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Abstract
Language models (LMs) are typically trained
once on a large-scale corpus and used for years
without being updated. However, in a dynamic
world, new entities constantly arise. We pro-
pose a framework to analyze what LMs can
infer about new entities that did not exist when
the LMs were pretrained. We derive a dataset
of entities indexed by their origination date and
paired with their English Wikipedia articles,
from which we can find sentences about each
entity. We evaluate LMs’ perplexity on masked
spans within these sentences. We show that
models more informed about the entities, such
as those with access to a textual definition of
them, achieve lower perplexity on this bench-
mark. Our experimental results demonstrate
that making inferences about new entities re-
mains difficult for LMs. Given its wide cover-
age on entity knowledge and temporal index-
ing, our dataset can be used to evaluate LMs
and techniques designed to modify or extend
their knowledge. Our automatic data collec-
tion pipeline can be easily used to continually
update our benchmark.

1 Introduction

New entities arise every day: new movies, TV
shows, and products are created, new events occur,
and new people come into the spotlight. Whatever
the capabilities of language models (LMs) to rep-
resent entity knowledge, these new entities cannot
possibly be included in the language models’ para-
metric knowledge (i.e., knowledge acquired during
pretraining), as they did not exist when LMs were
trained. Since this temporal mismatch between
LMs and real-world knowledge affects model per-
formance on downstream tasks (Zhang and Choi,
2021; Dhingra et al., 2021; Lazaridou et al., 2021),
understanding what LMs know about real-world
entities is an important task.

The existing literature provides various bench-
marks to measure LMs’ knowledge about enti-
ties (Petroni et al., 2019, 2021; Dhingra et al.,
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Figure 1: Our framework (ECBD) collects entities in-
dexed by the year when they were first introduced in
Wikipedia and their cloze sentences, unlike existing
cloze datasets (LAMA (Petroni et al., 2019)) which
broadly cover entities introduced prior to 2019.

2021). Those benchmarks are typically formulated
as cloze-style tasks covering a limited set of rela-
tions bounded by knowledge bases: LAMA uses
around 40 Wikidata relations and entities collected
in 2017. Newer cloze benchmarks (Dhingra et al.,
2021; Jang et al., 2021) integrate temporal aspects
to identify a time period when a cloze sentence
is valid, but do not differentiate new and existing
entities. These knowledge probing datasets fail to
test broad knowledge about real-world entities or
evaluate how LMs’ knowledge differs on entities
that are seen or unseen during pre-training.

To fill this gap, we propose a framework to eval-
uate LMs’ knowledge about entities classified by
their origination date. We extract a set of Orig-
ination Date Indexed Entities (ODIE) based on
metadata from Wikidata. We then construct cloze
statements by masking sentences in those entities’
Wikipedia articles. Unlike past knowledge probing
datasets, these cloze sentences test the ability of a
model to make a wide range of inferences related
to entities, without being resticted to a pre-defined
set of KB relations. We choose masked spans near
these entities that likely contain information re-
lated to the entities, which we evaluate based on
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the perplexity gap between the raw sentence and
the sentence with the entity replaced.

We release the Entity Cloze by Date (ECBD)
dataset of 35k masked sentences that contain men-
tions of 2.1K ODIE entities,1 split by year covering
a time period from 2017 to 2021, together with
8k masked sentences of popular entities from any
time period. In our experiments, we evaluate three
pre-trained language models in terms of perplexity.
We establish that injecting additional information
such as a text definition can meaningfully teach the
model to make better guesses about masked spans,
highlighting this dataset’s utility for benchmarking
methods of knowledge injection.

2 Entity Cloze by Date

We aim to test language models’ 1) broader en-
tity knowledge and 2) ability to reason about com-
pletely unseen entities (i.e., unseen during pretrain-
ing). Thus, we want to have the following proper-
ties in our entity cloze sentences. (1) Date index-
ing. If each cloze example is associated with an
entity and indexed by the origination date of that
entity, we can understand whether a model may
have seen it in its pre-training corpus or not. (2) Di-
verse sentences. When going beyond KB triples,
entity knowledge can take many forms: actions
that an entity can take, other entities that action can
effect, typical ways in which an entity is described,
and more. Thus, we want include diverse sentences
and masked spans that cover rich relations and vari-
ous syntactic categories (e.g., POS and nonterminal
categories, span length).

