
Findings of the Association for Computational Linguistics: NAACL 2022, pages 49 - 60
July 10-15, 2022 ©2022 Association for Computational Linguistics

SEQZERO: Few-shot Compositional Semantic Parsing with
Sequential Prompts and Zero-shot Models
Jingfeng Yang† Haoming Jiang† Qingyu Yin†

Danqing Zhang† Bing Yin† Diyi Yang‡
† Amazon

‡ Georgia Institute of Technology
{jingfe, jhaoming, qingyy, danqinz, alexbyin}@amazon.com

dyang888@gatech.edu

Abstract

Recent research showed promising results on
combining pretrained language models (LMs)
with canonical utterance for few-shot seman-
tic parsing. The canonical utterance is often
lengthy and complex due to the compositional
structure of formal languages. Learning to gen-
erate such canonical utterance requires signifi-
cant amount of data to reach high performance.
Fine-tuning with only few-shot samples, the
LMs can easily forget pretrained knowledge,
overfit spurious biases, and suffer from compo-
sitionally out-of-distribution generalization er-
rors. To tackle these issues, we propose a novel
few-shot semantic parsing method – SEQZERO.
SEQZERO decomposes the problem into a se-
quence of sub-problems, which correspond to
the sub-clauses of the formal language. Based
on the decomposition, the LMs only need to
generate short answers using prompts for pre-
dicting sub-clauses. Thus, SEQZERO avoids
generating a long canonical utterance at once.
Moreover, SEQZERO employs not only a few-
shot model but also a zero-shot model to alle-
viate the overfitting. In particular, SEQZERO
brings out the merits from both models via en-
semble equipped with our proposed constrained
rescaling. SEQZERO achieves SOTA perfor-
mance of BART-based models on GeoQuery
and EcommerceQuery, which are two few-shot
datasets with compositional data split.1

1 Introduction

Semantic parsing is the transformation of input ut-
terance into formal language, such as SQL query
(Zelle and Mooney, 1996), and plays a critical
role in NLP applications, such as question answer-
ing (Yih et al., 2014), dialogue system (Gupta
et al., 2018), and information extraction (Yao
and Van Durme, 2014). Training neural seman-
tic parsers requires numerous annotated input ut-
terance and formal language pairs. However, the

1Code and data to be released at https://github.
com/amzn/SeqZero.

paired data is usually limited, as the annotation
requires experts’ knowledge and can be expen-
sive. For example, annotating SQL queries requires
programming knowledge, while annotating formal
meaning representations like Abstract Meaning
Representations (AMR) requires linguistics knowl-
edge. Therefore, semantic parsing in the few-shot
setting is a demanding technique.

Researchers have adopted large-scale pretrained
language models (LMs, Radford et al. (2019);
Brown et al. (2020)) to improve few-shot learn-
ing performance. The LMs are usually pretrained
on large unlabeled open-domain natural language
data and achieve impressive performance on few-
shot text-to-text generation problems via proper
prompt designing (Brown et al., 2020). Consid-
ering the difference between natural and formal
language, adapting LMs to semantic parsing is
non-trivial. Prior works typically first finetune the
LMs to generate canonical utterance, which is then
transformed into the final formal language through
grammars (Shin et al., 2021; Schucher et al., 2021).

However, the canonical utterance is lengthy and
complex due to compositional structure of the
formal languages. Learning to precisely gener-
ate canonical utterances still requires significant
amount of data. Meanwhile, fine-tuning with only
few-shot samples, the LMs can easily forget pre-
trained knowledge, overfit spurious biases, and suf-
fer from compositionally out-of-distribution (OOD)
generalization errors. Figure 1 presents an compo-
sitionally OOD generalization error of direct fine-
tuning BART (Lewis et al., 2019) on the GeoQuery,
a dataset about querying in a geographic database.
The model incorrectly predicts the table name as
“city”, because the training samples always come
from the “city” table as long as the query follows
the “how many people live in xxx” pattern. Such
errors account for about 75% of all prediction er-
rors of Base model on GeorQuery test set (refer to
Section 5.7 for details).

49

https://github.com/amzn/SeqZero.
https://github.com/amzn/SeqZero.

Figure 1: Finetuned BART’s OOD generalization errors
due to overfitting the spurious biases.

To address the aforementioned issues, we pro-
pose a novel prompt-based few-shot learning
method – SEQZERO. Instead of directly generating
the whole formal language, SEQZERO decomposes
the problem into a sequence of sub-problems, and
the LMs only need to make a sequence of short
prompt-based predictions, where zero-shot (un-
finetuned) models can also be leveraged to avoid
overfitting the spurious biases in specific caluses.
Specifically, SEQZERO decomposes the problem
into predicting the sub-clauses, which make up the
formal languages. When predicting a sub-clause,
SEQZERO adopts a slot-filling natural language
prompt, where the filled prompt can be transformed
into the sub-clause through grammars. For filling
each prompt, SEQZERO employs two models: a
few-shot model and a zero-shot model. Both mod-
els ingest the input utterance and the prompt to
fill in the slots in the prompt. The few-shot model
uses a fine-tuned LM to fill in the slots of each
prompt. The zero-shot model directly infers the
value in the slots by decoding a pretrained LM with
a constrained vocabulary. We then ensemble the
prediction from both models, and convert the re-
sults for all sub-clauses into the final output (e.g.,
SQL query). We notice that, the probability mass of
the zero-shot model, on the constrained vocabulary,
is much smaller than that of the few-shot model.
As a result, the zero-shot model cannot take effect
in the vanilla ensemble. Therefore, we propose
to rescale the probability of the zero-shot model
on the constrained vocabulary before ensemble to
bring out the advantages of both models.

