficulty): we as-
sume that there exist interaction trajectories
for each user goal, {s0, a0, s1, a1, s2, a2, ......},
whose corresponding return trajectories are
{r0, r1, r2, ......}. We define the average cumu-
lative return of these sample trajectories about
this user goals as the difficulty of the user goal
gi, called the user goal value function V (g).

Average cumulative returns are attractive be-
cause they are usually cheaper to obtain and pro-
vide a more measured evaluation for user goals’
difficulty without knowing the overall user goals.
Since user goal value functions V (g) are presumed
by sampling return trajectories and average their cu-
mulative returns, we apply the Monte Carlo method
(Hammersley, 2013) to evaluate the user goal value
functions without manually presuming unknown
difficulty factors. Given a user goal g, its user goal
value function is evaluated as follows:

V (g) =
1

N

N∑

j=1

Mj∑

k=0

γkrjk (1)

where N denotes the number of all interaction tra-
jectories corresponding to the user goal g, and Mj

denotes the length of the sampled interaction tra-
jectories j.

The difficulty measurer ranks user goals from
easy to difficult based on calculated user goal diffi-
culties to obtain a global curriculum for the training
scheduler. New interaction trajectories generated
from student learning are also taken into account
in the update of the user goal value function:

Vt+1(g) = Vt(g) + α(Rt+1 − Vt(g)) (2)

where α denotes the update rate, and we experimen-
tally evaluate the impact of varying α on perfor-
mance in Appendix .3. Vt+1(g) and Vt(g) denote
the value function of the user goal g at the previous
and current moments, respectively. Rt+1 denotes
the cumulative return of new interaction trajectory
about the user goal g.

As training times increases and more interaction
samples are collected, the user goal value functions
gradually converge. Through sorting the converg-
ing user goal value functions, a generic, elastic
global curriculum is obtained, which could be ap-
plied to new students learning without extra efforts
on re-training 2. The global curriculum storage
form is as follows:

[{g0 : V (g0)}, {g1 : V (g1)}, [{g2 : V (g2)}...]

where gi denotes the index of the user goal gi, and
V (gi) denotes the difficulty of the user goal gi.

3.2 Training Scheduler
Ideally, students should follow a curriculum based
on global difficulty, while not wasting time on tasks
that are easy for their current learning ability. As a
result, instead of selecting from the global curricu-
lum one by one, the training scheduler in VACL
allows skip-level selection on the global curricu-
lum according to the learning needs of the student
model to maximize learning efficiency.

To achieve this goal, we first outline the learning
needs for the student model as follows: In prin-
ciple, training on easy user goals gains less infor-
mation than difficult ones, and direct training on

2The relative order of the global curriculum remains
roughly the same even for different dialogue policies, despite
the change in their difficulty score. For example, for students
at any grade level, high school lessons are always harder than
elementary schools.
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difficult user goals may not gain positive guidance.
To maximize access to information and establish
the correct location of the decision surface, student
models tend to select a user goal with difficulty that
matches their ability. Hence, the suitable difficulty
of a well-match user goal for the dialogue policy
in the current stage is satisfied as follows 3:

D(g′) =

{
V (gi)− |∆R|, if Ri > 0 or ∆R = 0,

V (gi) + |∆R|, else

∆R =

{
Ri − V (gi), if Ri ̸= V (gi),

V (gi+1)− V (gi), else

(3)

where V (gi) denotes the value function of the cur-
rent user goal gi, Ri denotes the current cumulative
returns obtained when completing the user goal gi,
and ∆R measures the current gap between the abil-
ity of the student policy and the user goal difficulty.

As shown in Fig 2, Ri controls the direction of
the next user goal selection in the global curricu-
lum, while ∆R controls the distance. Ri > 0 indi-
cates that the dialogue policy already successfully
completed the user goal gi, and the next task tends
to be more difficult. A high ∆R indicates low learn-
ing gains due to a large gap between the capability
of dialogue policy and the difficulty of the current
user goal, and the next curriculum tends to choose
a user goal that is further away from the current
user goal in the global curriculum. The training
scheduler continues to follow the global curriculum
when the capability of student policy and the user
goal difficulty are comparable, ∆R = 0.

Finally, the training scheduler selects a user goal
with the difficulty closest to the suitable difficulty
D(g′) for the next training, as shown in Algo-
rithm 1.