2.1 Task Definition

Each entity e is paired with ei, its origination year.
Given a sentence s containing an entity mention
span me and a masked query span mq, a language
model is asked to predict the gold masked span my.
See the following example:

e: RNA vaccine, ei: 2020
s: [mRNA vaccines]me do not affect or
reprogram [mq].
my: DNA inside the cell

We evaluate language models by perplexity on the
masked span mq (see Appendix D for a discussion
of recall as another metric).

1The code and data are publicly available at https://
github.com/yasumasaonoe/ecbd.
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Figure 2: Overview of the data collection process.

2.2 Data Collection

Our data collection protocol consists of three
stages: entity mining, sentence collection and span
selection. We use English Wikipedia (the Septem-
ber 1, 2021 dump) and Wikidata as knowledge
sources.

ODIE Mining We begin by gathering all entities
on Wikidata that have an associated start time, an-
nouncement date, time of discovery or invention,
inception date, point in time, or date it was intro-
duced on. For such entities, we take the first of
these dates to create our temporal splits, assuming
that this is the earliest date the entity could have
appeared in any pretraining corpus.

To compare with ODIE which covers relatively
new entities originated in 2017 at the earliest, we
use a set of POPULAR entities ranked by article
contributor numbers and incoming links from prior
work (Onoe et al., 2021; Geva et al., 2021).

Entity Sentence Collection Once we obtain a
list of entities, we look up their English Wikipedia
articles. To enrich the candidate sentence pool
and exclude trivial sentences from stub articles, we
filter entities if their corresponding articles contain
less than 500 words. From each article, we exclude
the first paragraph of the article, to be used as an
entity definition, and sample sentences from the
rest of the paragraphs. We sample sentences that
include the entity name or one of their Wikidata
aliases. We do not accept entity mention spans
located in quotes since they are often in nested
named entities such as book titles. We also filter
out any sentences with less than five words.

Span Selection Next, we determine spans mq to
be masked on a sentence, s; we can have multiple
masked spans per sentence, masked separately. All
spans must be: (a) not overlapping with the en-
tity mention span, me, (b) located after the entity
mention span, me, and (c) starting no more than
ten words away from the mention span, to improve
relatedness to the entity. We select spans after the
entity mention so left-to-right language models will
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Origination Year 2017 2018 2019 2020 2021 Total
Example Entities

# Dev Entities 300 280 219 187 78 1,050
# Test Entities 299 279 208 176 80 1,029

Sports 20 19 22 12 27 19 2017 Tour de France, USL League One, Evo 2017
Media 18 19 24 23 20 21 Emily in Paris, Luigi’s Mansion 3, The Midnight Gospel
Infrastructure 10 8 10 8 9 9 Gateway Arch National Park, Istanbul Airport, I-74 Bridge
Natural Risks 3 6 4 15 11 7 Hurricane Ida, COVID-19, North Complex Fire
Products 4 4 4 3 3 4 Apple Card, Sputnik V COVID-19 vaccine, Pixel 4
Businesses 15 11 7 7 3 10 Raytheon Technologies, Electrify America, Good Party
Organizations 16 18 13 12 9 15 NUMTOT, UK Student Climate Network
Other Events 9 10 11 12 13 11 Super Bowl LIV halftime show, Storm Area 51
Misc. 5 3 4 7 4 4 RNA vaccine, Earthshot Prize, Comet NEOWISE

Table 1: Origination date indexed entity (ODIE) statistics by category. The number represents % of entities with
particular type among entities originated in that year.

condition on the entity at test time.
We extract two types of spans: NP spans are

selected from any suitable noun phrases in the sen-
tence using spaCy (Honnibal and Montani, 2017).
These spans primarily represent relational knowl-
edge about the entity, analogous to the object in a
KB triple. Random spans are arbitrary sequences
of words sampled from the sentence. This broader
set of spans may cover other types of entity knowl-
edge (e.g., probable actions an entity can take). We
uniformly sample span length between 1 and 5 and
then randomly select the starting location of the
span within the sentence. We only accept valid
spans not overlapping with the entity mention. We
extract at most 100 spans per entity to limit any
one entity’s contribution to the final dataset.

Span sensitivity to entity knowledge To see if
our design choices are effective, we perform a test
that measures the performance drop in perplexity
using T5 when we replace the entity mention with
a generic reference to “the entity.” We use entities
from our POPULAR set to ensure that the LM has
seen them during pre-training. If a masked span
is related to the entity, the perplexity of that span
should increase when the entity mention is omitted.