We conduct experiments on two datasets: Geo-
Query, a benchmark dataset that consists of natural
language and formal language pairs from geogra-

phy domain, and EcommerceQuery, a newly col-
lected dataset from E-commerce domain. Results
show that our approach outperforms the baseline al-
gorithm and achieves state-of-the-art performance
on the compositional split of the two datasets. To
sum up, our contributions are:

• We propose to decompose semantic parsing
to filling a sequence of prompts, each cor-
responding to a sub-clause of original SQL
query. Compared with direct fine-tuning,
predicting sub-clauses is easier, which en-
ables flexible prompt designing and zero-shot
model inference.

• We propose the ensemble of few-shot and
zero-shot models with help of constrained
probability rescaling, which improves out-of-
distribution generalization while maintaining
in-distribution performance.

• We create and release a new Ecommerce-
Query dataset. We empirically verify that
our approach achieves SOTA, among BART-
based models, on both GeoQuery and Ecom-
merceQuery.

2 Preliminary

Language Modeling aims to estimate the proba-
bility distribution for a given sequence of words
x = (w1, w2, ..., wn) in an autoregressive way:

Pθ(x) =

n∏

i=1

Pθ(wi|w1, ..., wi−1),

where θ is the parameters of the language model.
This approach not only allows estimation of
Pθ(x) but also any conditionals of the form
Pθ(wi, wi+1, .., wn|w1, ..., wi−1), which is essen-
tially a seq2seq model. One can leverage a seq2seq
model to generate a sequence via a decoding algo-
rithm (e.g., beam-search): y = Decode(Pθ(·|x))
In recent years, there have been significant progress
in training large transformer-based language mod-
els (Radford et al., 2019; Brown et al., 2020; Lewis
et al., 2019) on large natural language corpus.
Semantic Parsing is to transform an input utter-
ance u into a formal language m. Without loss of
generality, we hereafter discuss the case of SQL
query as the formal language. One can directly
train a language model for semantic parsing:

Pθ(m|u).

50

Directly learning such a language model is chal-
lenging as the difference between the formal lan-
guage and natural language is huge. To bridge the
gap, Berant and Liang (2014); Shin et al. (2021)
propose Semantic Parsing via Paraphrasing (SPP)
— a two-stage framework. In the first stage, they
paraphrase u to its canonical utterance c using a
paraphrasing language model:

Pθ(c|u).

In the second stage, the canonical utterance c is
transformed into SQL query m by a grammar or a
set of rules:

m = Grammar(c).

3 Method

In this section, we describe SEQZERO. SEQZERO

first decomposes the problem into a sequence of
sub-problems as illustrated in Figure 2. For each
sub-problem, SEQZERO employs an ensemble of
zero-shot and few-shot models to predict a sub-
clause of the formal language based on prompts as
illustrated in Figure 3.

Input Utterance

FROM xxx SELECT xxx WHERE xxx

Original Problem

Input Utterance

FROM xxx

Input Utterance

SELECT xxx

Input Utterance

WHERE xxx

Sub-Problem

Problem Decomposition

Figure 2: The problem of predicting a SQL can be
composed into 3 steps: predicting “FROM” clause, “SE-
LECT” clause, and “WHERE” clause.

3.1 Problem Decomposition and Sequential
Prompt Filling

Each SQL query can be regarded as a composi-
tion of different types of sub-clauses, such as “SE-
LECT”, “FROM”, “WHERE”:

m = Compose(m1, ...,mn),

where mi is the sub-clause of the i-th type, n is the
number of all possible types of sub-clauses, and the

composition is conducted via a rule-based system.
A simple example of the composition function is
direct concatenating the sub-clauses, whereas the
real implementation requires some dedicated de-
sign. For example, mi can be a null clause, e.g.,
not every SQL query contains a “WHERE” clause.
We discuss the implementation details of the com-
position in Appendix C.

We turn the problem of direct predicting m
into predicting mi sequentially from m1 to mn.
We remark that the prediction of mi depends on
m1, ...,mi−1, as illustrated in Figure 3. Similar to
the SPP framework, we design a canonical utter-
ance ci for each sub-clause mi. The transformation
between ci and mi is conducted by a grammar:

mi = Grammar(ci).

Each ci consists of two parts: a natural language
slot-filling prompt pi and a value in the slot vi:

ci = FillSlot(pi, vi).

The prompt pi is shared across all sub-clauses of
the i-th type, while the value vi varies for different
instances. As a result, the problem is turned into
predicting the values {vi}ni=1 given the input utter-
ance u, and prompts {pi}ni=1 sequentially from i =
1 to i = n. The prediction is conducted via decod-
ing a language model, Pθi(·|u,m1, . . . ,mi−1, pi),
where the canonical utterances of previous sub-
clauses (m1, . . . ,mi−1) are also provided as the
extra context. We summarize the process in Algo-
rithm 1.