3.3 Implementation
Teaching according to aptitude accelerates the
learning efficiency of the dialogue policy, and the
performance-enhanced dialogue policy generates
higher quality sample trajectories, which further
improve the accuracy and rationality of the teacher
model in difficulty assessing and curriculum ar-
rangement. Both of them promote each other and
jointly improve the learning efficiency of dialogue
policies. The implementation of the VACL frame-
work is shown in Algorithm 2.

3Since the user goal value function and the learning gains
belong to the same order of magnitude, it is computationally
desirable.

Algorithm 1 Find the next user goal
find_nearest(curriculum, value)

Input: The global curriculum S and the suitable
difficulty D(g′)

Output: Index of the well-match user goal for the
next training g′

1: Initialize an empty list A to store all user goal
difficulties in S

2: for i← len(S) do
3: A.append(S[i].values())
4: end for
5: A← np.array(A)
6: i← (np.abs(A−D(g′))).argmin()
7: g′ ← S[i].keys()
8: return g′

Algorithm 2 VACL for Dialogue Policy Learning.
1: Initialize an empty experience relay buffer D

and a list T to store user goals index and their
difficulty pairs

2: 1⃝ Policy and Difficulty Initialized
3: Initialize Q(s, a; θQ) via pre-training on hu-

man conversational data
4: The difficulty of each user goal V (g) in human

conversational data is calculated via Eq. 1 and
stored in T together with their corresponding
user goal g

5: Initialize an initial suitable difficulty D(g) =
(V (g)max + V (g)min)/2

6: for t = 1 : N do
7: 2⃝ Global Curriculum Generation
8: The difficulty measurer ranks T by difficulty

to obtain a global curriculum S
9: 3⃝ Curriculum Conditioning

10: The training scheduler selects a user goal g
based on the suitable difficulty D(g), g =
find_nearest(S,D(g))

11: 4⃝ Interaction with environment
12: A User and a dialogue agent interact around

selected user goal g and their generated ex-
periences are stored in D

13: 5⃝Measure Learning needs
14: The training scheduler measures the learn-

ing needs according to the current cumula-
tive rewards R and evaluates the next suit-
able difficulty D(g) via Eq. 3

15: 6⃝ Difficulty Adjustment
16: The difficulty measurer also uses R to up-

date the user goal difficulty via Eq. 2
17: Sample random mini-batches from D and

update θQ via M-step minibatch Q-learning
18: end for
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4 Experiments

To evaluate the effectiveness and versatility of the
proposed VACL framework, experiments are car-
ried out on three public single datasets, Movie-
Ticket Booking, Restaurant Reservation, Taxi Or-
dering (Li et al., 2016, 2018) in both simulation
and human evaluation.

4.1 Dataset

The experiments are carried out on the platform Mi-
crosoft Dialogue Challenge (Li et al., 2016, 2018)
with three datasets across different difficulties for
our experiments: Movie-Ticket Booking, Restau-
rant Reservation, Taxi Ordering. As far as the typi-
cal difficulty classification criteria (the number of
slots in the user goal) (Zhao et al., 2020; Liu et al.,
2021), the difficulty of each dataset is: movie =
easy, rest. = middle, taxi = hard, as shown in Fig-
ure 5. The three datasets performed experimentally
are human-annotated, and their statistics are shown
in Table 2.

Figure 5: The distribution of the number of slots for
user goals in each dataset.

Task Intents Slots Dialogues User goals Mainly slot numbers Domain
Movie-Ticket Booking 11 29 2890 128 5-7 1
Restaurant Reservation 11 30 4103 3525 5-12 1

Taxi Ordering 11 29 3094 2830 8-13 1

Table 2: The number of intents, slots, dialogues, user
goals, and the range of slot number in user goals in three
datasets.

4.2 Baselines

To verify the effectiveness and versatility of our
method and its global curriculum, we conduct ex-
periments using the following existing dialogue
policies with curriculum learning and the curricu-
lum standards it brings as benchmarks, including:

• DQN model is implemented using a standard
DQN with only direct reinforcement learning
(Mnih et al., 2015).

• ACL-DQN(A/B/C) model performs auto-
matic dialogue curriculum learning by using
an RL-based teacher model to change the
learning order of the dialogue agents based on
their learning process, which contains three
schedules (Zhao et al., 2021a). Schedule A
has no fixed criteria and uses only a single
teacher model. Both schedule B and schedule
C ensure that the teacher model develops cur-
riculum from easy to complex, with schedule
B forcing students to learn one by one and not
skipping levels while Schedule C allows it.