We see that the median perplexity of a span in-
creases by 32.2% when the entity is removed, in-
dicating that these spans are indeed related to the
entity. Moreover, removing the distance-based cri-
terion for span selection decreases the perplexity
change to 25.9%. These results indicate that our
selected spans are correlated with the entity. This
gap test was performed only for analysis and we
do not use any model-based data filtering.

Dataset Statistics Table 1 shows the statistics
and examples of ODIE, split by entity types. While
our entity set does not comprehensively capture all
entities originating in that year, it contains a diverse

# Sent. # Ent. mq Span Len. |Span V.|

LAMATREx 34k 29,488 1.0 2,017
ECBD 35k 2,106 2.9 19,542
POPULAR 8k 1,910 2.9 8,644

Table 2: Data statistics. |Span V.| means the vocabulary
size of masked spans. Initial release of the data sample
equal number of masked sentences per year (2017-21).

set of entities, ranging from events, products to
organizations. One notably missing entity category
is people; it is hard to pin down an origination year
because of the significant gap between birth year
and the year someone became prominent.

Table 2 reports statistics on our cloze task
data and existing probe dataset (Petroni et al.,
2019). While containing fewer entities, our dataset
exhibits much richer vocabulary (19K vs. 2K),
demonstrating diverse knowledge it covers. We
split this data into dev and test sets by entities (i.e.,
no shared entities between dev and test). To balance
out the data sizes across the groups, we sample 4k
examples for each year group, yielding 35k exam-
ples in total (approx. 20k for dev and 20k for test).
Earlier dates contain a larger set of entities (599
entities for 2017 compared to 158 entities for 2021)
as entities are continuously updated in Wikidata.
In other words, many entities originated in 2021
have not been yet added to Wikidata. We sample
the same number of NP spans and random spans.
Within the NP spans, 35% of them are proper noun
phrases.

3 Experiments

Setup We evaluate T5-large (Raffel et al., 2020),
BART-large (Lewis et al., 2020), and GPT-
Neo (Black et al., 2021) on our dataset in the
zero-shot setting where the model parameters are
fixed. In addition to the original masked sentence
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Figure 3: Perplexity computation over the masked span with three different modeling paradigms.

(ORIGINAL), we feed three modified masked sen-
tences. NO ENT replaces the entity mention span
with a generic string “the entity.” RANDOM DEF.
prepends a definition sentence of a randomly se-
lected entity. DEFINITION prepends the first sen-
tence of the entity’s Wikipedia article to the cloze
sentence.

We evaluate these models on the subsets split by
year as well as a set of popular entities. Note that
the entities in the 2020 and 2021 subsets are unseen
for T5 and BART. Most entities in the 2020 and
2021 subsets are unseen to GPT-Neo, but its train-
ing data (the Pile (Gao et al., 2020)) does include
the March 2020 English Wikipedia dump. In our
experiments, we group the 2020 and 2021 subsets
together as they consist of “unseen” entities. Simi-
larly, we group the 2017, 2018, and 2019 subsets
whose entities are “seen” during pre-training. See
Appendix B for perplexity per year.

Evaluation Metric We compute token-
normalized perplexity over the span as a proxy
for entity knowledge stored in LMs. Each subset
has different distribution of entity types (e.g.,
2020 contains many COVID related entities and
a lot less sports events compared to other years),
and some frequent entities might contribute to
perplexity excessively. To mitigate biases from
particular entities, we first average negative
log-likelihood (token normalized) over entities
then average over examples. We follow the target
sequence format used in LMs’ pre-training tasks
(see Figure 3).

Figure 3 shows the perplexity computation. For
left-to-right language models like GPT-Neo, we
compute the perplexity of the span given the left
context only. T5 and BART, as seq2seq models, are
able to also condition on the right context in their
input; this makes perplexity values between these
model classes not directly comparable (in addi-

POPULAR 2017-2019 2020-2021

Type: seq-to-seq T5 Large Size: 770M

ORIGINAL 13.02 15.39 19.43
NO ENT 18.28 22.35 26.69
RANDOM DEF. 12.10 14.33 17.34
DEFINITION 11.04 11.73 13.60

∆ (ORIG. → RAND.) -0.92 -1.06 -2.09
∆ (ORIG. → DEF.) -1.98 -3.66 -5.83

Type: seq-to-seq BART Large Size: 406M

ORIGINAL 22.70 21.09 28.79
NO ENT 33.33 30.56 39.25
RANDOM DEF. 27.69 25.59 33.74
DEFINITION 21.10 17.66 22.00

∆ (ORIG. → RAND.) +4.99 +4.50 +4.95
∆ (ORIG. → DEF.) -1.60 -3.43 -6.79

Type: left-to-right GPT-Neo Size: 1.3B

ORIGINAL 28.61 27.81 33.36
NO ENT 54.01 51.46 54.81
RANDOM DEF. 39.46 41.03 45.92
DEFINITION 23.19 19.09 22.33

∆ (ORIG. → RAND.) +10.85 +13.22 +12.56
∆ (ORIG. → DEF.) -5.42 -8.72 -11.03

Table 3: Results of T5, BART, and GPT-Neo on the test
set, showing perplexity (↓).