Algorithm 1: Sequential Prompt Filling
Input: u: input utterance; {pi}ni=1:

prompts; Grammar: grammar for
parsing the canonical utterance;
{Pθi}ni=1: LMs.

for i = 1, · · · , n do
x = (u,m1, . . . ,mi−1, pi)
vi = Decode(Pθi(·|x))
ci = FillSlot(pi, vi)
mi = Grammar(ci)

end
m = Compose(m1, ...,mn)
Output: m: SQL query

3.2 Ensemble of Few-shot and Zero-shot
Models

Despite the apparent advantages of sequential
prompt filling, directly fine-tuning LMs on few-

51

Few-shot
Model

Zero-shot
Model

“how many major cities are
there?” the sentence talks
about ___

Input + Context + Prompt

rescale

ensemble

city

“how many major cities are
there?” from city, the
sentence asks to select ___

Ensemble
Model

count(*)

“how many major cities are
there?” from city select
count(*), the sentence
requires ___

city.population
> 150,000

SELECT
count(*)
FROM city
WHERE
city.population
> 150,000

Ensemble
Model

Figure 3: Pipeline of sequential prompt filling and SQL generation on GeoQuery. Note that, the scale of the
prediction probability of the zero-shot model is very small before rescaling.

shot samples will fall short due to the overfitting.
Because of the better OOD generalizability of zero-
shot models, we propose to employ the ensemble
of a few-shot model Pθi,f and a zero-shot model
Pθi,z for each language model Pθi .
Few-shot Model. Each few-shot model is obtained
by finetuning a pretrained language model via min-
imizing the negative log-likelihood loss:

argmin
θi,f

− logPθi,f (vi|u,m1, . . . ,mi−1, pi),

where vi,m1, . . . ,mi−1 are the ground truth from
the few-shot training data. It is essentially the
teacher forcing training strategy. Note that we omit
the summation over the training set for simplicity
and clarity.
Zero-shot Model. Each zero-shot model directly
adopts the pretrained language model Pθ0 . Without
any guidance, Pθ0 may generate any free text even
if we provide the input utterance and prompt. In
order to mine the knowledge from Pθ0 , we only
allow the zero-shot model to generate from a list
of candidate values. The candidate values are col-
lected from multiple sources including SQL gram-
mar, table schema, input utterance and training data.
When predicting the j-th word for vi, the zero-shot
model rescales the probability on a constraint vo-
cabulary, which is specifically designed for the i-th
clause:

Pθi,z(w|x) =
1(w ∈ Vi(x))Pθ0(w|x)∑

wj∈Vi(x)
Pθ0(wj |x)

, (1)

where w is a predicting word, x =
(u,m1, ...,mi−1, pi, w1, .., wj−1) is the con-

text for predicting the i-th value, {wt}j−1
t=1 is

the prefix in the value, Vi(x) is the constraint
vocabulary. Given the list of candidate values, we
use a trie (prefix tree) to compute all the allowed
tokens, and thus Vi(x) = Vi({wt}j−1

t=1) depends on
the prefix of the values. Note that, to develop a
more flexible method, a trie/prompt could start at
intermediate steps.
Ensemble. We then obtain Pθi by a linear ensem-
ble of the few-shot model Pθi,f and the zero-shot
model Pθi,z :

Pθi = γiPθi,f + (1− γi)Pθi,z , (2)

where γi is a clause-specific weight for trade-off
between two models.

Remark. We employ a normalization step in the
zero-shot model Eq. (1). The normalization is not
necessary for the zero-shot model itself, but plays
a critical role in the ensemble. This is because the
scales of the predicted probabilities of few-shot
and zero-shot models are different, as illustrated
in Figure 3. The Pθ0’s prediction probability is
distributed over the whole vocabulary. There is
only a very small probability mass assigned to the
allowed tokens, Vi(x). On the other hand, the few-
shot model’s prediction probability is almost en-
tirely distributed over Vi(x). Without rescaling, the
zero-shot model will only have little effect when
ensembling with the finetuned model.

4 Experiment Setup

Dataset To evaluate the performance of our pro-
posed method, we conduct experiments on the Geo-

52

Query dataset (Zelle and Mooney, 1996), where
there are 880 queries to a database of U.S. geog-
raphy. To test compositional generalizability, we
adopted the compositional split for SQL released
by Finegan-Dollak et al. (2018), where templates
created by anonymizing entities are used to split
the original dataset, to make sure that all examples
sharing a template are assigned to the same set.
There are 536/159/182 examples for train/dev/test
set, thus this setting can be regarded as the few-
shot setting. We also experimented with even fewer
training examples (50, 150).

Besides, we create and release the Ecommerce-
Query, a new SQL semantic parsing dataset in E-
commerce domain. Specifically, we collect natural
language utterances from user input search queries
to an e-commerce website. To create correspond-
ing SQL queries, we use some self-defined rules
with manual audition. We construct compositional
splits, where there are unseen SQL query patterns
in the dev/test set. Finally, train/dev/test set con-
tains 1,050/353/355 examples respectively. For
details, please refer to Appendix B. Two examples
from EcommerceQuery are shown in Table 8.

Baselines and Models We use seq2seq finetuned
BART as our main baseline on both datasets. With-
out explicit notations, we use BART large in all
of the following experiments. Otherwise, we de-
note large or base models. On GeoQuery dataset,
we use prior state-of-the-art methods as additional
baselines. On EcommerceQuery dataset, we use
only LSTM seq2seq and BART as baselines, be-
cause Iyer et al. (2017) requires user feedbacks, and
Zheng and Lapata (2020) requires domain specific
semantic tags, which are not available in Ecom-
merceQuery.

Evaluation Following Andreas (2019), we use
exact-match accuracy as the evaluation metric,
namely the percentage of examples that are cor-
rectly parsed to their SQL queries.