• HER model performs dialogue data augmen-
tation by segmenting successful sessions from
failed dialogues and stitching them with simi-
lar successful dialogue to obtain artificial suc-
cessful dialogues (Lu et al., 2019).

• PER model reconstructs the training process
by prioritizing and replaying samples with
large temporal difference (TD) errors more
(Schaul et al., 2016).

• SDPL model uses the dialogue state differen-
tial space (ICM loss) to assess the difficulty of
user goals and then scales the capacity of the
training goal set proportionally as the training
time increases (Liu et al., 2021).

Proposed VACL

• VACL is the model we proposed that would
apply to the varying environments, students,
and support conditioning to handle changing
tasks, exempt from the limitation of unable
human-defined difficulty.

• SNCL is a variant of VACL, which replaces
the Difficulty Measure with the Slot-Number
based Difficulty Measure from Zhao et al.
(2021a) 4.

• VOCL is a variant of VACL, which replaces
the Training Scheduler with the sequential
training, forcing students to learn from eas-
iness to difficulty one by one.

4In implementing SNCL, we fix the ∆R in Eq. 2 to −1,
since the slot-number based difficulty value and the ∆R do
not belong to the same order of magnitude, and their difficulty
directions are opposite.
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Agent domain Epoch = 50 Epoch = 150 Epoch = 250 Epoch = 350
Success Reward Turns Success Reward Turns Success Reward Turns Success Reward Turns

DQN

Movie

0.2999 -19.13 32.27 0.3128 -17.61 32.29 0.3250 -15.97 31.93 0.3202 -16.67 32.18
ACL-DQN(A) 0.3453 -13.00 30.91 0.3366 -14.43 31.63 0.3665 -10.42 30.81 0.3566 -11.83 31.23
ACL-DQN(B) 0.2463 -26.46 34.04 0.3379 -14.41 31.91 0.3223 -16.58 32.51 0.3138 -17.71 32.74
ACL-DQN(C) 0.3266 -15.90 32.20 0.3167 -17.38 32.77 0.3077 -18.63 33.10 0.3184 -17.10 32.62
HER 0.1877 -34.14 35.34 0.3705 -9.69 30.30 0.3993 -6.09 30.01 0.4030 -5.65 30.01
PER 0.1360 -41.00 36.66 0.3534 -12.07 30.95 0.3693 -10.04 30.73 0.3830 -8.24 30.41
SDPL 0.3188 -16.42 31.38 0.3947 -6.60 29.94 0.4050 -5.20 29.60 0.4050 -5.28 29.76
VACL* 0.3883 -7.36 29.94 0.4275 -2.22 29.05 0.4388 -0.63 28.57 0.4290 -2.03 29.02
SNCL 0.3373 -13.87 30.72 0.3264 -15.50 31.33 0.3343 -14.73 31.70 0.3399 -14.06 31.69
VOCL 0.3511 -12.38 31.04 0.3569 -11.73 31.13 0.3642 -10.78 30.96 0.3635 -10.93 31.09
VRCL 0.3135 -17.02 31.31 0.2479 -26.24 33.98 0.2475 -26.38 34.16 0.2810 -21.88 33.20
DQN

Rest.

0.1058 -34.34 29.74 0.1103 -34.00 29.87 0.1259 -32.48 29.61 0.1315 -31.92 29.52
ACL-DQN(A) 0.1908 -25.76 27.88 0.3618 -9.01 25.14 0.3669 -8.46 24.97 0.3737 -7.80 24.85
ACL-DQN(B) 0.1605 -28.91 28.72 0.1486 -30.15 29.04 0.1169 -33.28 29.60 0.1131 -33.72 29.80
ACL-DQN(C) 0.2031 -24.72 28.02 0.2201 -23.10 27.83 0.2035 -24.87 28.36 0.2097 -24.18 28.09
HER 0.1016 -34.64 29.58 0.1943 -25.89 28.74 0.2129 -24.08 28.48 0.2109 -24.29 28.53
PER 0.2319 -21.65 27.06 0.3558 -9.58 25.21 0.3822 -6.97 24.74 0.3903 -6.18 24.63
SDPL 0.2499 -19.87 26.74 0.3171 -13.45 25.99 0.3458 -10.61 25.46 0.3432 -10.89 25.56
VACL* 0.3002 -14.92 25.89 0.4326 -2.06 23.98 0.4378 -1.57 23.95 0.4256 -2.76 24.14
SNCL 0.1291 -31.72 28.70 0.1751 -27.48 28.47 0.1840 -26.62 28.36 0.1828 -26.74 28.38
VOCL 0.1144 -33.51 29.61 0.1571 -29.39 29.05 0.1867 -26.47 28.54 0.1997 -25.16 28.27
VRCL 0.0735 -37.61 30.47 0.0718 -37.86 30.63 0.0799 -37.08 30.54 0.0739 -37.68 30.66
DQN