tion to differences in tokenization and pre-training
tasks). For T5 and BART, we condition on the in-
put with a single mask. At decoding, for BART we
initialize the decoder with the left context of the
span and compute perplexity on the true span filler
following this left context. For T5, we compute
perplexity on the output span between the special
tokens <extra_id_0> and <extra_id_1>.

Results Table 3 reports perplexity (lower is bet-
ter) on the test set that is split into three subsets:
POPULAR, 2017-2019, and 2020-2021. Note
that absolute perplexity across years is sensitive to
factors such as distribution of sentences or entity
types; we thus focus on relative performance.

In all subsets, we observe two consistent trends
across three LMs. (1) NO ENT always degrades
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performance compared to ORIGINAL. This result
confirms that our masked spans are sensitive to the
content of the entity span, although it is not con-
clusive proof of entity knowledge being required,
as changing to “the entity” modifies other latent
stylistic attributes that the LMs may be sensitive to.
(2) DEFINITION always boosts performance over
ORIGINAL, indicating that providing more infor-
mation about entities helps to retrieve information
distributed over LMs’ parameters. RANDOM DEF.
distracts BART and GPT-Neo but slightly improves
T5 performance even though the additional infor-
mation is taken from a random entity. This could
be due to the model using different positional en-
codings as a result of having a definition, or LMs
may select information if it is useful in some cases,
leading the small gains.

Performance on unseen entities Recall that we
consider 2020-2021 as unseen entities, and 2017-
2019 and POPULAR as seen entities. All three LMs
give higher perplexity on unseen entities, showing
that the spans in 2020-2021 are relatively unex-
pected to the LMs.

We further investigate the performance delta be-
tween ORIGINAL and DEFINITION per subset. For
all three LMs, we see that the performace delta is
relatively larger on 2020-2021, indicating defini-
tion sentences are more useful on unseen entities.

Also, the performance delta on the popular entity
set is notably smaller than 2020-2021 (compare
T5 numbers: 13.02 → 11.04 for POPULAR versus
19.43 → 13.60 for 2020-2021). This implies that
LMs contain some prior knowledge about common
entities they have observed before, and can use
additional information about new entities or less
frequent entities. How to inject knowledge requires
further investigation.

4 Use Cases

We envision this dataset as being useful for gen-
eral knowledge probing, as the real-world knowl-
edge covered by the existing benchmarks is gradu-
ally outdated. With our framework, we can easily
update datasets using the most recent knowledge
sources with a controlled manner. Since the en-
tity knowledge in our dataset is time-indexed, this
is suitable for evaluating knowledge editing ap-
proaches (Sinitsin et al., 2020; Zhu et al., 2020;
De Cao et al., 2021; Mitchell et al., 2021; Meng
et al., 2022) and also continual knowledge learn-
ing approaches (Jang et al., 2021). Crucially, ex-

isting work studies whether these approaches can
inject single facts, but not whether they can enable
models to robustly support a broad range of new
inferences about entities, like our dataset allows.

5 Related Work

Temporal mismatch/misalignment between large
pre-trained LMs and real-world knowledge is an
emerging research direction. Lazaridou et al.
(2021) show that the corpus-level perplexity on doc-
uments from beyond LMs’ training period becomes
increasingly poor over time. Dhingra et al. (2021)
propose TEMPORALLAMA, which is based on
time-dependent knowledge base triples (i.e., valid
subject, relation, and object combinations given
time). SITUATEDQA (Zhang and Choi, 2021) in-
cludes time-dependent QA examples. While these
datasets primarily test temporal information about
entities in the pre-training data, ECBD focuses
on new entities which did not exist during pre-
training. TemporalWiki (Jang et al., 2022) anno-
tates new facts/entities based on the differences
between Wikidata/English Wikipedia dumps, but
does not necessarily reflect real-world changes dur-
ing the time period (e.g., an ancient queen can be
added to Wikidata in 2022). ECBD selects entities
based on their origination date to align them with
the real-world timeline.