5 Experimental Results

5.1 Main Results

Table 1 shows our main results on GeoQuery and
EcommerceQuery datasets. As shown in Table
1, on GeoQuery dataset, the finetuned BARTLarge
beats all the previous baseline methods. Our ap-
proach outperforms all baseline systems by a sub-
stantial margin, reaching new SOTA performance.
Note that directly combining BART with the se-

Method GeoQuery EcoQuery

Iyer et al. (2017) † 40.0 -
Andreas (2019) † 49.0 -
Zheng and Lapata (2020) †⋄ 69.6 -

Our Implementation
BARTBase 44.5 37.5
SEQZEROBase 50.0 42.5
LSTM seq2seq 39.0 9.3
BARTLarge 72.5 37.7
BARTLarge + SPP 66.5 37.2
SEQZEROLarge 74.7 46.2

Table 1: Results on GeoQuery test set of compositional
split, and on EcommerceQuery (EcoQuery) dataset. †:
we directly report the metrics in the original papers,
while our reproduction achieves similar performance. ⋄:
Zheng and Lapata (2020) took an unfair advantage of
anonymized variables.

mantic parsing via paraphrasing (SSP) framework
even decrease the performance of BART, because
paraphrased canonical utterances for SQL on Geo-
Query is too long and complex to directly gen-
erate. Even comparing with Zheng and Lapata
(2020), SEQZERO achieves a much better perfor-
mance without the usage of anonymized variables
2. In addition, on EcommerceQuery dataset, our
SEQZERO further achieves considerable improve-
ments over the baseline methods, reaching SOTA
performance. Comparing with BART, the best base-
line model, SEQZERO gains improvement in exact-
match accuracy by 8.5%. In all words, our model
is an extremely strong performer and substantially
outperforms baseline methods, which demonstrate
the efficiency of our method.

5.2 Ablation Study
To demonstrate the utility of sequential prompt
filling and zero-shot model, we conduct a set of
ablation experiments, as shown in Table 2. In each
ablation experiment, we delete one of these two key
components of SEQZERO, namely “−SEQ” and
“−ZERO”.

SEQZERO −ZERO means that we directly use
finetuned few-shot models to fill in sequential
prompts without using the zero-shot model.

SEQZERO −SEQ is equivalent to the ensemble
of a finetuned BART and a un-finetuned BART for

2Zheng and Lapata (2020) could not directly compare with
our method, because they use anonymized variables (i.e. ora-
cle entities), while other models including SEQZERO require
generating entities instead of using oracle entities. Thus, for
fair comparison, their method without variable anonymization
would have even worse performance, indicating even larger
improvements of our method.

53

Method GeoQuery EcoQuery

SEQZERO 74.7 46.2
−SEQ 74.2 44.5
−ZERO 71.4 37.7

Table 2: Ablation study of SEQZERO.

predicting the SQL query directly without sequen-
tial prompt filling.

On both datasets, “−SEQ” decreases the per-
formance of SEQZERO. It indicates that design-
ing clause-specific prompt can better mine the
pretrained knowledge from the language model.
Meanwhile, zero-shot model ensemble brings our
model better out-of-distribution generalization abil-
ity. Consequently, when zero-shot model ensemble
is ablated, the performance drops a lot (“−ZERO”
vs “SEQZERO”).

5.3 Analysis of Sequential Prompt Based
Models

Here, we try to understand how the sequential
prompt based model performs on different clauses.
We report the prediction accuracy of SEQZERO and
“−ZERO” on 5 clauses on the GeoQuery dataset in
Table 3. SEQGold means we use finetuned BART to
generate clauses given previous gold clauses. We
can see that finetuned BART has the worst perfor-
mance on “FROM” clause because of its poor OOD
generalizability. We can clearly see that SEQZERO

has better performance than “−ZERO” because of
the zero-shot model’s strong performance on the
“FROM” clause.

Method FROM SELECT WHERE GROUP ORDER

SEQGold 84.1 87.9 92.3 99.5 99.5
SEQZERO 88.5 77.5 74.7 74.7 74.7
−Zero 84.1 74.2 71.4 71.4 71.4

Table 3: Prediction accuracies on all 5 clauses on Geo-
Query dataset.

Recall that the prediction of the latter clauses
depends on the previous ones, the performance of
each next clause generally decreases due to error
propagation in SEQZERO. The same performance
of “WHERE”, “GROUP” and “ORDER” is because
there are very few “GROUP” and “ORDER” clauses
on test set. SEQZERO achieves much better perfor-
mance than “−ZERO” on the “FROM” clause and

Method Exact Match

GeoQuery “FROM” Clause
FEW SHOTBase 58.2
ZERO SHOTBase 67.0
FEW SHOTLarge 84.1
ZERO SHOTLarge 78.0
ENSEMBLELarge 88.5

EcommerceQuery “CONDITION” Clause
FEW SHOTLarge 40.0
ENSEMBLELarge 51.8

Table 4: Zero-shot and few-shot BARTBase and
BARTLarge models’ performance compares with their
ensemble on critical clauses.

thus significantly reduces the error propagation,
leading to better performance on all clauses.