Taxi

0.0974 -34.96 29.47 0.1916 -25.96 28.40 0.1925 -25.85 28.35 0.1882 -26.30 28.47
ACL-DQN(A) 0.1673 -27.57 27.26 0.4375 -1.63 24.00 0.4629 0.93 23.47 0.4623 0.90 23.42
ACL-DQN(B) 0.0182 -43.10 31.49 0.0644 -38.61 30.80 0.1223 -32.93 29.89 0.1173 -33.40 29.91
ACL-DQN(C) 0.0233 -42.33 30.87 0.1312 -31.97 29.54 0.1160 -33.46 29.80 0.1207 -33.02 29.76
HER 0.2295 -22.01 27.36 0.4144 -4.12 24.83 0.4338 -2.22 24.52 0.4503 -0.56 24.17
PER 0.3510 -9.77 24.72 0.5434 8.98 21.84 0.5389 8.40 22.21 0.5510 9.68 21.82
SDPL 0.2645 -18.36 26.34 0.4903 3.49 23.27 0.5424 8.33 22.98 0.4743 1.81 23.76
VACL* 0.3396 -10.25 23.63 0.6321 17.74 20.30 0.6600 20.66 19.49 0.6513 19.80 19.62
SNCL 0.2322 -21.59 26.99 0.2908 -16.07 26.49 0.3004 -15.10 26.28 0.3006 -15.11 26.33
VOCL 0.1366 -30.34 27.27 0.3868 -6.91 25.46 0.4144 -4.14 24.86 0.4311 -2.61 24.82
VRCL 0.0784 -37.00 30.13 0.1310 -31.99 29.56 0.1227 -32.80 29.68 0.1294 -32.14 29.58

Table 1: The results of different agents at training epoch = {50, 150, 250, 350}. Each number is averaged over 10
runs, and each run is tested on 1000 dialogues. Best scores are labeled in blue. * denotes significant level p < 0.05
with other agents. Success: average success rate, Reward: average reward, Turn: average turn.

(a) Movie (b) Rest. (c) Taxi

Figure 3: The learning curves of different agents in Movie, Restaurant, and Taxi domains.

(a) Movie (b) Rest. (c) Taxi

Figure 4: The ablation experiment of two components of VACL in Movie, Restaurant, and Taxi domains.

• VRCLis a variant of VACL, which replaces
the Training Schedule with the inversed train-
ing, forcing students to learn from difficulty

to easiness one by one.

Generic Global Curriculum

• Random Curriculum is the user goal sam-
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Figure 6: The difficulty curves of three user goals in the Movie domain.

pling standard for most dialogue policy mod-
els.

• Slot-Number Curriculum is proposed by
ACL-DQN (Zhao et al., 2021a), which
takes the number of Inform_slot and
Request_slot contained in user goals as the
difficulty criterion 5.

• VACL Curriculum is a generic global cur-
riculum obtained during the training of our
proposed method.

4.3 Setup

For all models, we use a single layer perceptron
with 80 neurons and RMSprop optimizer with a
0.001 learning rate and 16 minimum batch size.
The discount factor γ is set to 0.9. The buffer size is
10k for all models except HER, which has a buffer
size of 100k. Whenever the current average suc-
cess rate reaches the maximum and is greater than
0.3, the experience replay will be emptied. The
maximum allowable number of conversations L
defaults to 30, except for the movie domain which
are 40. An ϵ− greedy strategy is used to achieve
exploration, where ϵ = 0.1. The learning rate of
both the teacher model and the student model of
ACL-DQN is 0.01. The slot thresholds used in
ACL-DQN for dividing user goal sets are 5, 6, 7
and 6, 7, 8 and 8, 9, 10, respectively. The stitch
threshold in the HER follows the optimal thresh-
olds of their papers, which is set to 0.2. For a fair
comparison, the time cost and data cost for all
models are consistent. We used the same 120 con-
versations to pre-filled experience replay for policy
initialization and difficulty initialization and the
same training epoch for policy optimization and
difficulty adjustment. All results are the average

5It is worth noting that the difficulty of user goals does not
change regardless of the case.