Another line of work has looked at diachronic
embeddings: (Wijaya and Yeniterzi, 2011; Kim
et al., 2014; Hamilton et al., 2016; Bamler and
Mandt, 2017), which can model changing mean-
ings of words over time. Our setting focuses on
introducing new concepts rather than rewriting ex-
isting ones, but data similar to ECBD could be
collected for new usages of existing words.

Although our dataset follows the widely-used
cloze format, our focus is orthogonal to datasets
like the Children’s Book Test (Hill et al., 2016) and
LAMBADA (Paperno et al., 2016), which come
from fiction and do not cover real-world entities.

6 Conclusion

In this paper, we present a dataset to understand
language models’ broad inferences about entities
across time. We collect 43k cloze-style sentences
associated with a time-indexed set of entities. We
also perform analysis on our data set and show
that handling completely unseen entities remains
challenging for the current LMs.
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A Examples of ECBD Sentences

See Table 4 for examples of masked sentences in
the ECBD data.

B Perplexity per year

See Table 5 for a more fine-grained view of the
results in Table 3.

C Perplexity per span type

See Table 6 for a breakdown of the perplexity that
T5 achieves on different types of spans, showing
that random spans are generally higher perplexity
than NP spans but that adding definitions can help
both.

D Recall@10

LMs can be evaluated on recall@10, i.e., a bi-
nary score indicating if model’s top ten predic-
tions contains the gold masked span my. For
T5, we first generate sequences using beam search
(we choose beam size = 100 in our experiments).
Then we take the top ten unique sequences and ex-
tract the text spans between <extra_id_0> and
<extra_id_1> as predictions. Table 7 reports
recall@10 on each subset. Table 8 list recall@10
per span type for each subset.

We only explore recall on T5, since it is not obvi-
ous how to compute it for the other two models. For
BART, we can extract the predicted span by align-
ing the model’s prediction with the gold context,
assuming that it starts to copy from the input right
context at some point. However, in some cases,
we found that the generated right context does not
match with the gold right context; it’s unclear how
to be handle this. For GPT-Neo, since it is a left-
to-right LM, extracting the predicted span would
require conditioning on the span length, which is
information that T5 does not have access to. As a
result, we do not report recall@10 for these models.

E Data Licensing

The Wikipedia text we used is licensed under
CC BY-SA. Our use of Wikipedia, constructing
a dataset which we will make publicly available
under the same license, is consistent with the terms
of the license.

F Computational Resources

All experiments were conducted using an NVIDIA
Quadro RTX 8000. We only evaluate existing mod-
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Masked Sentence Span Type Origin Year

At 18:00 UTC on August 16, after Grace exited the Dominican Republic, [MASK] were lifted.
NP 2021Answer: “all tropical storm watches”

AirTags can be [MASK] the Find My app.
RANDOM 2021Answer: “interacted with using”

British tabloid “The Sun” is credited with the first headline use of ‘Megxit’ on [MASK] 2020.
NP 2020Answer: “9 January”

The iPhone SE features an [MASK] a glass front and back.
RANDOM 2020Answer: “aluminum frame, paired with”

The GPT-2 model has [MASK], and was trained on a dataset of 8 million web pages.
NP 2019Answer: “1.5 billion parameters”

The epicenter of the 2019 Albania earthquake [MASK] kilometers from Tirana to the Northwest.
RANDOM 2019Answer: “was about 30”

On November 12, 2019, Maverick City Music released [MASK], "Maverick City, Vol. 2".
NP 2018Answer: “their follow-up EP”

Austin FC are the operators of a newly-[MASK].
RANDOM 2018Answer: “built stadium at McKalla Place”

The first quarter of Super Bowl LI was [MASK] with each team punting twice.
NP 2017Answer: “a scoreless defensive match”

Hurricane Irma was the top Google searched term in [MASK] in 2017.
RANDOM 2017Answer: “the U.S. and globally”

Table 4: Examples selected from the 2017-2021 subsets of ECBD.

els on our datasets and did not do any finetuning.
One evaluation experiment typically takes 15 min-
utes to complete. For T5 experiments, we use
Hugging Face’s Transformer package (Wolf et al.,
2020).
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POPULAR 2017 2018 2019 2020 2021

Type: seq-to-seq T5 Large Size: 770M

ORIGINAL 13.02 15.28 14.78 16.43 19.81 18.60
NO ENT 18.28 22.28 21.70 23.35 28.41 23.26
RANDOM DEF. 12.10 14.56 13.54 15.10 17.42 17.17
DEFINITION 11.04 12.27 10.76 12.34 14.07 12.61