5.4 Comparison of Zero-shot, Few-shot
models, and Their Ensemble

According to Section 5.3, our model’s major im-
provement comes from the contribution of zero-
shot models and ensemble in critical clauses. We
further compare the performance of zero-shot, few-
shot and ensemble models in Table 4. We can see
that on GeoQuery “FROM” Clause, with BARTBase,
zero-shot model itself with constraint decoding is
already much better than few-shot model, verifying
our intuition that few-shot finetuning could lead
model to overfit spurious biases, and achieves poor
compositional out-of-distribution (OOD) general-
izability. With BARTLarge, zero-shot model’s per-
formance is still worse than the few-shot fintuned
model, but our ensemble method can effectively
leverage the better OOD generalizability of zero-
shot model and achieves better performance3. Sim-
ilarly, on EcommerceQuery “CONDITION” Clause,
our ensemble method significantly outperforms the
few-shot model.

5.5 Impact of Prompt Designing
Table 5 shows the performance of the few-shot
finetuned BART and the zero-shot BART (in con-
strained decoding setting) with several representa-
tive prompts on “FROM” clause of GeoQuery test

3We tried both uncertainty based model selection and
model ensemble on “FROM” clause of GeorQuery dataset,
and found out that they have similar performance. Thus, we
choose model ensemble as our major method, because it lever-
ages all steps’ probability to make selection, leading to poten-
tially better performance in other datasets. See Appendix for
results of uncertainty based model selection.

54

Prompt Few ZERO

the answer can be obtained from 81.3 65.9
the sentence talks about 84.1 78.0

Table 5: Impact of prompt designing for few-shot Few
and zero-shot ZERO BART on “FROM” clause of Geo-
Query test set.

Prompt attribute+relation relation

the sentence requires 39.2 49.3
where 21.1 51.5

the condition is : 51.1 57.3

Table 6: Impact of prompt designing for zero-shot
BART on “CONDITION” clause of EcommerceQuery
test set. In attribute+relation setting, we let zero-shot
model generate both attributes and relations. In relation
setting, we let zero-shot model generate relations only.

set. We can see that prompt designing highly af-
fects the the zero-shot model’s performance, while
it has less impact on few-shot finetuned model.
Table 6 shows the performance of the zero-shot
BART on “CONDITION” part of EcommerceQuery
test set, where different prompts also lead to signif-
icantly different performance. These results reveal
the necessity of sequential prompt filling. Without
this component, one cannot easily come up with a
proper prompt for achieving a better model perfor-
mance. In practice, we design 20 prompt sets and
select the best one based on the zero-shot model’s
performance on the development dataset.

5.6 Impact of Training Data Size
Table 7 shows the performance of baseline BART
and our SEQZERO (as well as ablation of ZERO),
facing different numbers of training data points in
the few-shot setting. With 50, 150 training samples,
we make sure that each SQL query template occurs
only once to maximize the diversity of training data.
For the full dataset, there are 536 samples with 158
different training templates in total.

of Samples 50 150 536

BART 41.2 73.1 72.5
SEQZERO 48.9 74.2 74.7
−ZERO 31.3 73.1 71.4

Table 7: Model accuracy with different numbers of
training samples on GeoQuery dataset.

Our SEQZERO outperforms BART in all settings
(50, 150, 536 training samples), which shows the
effectiveness of our method in the few-shot setting.
From 50 to 150 training samples, the model see
more SQL templates, which help compositional
generalization, and lead to the increased perfor-
mance of all models. From 150 to 536 samples,
the performance of BART and “−ZERO” decrease
slightly. That is because there are multiple samples
of the same templates in the 536 training samples,
and the models overfit to those training templates.
In contrast, SEQZERO avoids such overfitting with
the help of zero-shot models and achieves better
performance by leveraging more training samples.

Without the aid of zero-shot model, “−ZERO”
performs worse than SEQZERO. When there are
only 50 samples, the performance degradation is
the most significant. When there are 536 samples,
the decrease led by ablation of zero-shot model is
larger than that of 150 samples. It is because when
there are many cases for each template, ensemble
of zero-shot model can alleviate overfitting such
templates.

Furthermore, “−ZERO” has similar performance
with BART when there are over 150 training sam-
ples. On the other hand, the performance of
“−ZERO” is worse than BART when there are very
few training samples (50 samples). We conjecture
that this is because BART shares the model param-
eter between all sub-clauses, while “−ZERO” fine-
tunes models separately on different sub-clauses.
The parameter sharing will further lead to knowl-
edge sharing across sub-clauses and improves the
performance. How to leverage the benefit from
both parameter sharing and SEQZERO could be an
interesting future research topic.

5.7 Case Study

Table 8 shows BART and SEQZERO’s predictions
for some cases. For first example, BART gives a
wrong prediction, because few-shot training sam-
ples introduce too many spurious biases to the fine-
tuned model. In contrast, SEQZERO gives correct
prediction. Actually, after analyzing the errors
made by finetuned BARTBase model on GeoQuery,
among all errors on test set, the common error for
around 75% examples is the table name error in
“FROM” clause, which is due to spurious biases.

For the second example, BART predicts “PRICE

<” incorrectly even seeing “over”, because Ecom-
merceQuery Dataset is designed to include only

55

“PRICE <” but no “PRICE >” template. Our SE-
QZERO could give the correct prediction because
of better OOD generalizability with the help of
zero-shot models.

Even with our SEQZERO, there are still many
errors. For instance, in the third example, it still
struggles with identifying the size in the natural
language query and generating the Size filtering
condition in WHERE clause.