Index Diffculty
Slot
Number

Request_slot Inform_slot

12 46.7863 6 \

’city’: ’seattle’,
’numberofpeople’: ’2’,
’theater’: ’regal meridian 16’,
’starttime’: ’8:45 pm’,
’date’: ’tomorrow’,
’moviename’: ’the big short’

99 46.1902 5
’date’: ’UNK’,
’theater’: ’UNK’,
’starttime’: ’UNK’

’numberofpeople’: ’4’,
’moviename’: ’brothers grimsby’

22 43.4684 5
’date’: ’UNK’,
’theater’: ’UNK’,
’starttime’: ’UNK’

’numberofpeople’: ’4’,
’moviename’: ’zootopia’

90 29.8568 7
’date’: ’UNK’,
’theater’: ’UNK’,
’starttime’: ’UNK’

’city’: ’portland’,
’state’: ’oregon’,
’numberofpeople’: ’4’,
’moviename’: ’star wars’

77 15.6063 7
’date’: ’UNK’,
’theater’: ’UNK’,
’starttime’: ’UNK’

’city’: ’birmingham’,
’state’: ’al’,
’numberofpeople’: ’2’,
’moviename’: ’zootopia’

115 6.6631 6
’date’: ’UNK’,
’theater’: ’UNK’,
’starttime’: ’UNK’

’state’: ’california’,
’numberofpeople’: ’4’,
’moviename’: ’zootopia’

92 -13.6473 7
’theater’: ’UNK’,
’starttime’: ’UNK’

’date’: ’tomorrow’,
’city’: ’philadelphia’,
’numberofpeople’: ’4’,
’moviename’: ’deadpool’,
’zip’: ’19101’

16 -14.8769 6
’date’: ’UNK’,
’theater’: ’UNK’,
’starttime’: ’UNK’

’city’: ’Petaluma’,
’numberofpeople’: ’4’,
’moviename’: ’eddie the eagle’

84 -15.4901 6 \

’city’: ’seattle’,
’numberofpeople’: ’2’,
’theater’: ’regal meridian 16’,
’starttime’: ’8:45 pm’,
’date’: ’tomorrow’,
’moviename’: ’hail caesar’

Table 3: Information of selected user goals in the ac-
quired movie global curriculum.

values of 1000 dialogues from 10 turns with differ-
ent random seeds, each run tested on 100 dialogues.
The colored areas between the curves are 0.5 times
the standard deviations of each episode.

4.4 Effectiveness Evaluation

The results of our proposed VACL and the compar-
ison models in the three domains are reported in
Table 1 and Figure 3. It is obvious that the VACL
brings solid improvement, affirming the effective-
ness of VACL. Although PER achieves almost the
second-best performance at the final epoch, it can
be seen from Table 1 that PER learns slowly in the
early stage. In contrast, HER has shown compet-
itive performance in the movie domain, while it
seems to have little advantage in the other two do-
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(a) Movie (b) Rest. (c) Taxi

Figure 7: The learning curves of DQN agents trained with different curriculums in Movie, Restaurant, and Taxi
domains.

(a) Movie (b) Rest. (c) Taxi

Figure 8: The learning curves of different agents (HER and PER) trained with our global curriculum in Movie,
Restaurant, and Taxi domains.

mains. We also notice that ACL-DQN(A) performs
better than ACL-DQN(B) and ACL-DQN(C). We
conjecture that the difficulty metric of user goal
has an extremely complex criterion, not just the
slot number of user goals. Thus, ACL-DQN(A)
learns more hidden difficulty rules, allowing dia-
logue agents to benefit more from it. It also val-
idates our assumption about the difficulty of dia-
logue tasks. Although SDLP learns efficiently in
the early stages, its performance is affected by the
forgetting problem caused by its pacing function.
Moreover, the integration of SDPL into our frame-
work achieves better performance, which further
strengthens the contribution of our approach. The
experimental results are presented in Appendix .4.