∆(ORIG. → RAND.) -0.92 -0.72 -1.24 -1.33 -2.39 -1.43
∆(ORIG. → DEF.) -1.98 -3.01 -4.02 -4.09 -5.74 -5.99

Type: seq-to-seq BART Large Size: 406M

ORIGINAL 22.70 22.74 19.52 21.00 28.03 30.53
NO ENT 33.33 33.58 28.25 29.67 39.56 38.57
RANDOM DEF. 27.69 27.11 23.80 25.96 32.41 36.86
DEFINITION 21.01 18.97 16.58 17.35 22.12 21.72

∆(ORIG. → RAND.) +4.99 +4.37 +4.28 +4.96 +4.38 +6.33
∆(ORIG. → DEF.) -1.69 -3.77 -2.94 -3.65 -5.91 -8.81

Type: left-to-right GPT-Neo Size: 1.3B

ORIGINAL 28.61 28.91 27.55 26.63 33.15 33.81
NO ENT 54.01 52.88 53.95 46.44 53.89 57.61
RANDOM DEF. 39.46 41.75 43.15 37.41 45.30 47.32
DEFINITION 23.19 20.47 18.00 18.68 22.17 22.69

∆(ORIG. → RAND.) +10.85 +12.84 +15.6 +10.78 +12.15 +13.51
∆(ORIG. → DEF.) -5.42 -8.44 -9.55 -7.95 -10.98 -11.12

Table 5: Results of T5, BART, and GPT-Neo on the test set, showing perplexity (↓) for each subset.

2017 2018 2019 2020 2021

Input Type NP RAND NP RAND NP RAND NP RAND NP RAND

ORIGINAL 5.86 7.33 5.81 7.51 6.11 7.29 5.92 7.63 6.23 7.31
NO ENT 5.90 8.02 5.78 8.56 5.99 8.31 6.75 9.36 7.28 9.21
RANDOM DEF. 5.59 6.60 5.54 6.84 5.77 6.60 5.70 6.98 6.01 6.65
DEFINITION 4.96 5.98 4.98 6.02 5.12 5.85 5.14 6.13 5.13 5.82

∆(ORIG. → RAND.) -0.27 -0.73 -0.27 -0.67 -0.34 -0.69 -0.22 -0.65 -0.22 -0.66
∆(ORIG. → DEF.) -0.90 -1.35 -0.83 -1.49 -0.99 -1.44 -0.78 -1.50 -1.10 -1.49

Table 6: Results of T5 model (pre-trained with data from 2019) on the dev set with perplexity (↓) per span type.

POPULAR 2017 2018 2019 2020 2021

Type: seq-to-seq T5 Large Size: 770M

ORIGINAL 28.2 25.4 27.4 27.7 20.8 23.0
NO ENT 23.8 21.6 23.2 23.7 19.5 21.5
RANDOM DEF. 28.4 24.3 28.5 26.8 21.4 23.2
DEFINITION 29.3 28.4 31.8 28.2 24.8 26.1

∆(ORIG. → RAND.) +0.2 -1.1 +1.1 -0.9 +0.6 +0.2
∆(ORIG. → DEF.) +1.1 +3.0 +4.4 +0.5 +4.0 +3.1

Table 7: Results of T5 on the test set, showing recall@10 (↑) for each subset.
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2017 2018 2019 2020 2021

Input Type NP RAND NP RAND NP RAND NP RAND NP RAND

Type: seq-to-seq T5 Large Size: 770M

ORIGINAL 30.3 20.0 31.8 20.2 29.3 22.0 30.1 19.8 29.3 21.6
NO ENT 27.2 18.8 28.1 16.7 26.2 18.1 26.8 16.7 25.9 18.2
RANDOM DEF. 31.8 20.8 32.8 19.9 29.8 21.6 31.3 20.5 29.5 21.6
DEFINITION 34.1 22.8 35.9 22.8 33.0 24.9 33.7 23.0 32.7 25.2

∆(ORIG. → RAND.) +1.5 +0.8 +1.0 -0.3 +0.5 -0.4 +1.2 +0.7 +0.2 +0.0
∆(ORIG. → DEF. +3.8 +2.8 +4.1 +2.6 +3.7 +2.9 +3.6 +3.2 +3.4 +3.6

Table 8: Results of T5 model (pre-trained with data from 2019) on the dev set with recall@10 (↑) per span type.
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