6 Related Work

Few/Zero-shot Semantic Parsing Shin et al.
(2021); Schucher et al. (2021) conducted few-
shot semantic parsing by using pretrained LMs
to first generate canonical natural language utter-
ances, and then transform them to final formal lan-
guage through synchronous context-free grammar
(SCFG) (Jia and Liang, 2016). However, dealing
with complex structure and lengthy canonical lan-
guage is still challenging for models in the few-
shot setting. Also, canonical languages created
through SCFG allows limited space for prompt
designing, and canonical language’s form is still
too strange for language models to understand.
Zhong et al. (2020) explored zero-shot semantic
parsing via generation-model-based data augmen-
tation. Other ways of bootstrapping a semantic
parsing requires rules/grammars to synthesize train-
ing examples (Xu et al., 2020; Wang et al., 2015;
Yu et al., 2020; Campagna et al., 2019; Weir et al.,
2020; Marzoev et al., 2020; Campagna et al., 2020).
Yang et al. (2021) used language-independent fea-
tures for zero-shot cross-lingual semantic parsing.

Semantic Parsing via Paraphrasing Berant and
Liang (2014) started the line of work where se-
mantic parsing is finished through an intermediate
paraphrasing step. Wang et al. (2015); Marzoev
et al. (2020) generated paraphrase candidate values
from a grammar of legal canonical utterances, and
incrementally filtered the bottom-up or top-down
generation by scoring the partial candidates against
final formal language. All such work did not ex-
ploit the power of pretrained models to generate
intermediate paraphrases.

Compositional Generalization in Semantic Pars-
ing Compositional generalization is an essential
problem in semantic parsing because formal lan-
guages are internally compositional. Generally,
one way to improve compositional generalizability
is to incorporate inductive biases directly to models

through moduler models (Dong and Lapata, 2018),
symbolic-neural machines (Chen et al., 2020), la-
tent variables/intermediate representations (Zheng
and Lapata, 2020; Herzig and Berant, 2020), meta-
learning (Lake, 2019) etc. Another way is to first
do data augmentation and then train a model with
augmented data (Andreas, 2019; Zhong et al., 2020;
Yu et al., 2020; Akyürek et al., 2020). Pretrained
models has also been shown useful for composi-
tional semantic parsing (Oren et al., 2020; Furrer
et al., 2020). None of prior work used sequential
prompts or zero-shot models for compositional gen-
eralization. Yang et al. (2022) adopted attention
biases to alleviate spurious biases in table semantic
parsing.

Prompting for Few/Zero-shot learning Natural
language prompts are widely used in few-shot or
zero-shot learning. There are several fashions to
use prompts in Autoregressive Language Models
(Liu et al., 2021a). One is tuning-free prompting,
for example, Petroni et al. (2019); Shin et al. (2020)
used a fill-in-the-blank paradigm, while Brown
et al. (2020); Shin et al. (2021) used “few-shot”
prompts that included several examples of inputs
followed by target outputs, with the actual task in-
put appended at the end. One is Fixed-LM Prompt
Tuning, as used by Li and Liang (2021); Schucher
et al. (2021); Qin and Eisner (2021); Liu et al.
(2021b), which requires training less parameters
compared with tuning the whole model. Another
is Fixed-prompt LM Tuning, which is similar to
our setting. We choose to use this way because it
is demonstrated better than other methods in many
few-shot NLP tasks (Gao et al., 2020) when tun-
ing the whole model is not a concern. This is also
more efficient at inference time, as it is no longer
necessary to select training examples to precede
the test input. Note that, Mishra et al. (2021) em-
ployed prompt decomposition during tuning-free
prompting, which is validated in other NLP tasks.

Zero-shot pretrained models for OOD gener-
alization Wortsman et al. (2021) showed that,
in computer vision tasks, although fine-tuning
approaches substantially improve accuracy in-
distribution, they reduce out-of-distribution ro-
bustness, while zero-shot pretrained models have
higher OOD generalizability. Thus, model weight
ensemble (Wortsman et al., 2021) and model edit-
ing (Mitchell et al., 2021) were leveraged to manip-
ulate zero shot pretrained models, which motivetes

56

Cases Text

Question what is the population of utah
BART SELECT city . population FROM city WHERE city . city_name = "utah"

SEQZERO SELECT state . population FROM state WHERE state . state_name = "utah"
Ground Truth SELECT state . population FROM state WHERE state . state_name = "utah"

Question petrol trimmer over 100 dollar
BART SELECT * FROM ASINs WHERE Maching Algorithm(“petrol trimmer”) == True and Price < 100

SEQZERO SELECT * FROM ASINs WHERE Maching Algorithm(“petrol trimmer”) == True and Price > 100
Ground Truth SELECT * FROM ASINs WHERE Maching Algorithm(“petrol trimmer”) == True and Price > 100

Question mi4 64 gb mobile phone
BART SELECT * FROM ASINs WHERE Maching Algorithm(“mi4 64 gb mobile phone”) ORDER BY date

SEQZERO SELECT * FROM ASINs WHERE Maching Algorithm(“mi4 64 gb mobile phone”) ORDER BY date
Ground Truth SELECT * FROM ASINs WHERE Maching Algorithm(“mi4 mobile phone”) and Size = 64 gb

Table 8: Case study. The first example is from GeoQuery, and the last two examples are from EcoQuery.

us to ensemble zero-shot and few-shot models dur-
ing the generation process of semantic parsing.
We tried weight ensemble proposed by Wortsman
et al. (2021), but it does not work in our gener-
ation setting. The reason is the same as why di-
rect ensemble in prediction space is not working.
That’s said, weights in a zero-shot model corre-
spond to the probability over the whole vocabulary
while weights in a finetuned model correspond to
the probability over constrained vocabulary. Thus,
weights in the zero-shot model have little effect on
the constrained vocabulary.