4.5 Ablation Analysis

To further analyze the contribution of two com-
ponents to the proposed method, we conduct the
ablation test. As shown in Table 1 and Figure 4,
replacing either component hugely affects the per-
formance of dialogue policy, especially in the more
difficult restaurant and taxi domains. Among them,
VRCL performs worst over other models in all do-
mains while VOCL has slight improvements over
DQN and SNCL. And both of them are worse than
VACL. This result implies that the validity of the
training scheduler and the accuracy of our difficulty

measurer. Although SNCL produces better perfor-
mance than DQN, it is still limited by the fixed
user goal difficulties and fails to train a good policy.
The result also demonstrates that user goal diffi-
culties evaluated by our difficulty measurer have
more accurate than simply using the slot number.
In conclusion, these two components benefit the
VACL to a large extent.

4.6 Versatility Analysis

We suppose that our VACL can build a generic,
elastic global curriculum while training a good pol-
icy, which could guide different students learning
without extra re-training. To verify our conjecture,
we plot and observe the curves of each user goal’s
difficulty during the training process. We find that
almost all user goal difficulties converged, and
we randomly select three user goals with 10 ran-
dom seeds and draw their average difficulty curves
shown in Figure 6. The results initially verify our
conjecture.

The effectiveness of the global curriculum needs
to be demonstrated before verifying its generality.
Hence, we integrate different global curriculums
into a classic representative of the DRL-based dia-
logue policies, DQN policy, and see if our global
curriculum performs best among all of them. Fig-
ure 7 reports the effect of different global curricu-
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Agent Movie Rest. Taxi
Success Rating Success Rating Success Rating

DQN 0.17 2.13 0.04 0.93 0.05 1.03
ACL-DQN(A)7 0.28 2.86 0.22 2.25 0.32 2.46
HER 0.30 2.47 0.13 1.64 0.31 1.97
PER 0.34 2.96 0.22 2.41 0.35 2.60
SDPL 0.34 2.78 0.20 2.35 0.38 2.73
VACL* 0.39 3.13 0.28 2.96 0.44 3.02
VACL-DQN 0.36 3.05 0.23 2.61 0.40 2.82

Table 4: Human evaluation of different agents in Movie,
Rest. and Taxi domains. Scores with ∗ are statistically
significant (p < 0.05).

lum on the DQN model. It is obvious that training
with our VACL curriculum achieves the best per-
formance across three domains and consistently
outperforms other curriculums by a large margin.
Interm of slot-number curriculum, it always im-
proves very little.

To further glean insight regarding the generality
of our global curriculum, we integrate our global
curriculum and SDPL curriculum 6 with different
students (HER, and PER) and see whether its per-
formance is improved. Too many the number of
training leads the performance of student model
converged too quickly to clearly observe the effect
of our global curriculum. Therefore, we reduced
the number of training by a factor of 5. Figure 8
reports the learning curves of different students on
our global curriculum. It is obvious that training
with our global curriculum produces significant im-
provements while the SDPL curriculum does not.

Therefore, we can conclude that our global cur-
riculum could be applied to guide diverse student
learning without extra effort on re-training, which
verifies the versatile of the VACL framework.

4.7 Global Curriculum Analysis

To analyze the factors affecting the difficulty of
user goals, we further compare user goals with
varying difficulties in the VACL curriculum. Tak-
ing the movie domain as an example, we randomly
selected three user goals in the VACL curriculum
located at the head (blue), middle-part (yellow),
and tail (gray) positions respectively, and grouped
their information into Table 3. It can be seen that
the slot number does not fully reflect the user goal
difficulty. For example, although user goal 115
increases its difficulty by adding one inform_slot
over 22, user goal 77 with 7 slots is easier than

6It is worth noting that SDPL inability to produce a stable,
generic curriculum. To test the point, we choose the SDPL
model trained after 500 epochs in three domains to evaluate
the difficulty of each user goal and rank them to form an SDPL
curriculum.

user goal 84 with six slots. In addition, we also ob-
served an interesting phenomenon that, both have
the same slot-value pairs except moviename, user
goal 12 and user goal 84 have the exact opposite
difficulty, while user goal 99 and user goal 22 have
approximate difficulty. We conjecture that the user
goal difficulty is more relevant to the slot value in
inform_slot, which determines the amount of avail-
able information. This theoretical result is further
analyzed in Appendix .2.

4.8 Human Evaluation
To evaluate the feasibility of our VACL from a
human perspective, we recruited real users to inter-
act with different agents trained for 3008 epochs
using the platform and human evaluation criteria
provided by MDC. The results are shown in Ta-
ble 4. Consistent with simulation results, VACL
also achieves better performance from a human
perspective. Furthermore, we observe that the per-
formance of VACL-DQN (DQN with our generic
global curriculum) is close to VACL and outperfor-
mance of all others. It also verifies the effective-
ness of our generic global curriculum. The detailed
criteria for the human evaluation are shown in Ap-
pendix .5.

5 Conclusion

This paper proposes a versatile adaptive curricu-
lum learning (VACL) framework for task-oriented
dialogue policy learning. It supports evaluating
the difficulty of dialogue tasks only using the
learning experiences of dialogue policy and adap-
tively curriculum-conditioning based on the learn-
ing needs of students. This framework presents a
substantial step toward applying automatic curricu-
lum learning on dialogue policy tasks. Moreover,
we explored the versatility of VACL that it succeeds
in training a good dialogue policy while building a
generic curriculum to guide diverse student learn-
ing without extra effort on re-training. Additionally,
we analyzed the ranking of the generic global cur-
riculum, which gave us some inspiration to refine
the difficulty criteria for dialogue tasks. An impor-
tant direction for our future work is how to expand
our approach from single-domain tasks with differ-
ent difficulties to multi-domain tasks, e.g. Multi-
Woz (Budzianowski et al., 2018). This paper is an
essential cornerstone for such an investigation.

8From the above experiments, it is observed that all models
have converged and achieved optimal performance at 300
epoch.
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Rounds Speaker Content
Number of
matching entries

\ \ \ 991
1 U Can I get tickets for the big short tomorrow? 4
2 S Which city would you like? 4
3 U I want to watch at seattle. 4
4 S What time would you like to see it? 4
5 U I want to watch at 8:45 pm. 4
6 S regal meridian 16 is available. 4
7 U I want 2 tickets please! 4

8 S
Great - I was able to purchase 2 tickets for
you to see the big short tomorrow at regal
merdian 16 theater in seattle at 8:45 pm.

4

9 U Thank you. 4
10 S Thank you. 4

Success

Table 5: A typical example of a conversation for user
goal 12.

.1 User goals

The whole dialogue behavior of the user simulator
is guided by a user goal, which ensures rationality,
coherence, and consistency of the dialogue. Dur-
ing each conversation, the user simulator holds a
fixed user goal to interact with the student model.
This user goal describes the needs of users and ex-
plains the purpose of this dialogue. Generally, a
user goal G includes a set of constraints C (also re-
fer to Inform_slot) and a set of requests R (also
refer to Request_slot ), where C denotes the in-
formation constrained by the user and R denotes
the information required by the user (Schatzmann
and Young, 2009).

Taking a train-ticket booking as an example, the
user’s goal is to inquire about the departure time
and arrival time of today’s trains from Guangzhou
to Shenzhen, where the user goal G is in the fol-
lowing form:

Goal =

(
C =



location_from = Guangzhou

location_to = Shenzhen

date = Today


 ,

R =

[
departure_time =?

arrival_time =?

])

(4)
The condition that dialogue is considered to be

successful is if and only if all the information pro-
vided by the user is identified accurately, the in-
formation provided by the agent meets all the con-
straints of the user, and a train-ticket that satisfies
the above conditions is successfully reserved.

.2 Explanation of the ranking of the global
curriculum

Different slots in the user goal carry different
amounts of information, affecting the difficulty of

Rounds Speaker Content
Number of
matching entries

\ \ \ 991
1 U Can I get some tickets for hail caesar tomorrow? 10
2 S Which city would you like? 10
3 U I want to watch at seattle. 10
4 S hail caesar is available. 10
5 U I want 2 tickets please! 7
6 S regal meridian 16 is available. 7
7 U Could you help me to book the tickets? 7

8 S
Great, I was able to purchase 2 tickets for
you to watch hail caesar tomorrow at regal
meridian 16 in seattle at 10:00 pm.

7

9 U Oh, sorry! This is the wrong ticket! 7

10 S
Great, I was able to purchase 2 tickest for
you to watch hail caesar tomorrow at regal
meridian 16 in seattle at 10:00 pm.