7 Conclusion

Although prior work leveraged pretrained LMs
and canonical language for few-shot semantic pars-
ing, generating lengthy and complex canonical lan-
guage is still challenging, leading finetuned mod-
els to overfitting spurious biases in few-shot train-
ing examples and demonstraining poor composi-
tional generalizability. To tackle this, we propose
to filling in sequential prompts with LMs and then
compose them to obtain final SQL queries. Dur-
ing the process, our proposed zero-shot pretrained
model ensemble or uncertainty-based model selec-
tion could significantly boost the performance on
critical clauses, leading to overall SOTA perfor-
mance, among BART based models, on GeoQuery
and our released EcommerceQuery semantic pars-
ing dataset. In the future, we plan to extend our
methods to other pretrained models (e.g. T5) and
other compositional semantic parsing datasets.

Ethical Impact

SEQZERO is a general framework for few-shot se-
mantic parsing on text, such as search queries. SE-
QZERO neither introduces any social/ethical bias to

the model nor amplify any bias in the data. When
creating EcommerceQuery dataset, we collected
data on an E-commerce search platform without
knowing customers’ identity. No customer/seller
specific-data is disclosed. We build our algorithms
using public code bases (PyTorch and FairSeq). We
do not foresee any direct social consequences or
ethical issues.

References
Ekin Akyürek, Afra Feyza Akyürek, and Jacob An-

dreas. 2020. Learning to recombine and resample
data for compositional generalization. arXiv preprint
arXiv:2010.03706.

Jacob Andreas. 2019. Good-enough compositional data
augmentation. arXiv preprint arXiv:1904.09545.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1415–
1425.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Giovanni Campagna, Agata Foryciarz, Mehrad Morad-
shahi, and Monica S Lam. 2020. Zero-shot
transfer learning with synthesized data for multi-
domain dialogue state tracking. arXiv preprint
arXiv:2005.00891.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi,
Richard Socher, and Monica S Lam. 2019. Genie:
A generator of natural language semantic parsers for
virtual assistant commands. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 394–
410.

57

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song,
and Denny Zhou. 2020. Compositional general-
ization via neural-symbolic stack machines. arXiv
preprint arXiv:2008.06662.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. arXiv preprint
arXiv:1805.04793.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. arXiv preprint
arXiv:1806.09029.

Daniel Furrer, Marc van Zee, Nathan Scales, and
Nathanael Schärli. 2020. Compositional generaliza-
tion in semantic parsing: Pre-training vs. specialized
architectures. arXiv preprint arXiv:2007.08970.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar,
and Mike Lewis. 2018. Semantic parsing for task ori-
ented dialog using hierarchical representations. arXiv
preprint arXiv:1810.07942.

Jonathan Herzig and Jonathan Berant. 2020. Span-
based semantic parsing for compositional general-
ization. arXiv preprint arXiv:2009.06040.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback.
arXiv preprint arXiv:1704.08760.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622.

Brenden M Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. arXiv
preprint arXiv:1906.05381.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Alana Marzoev, Samuel Madden, M Frans Kaashoek,
Michael Cafarella, and Jacob Andreas. 2020. Unnat-
ural language processing: Bridging the gap between
synthetic and natural language data. arXiv preprint
arXiv:2004.13645.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin
Choi, and Hannaneh Hajishirzi. 2021. Reframing
instructional prompts to gptk’s language. arXiv
preprint arXiv:2109.07830.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gard-
ner, and Jonathan Berant. 2020. Improving compo-
sitional generalization in semantic parsing. arXiv
preprint arXiv:2010.05647.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. arXiv preprint arXiv:1904.01038.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, An-
ton Bakhtin, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2019. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Nathan Schucher, Siva Reddy, and Harm de Vries. 2021.
The power of prompt tuning for low-resource seman-
tic parsing. arXiv preprint arXiv:2110.08525.

Richard Shin, Christopher H Lin, Sam Thomson,
Charles Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner,
and Benjamin Van Durme. 2021. Constrained lan-
guage models yield few-shot semantic parsers. arXiv
preprint arXiv:2104.08768.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332–1342.

Nathaniel Weir, Prasetya Utama, Alex Galakatos, An-
drew Crotty, Amir Ilkhechi, Shekar Ramaswamy, Ro-
hin Bhushan, Nadja Geisler, Benjamin Hättasch, Stef-
fen Eger, et al. 2020. Dbpal: A fully pluggable nl2sql

58

training pipeline. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management
of Data, pages 2347–2361.

Mitchell Wortsman, Gabriel Ilharco, Mike Li,
Jong Wook Kim, Hannaneh Hajishirzi, Ali Farhadi,
Hongseok Namkoong, and Ludwig Schmidt. 2021.
Robust fine-tuning of zero-shot models. arXiv
preprint arXiv:2109.01903.

Silei Xu, Sina J Semnani, Giovanni Campagna, and
Monica S Lam. 2020. Autoqa: From databases to
qa semantic parsers with only synthetic training data.
arXiv preprint arXiv:2010.04806.

Jingfeng Yang, Federico Fancellu, Bonnie Webber, and
Diyi Yang. 2021. Frustratingly simple but surpris-
ingly strong: Using language-independent features
for zero-shot cross-lingual semantic parsing. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5848–
5856.