7

11 U Oh, sorry! This is the wrong ticket! 7
.... ....

39 S
Great, I was able to purchase 2 tickest for
you to watch hail caesar tomorrow at regal
meridian 16 in seattle at 10:00 pm.

7

40 U Oh, sorry! This is the wrong ticket! 7
Failure

Table 6: A typical example of a conversation for user
goal 84.

user goals. User goals with more information slots
(e.g., user goal 12) help the dialogue agents to lo-
cate entries in the knowledge base that satisfy the
user’s needs faster, thus they are. In contrast, user
goals with less information slots (e.g., user goal 84)
require more turns to gradually exclude unmatched
entries. Therefore, such user goals are harder be-
cause dialogue agents get more penalties and even
fail because of reaching the maximum number of
rounds.

Take a typical conversation with user goals 84
and 12 as an example, where U represents the user
and S represents the dialogue agent. As shown in
Table 5 and 6, in addition to the conversation con-
tent, we also record the change in the number of
movie entries that matched the current constraints
in the movie knowledge base. It reflects that the
amount of information of each utterance, e.g., the
big short (movie name) and tomorrow (date) in
the first utterance of user goal 12 directly helps
the dialogue agent to filter out 4 entries from 991
entries that match all the user constraint, and after
subsequent checking, the conversation is success-
ful. Although the different slot values hail caesar
(movie name) and tomorrow (date) also help di-
alogue agents to quickly narrow down from 991
entries, it needs more information to continue to
exclude unmatched entries. In most cases, the con-
versation will fail due to insufficient information
and reach the maximum number of rounds. Of
course, there are few successful conversations, but
most of them are failed examples because it reached
the maximum number of rounds. Therefore, we
selected typical failed examples to demonstrate. It
explains that the user goals (e.g., user goal 12) with
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(a) Movie (b) Rest. (c) Taxi

Figure 9: The effect of different α values on performance in Movie, Restaurant, and Taxi domains.

(a) Movie (b) Rest. (c) Taxi

Figure 10: The learning curves of S-VACL (integrating SDPL into VACL framework) agents in Movie, Restaurant,
and Taxi domains.

more informative slots are easier.

.3 Training with varying values of α

α in Eq.2 controls the updating rate of the user goal
difficulty. Intuitively, an alpha that is too small
makes it difficult to assess accurate curriculum dif-
ficulties quickly, while an alpha that is too large is
prone to overkill and makes curriculum difficulties
amplitude too large to converge. Thus, we examine
the effect of varying alpha on VACL performance,
which has an important reference for VACL practi-
tioners. Figure 9 reports the experimental result in
three domains. It is evident in three domains that
both too large and too small α hurt the learning
of dialogue policies, which is consistent with our
expectations. It is worth noting that in all exper-
iments, the α for the movie, restaurant, and taxi
domains defaults to 0.1, 0.05, and 1

n respectively
unless otherwise stated.

.4 Integration of SDPL into VACL framework

The pacing function in SDPL simply scales the ca-
pacity of the training goal set proportionally as the
training time increases. Such a way ignores the
learning need of dialogue policies, resulting in for-
gotten problems and performance impairment. In
contrast, our training scheduler takes this important
feedback into account, allowing free scheduling
and achieving better results. To verify this con-

jecture, we integrate SDPL into our framework,
namely S-VACL, and accordingly the Ri and ∆R
in the training scheduler of VACL are modified
to correspond to its difficulty evaluation criterion.
The results are shown in Fig 10. It can be seen that
the training scheduler in VACL framework is more
flexible by considering the learning needs of dia-
logue policies to achieve better results. Therefore,
we can conclude that our VACL approach achieves
an optimal combination of difficulty measurer and
training scheduler that is not only applicable to
other reinforcement learning algorithms but also
adaptable to other course learning methods.

.5 Detailed criteria for the human evaluation
For human evaluation, we recruited 36 volunteers
through our labs. In each conversation, users ran-
domly select a user goal and interact with 6 anony-
mous systems respectively. Each user needs to in-
teract effectively with each system 50 times. At the
end of conversations, users are required to provide
feedback on whether the conversation was success-
ful and to rate the quality of conversation on a score
of 1 to 5. The quality of the conversation is affected
by its degree of task completion, coherence, and
naturalness. The higher the score, the better the
quality of conversation.
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