Jingfeng Yang, Aditya Gupta, Shyam Upadhyay,
Luheng He, Rahul Goel, and Shachi Paul. 2022.
Tableformer: Robust transformer modeling for table-
text encoding. arXiv preprint arXiv:2203.00274.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with freebase. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 956–966.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation question
answering. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 643–648.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin
Wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing. arXiv preprint arXiv:2009.13845.

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050–1055.

Hao Zheng and Mirella Lapata. 2020. Compositional
generalization via semantic tagging. arXiv preprint
arXiv:2010.11818.

Victor Zhong, Mike Lewis, Sida I Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. arXiv preprint
arXiv:2009.07396.

A Configuration

A.1 Training Details
During training, we use fairseq (Ott et al., 2019)
to implement BART model. We use Adam as opti-
mizer with a learning rate 1e-5. We use dropout and

attention dropout with 0.1 as dropout rate. Also, we
use label smoothing with a rate 0.1. Batch sizes are
1024 tokens. Besides, we employ a weight-decay
rate 0.01. All the parameters are manually tuned
based on the dev performance.

We train all models on NVIDIA A100 SXM4 40
GB GPU. We set the max training epoch to be 100
and select the best performed epoch according to
dev performance. Training process on each clause
or whole sequence could be finished within 3 hours.

A.2 Inference Details

During inference, we use greedy search to decode.
We also use ensemble of zero-shot and few-shot
models during this process. The ensemble weight
γi in Eq. (2) is chosen from [0, 1] and tuned by
grid search according to performance on dev set.

B EcommerceQuery Dataset

When we create the EcommerceQuery dataset, we
first we collect natural language utterances from
user input search queries to an e-commerce web-
site. To create corresponding SQL queries, we
use regular expressions to create “SIZE” filtering
conditions, and use some rules to create “PRICE”
filtering conditions, “DELIVERY” attributes and
“SUBSCRIBE” attributes in “WHERE” clauses. Fi-
nally, we manually audit each pair of data to ensure
the quality.

To construct compositional splits, we make
sure that there is no “PRICE>”, “SIZE=”, and
“SUBSCRIBE=” SQL templates in training set but
the majority of SQL queries on dev and test set con-
tains such templates. Ideally, a model with good
compositional generalizability could generalize
from “PRICE<” and “SIZE>” to “PRICE>”, gener-
alize from “PRICE=” and “SIZE>” to “SIZE=”, and
generalize from “DELIVERY=” to “SUBSCRIBE=”.

C Problem Decomposition on GeoQuery
and EcommerceQuery

In this section we introduce the problem decom-
position for GeoQuery and EcommerceQuery in
details. We answer the following two questions: 1.
what are the sub-clauses in the sub-problems? 2.
how to compose the final formal language from the
sub-clauses.

C.1 GeoQuery

On GeoQuery, there are totally 5 sub-clauses,
namely FROM, SELECT, WHERE, GROUP-BY,

59

Method Exact Match

FEW SHOTLarge 84.1
ZERO SHOTLarge 78.0

MOC SELECTIONLarge 88.5
ROC SELECTIONLarge 88.5

ENSEMBLELarge 88.5

Table 9: Ensemble of zero-shot and few-shot models
compares with uncertainly based selection of zero-shot
and few-shot models on GeoQuery “FROM” Clause.

ORDER-BY clauses. we first generate FROM from
clause with the prompt “the sentence talks about”.
Then we generate SELECT clause with the prompt
“the sentence talks about”, generate “Where clause
with the prompt THE SENTENCE REQUIRES”, gen-
erate GROUP-BY clause with the prompt THE SEN-
TENCE REQUIRES TO GROUP BY, and generate
ORDER-BY clause with the prompt “the sentence
requires the result to be ordered by” Note that prior
generated clauses are used as additional prefix to
generate current clauses. The filled value for each
clause could be “None”. When the filled value is
“None”, which means there is no such clause in the
final SQL query. Finally, we compose all clauses
(if the filled value is not “None”) sequentially to
obtain the final SQL query.

C.2 EcommerceQuery

On EcommerceQuery, there are totally 2 sub-
clauses, namely MATCHING, and CONDITION

clauses. Because thes two clauses are less de-
pendent, we generate each clause separately and
then compose the generated values of each clause.
When generating MATCHING clause, we use the
prompt “matching algorithm (”. When generat-
ing CONDITION clause, we use the prompt “the
condition is :”.

D Uncertainty based Model Selection

As an alternative to model ensemble, we can also
decide whether to use the predicted sequence of the
zero-shot model or the fine-tuned model based on
zero-shot model’s uncertainty score over the gener-
ated sequence. Specifically, during greedy search,
we compute an uncertainty metric with the rescaled
zero-shot model prediction p⋆T , where T is the first
decoding step after the pre-designed prompt 4. The

4The reason why we choose T th step is that we do not want
to consider the probability of [EOS] token into uncertainty,

uncertainty metric could be Margin of Confidence
(MOC) or Ratio of Confidence (ROC) . Formally,
assume the largest value in vector p⋆T is p⋆T1 , and
the second largest value in vector p⋆T is p⋆T2 , we
compute these two uncertainty metrics as:

MOC = 1− (p⋆T1 − p⋆T2)

ROC = p⋆T2 /p⋆T1
(3)

The results are shown in Table 9.

because for most table name tokens, there is little probability
that the [EOS] token occurs after them in zero-shot models.

60

