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Abstract

A key challenge of Conversational Recommen-
dation Systems (CRS) is to integrate the rec-
ommendation function and the dialog genera-
tion function smoothly. Previous works employ
graph neural networks with external knowl-
edge graphs (KG) to model individual recom-
mendation items and integrate KGs with lan-
guage models through attention mechanisms
for response generation. Although previous
approaches prove effective, there is still room
for improvement. For example, KG-based ap-
proaches only rely on entity relations and bag-
of-words to recommend items and neglect the
information in the conversational context. We
propose to improve the usage of dialog context
for both recommendation and response gen-
eration using an encoding architecture along
with the self-attention mechanism of transform-
ers. In this paper, we propose a simple yet
effective architecture comprising a pre-trained
language model (PLM) and an item metadata
encoder to integrate the recommendation and
the dialog generation better. The proposed item
encoder learns to map item metadata to em-
beddings reflecting the rich information of the
item, which can be matched with dialog context.
The PLM then consumes the context-aware
item embeddings and dialog context to generate
high-quality recommendations and responses.
Experimental results on the benchmark dataset
REDIAL show that our model obtains state-
of-the-art results on both recommendation and
response generation tasks1.

1 Introduction

An automated conversational recommendation sys-
tem (CRS) (Li et al., 2018; Zhou et al., 2020) is
intended to interact with users and provide accu-
rate product recommendations (e.g., movies, songs,
and consumables). It has been a focal point of re-
search lately due to its potential applications in the

1Code is available online https://github.com/
by2299/MESE

e-commerce industry. Traditional recommendation
systems collect user preferences from implicit feed-
back such as click-through-rate (Zhou et al., 2018)
or purchase history and apply collaborative filter-
ing (Su and Khoshgoftaar, 2009; Shi et al., 2014)
or deep learning models (Covington et al., 2016;
He et al., 2017) to construct latent spaces for user
preferences. Unlike traditional recommendation
systems, CRSs directly extract user preferences
from live dialog history to precisely address the
users’ needs.

Although some progress has been made in this
area, there is still room for improvement. First, pre-
vious CRSs (Chen et al., 2019; Zhou et al., 2020; Li
et al., 2021) track entities mentioned in the dialog
context, and then search related items in knowledge
graphs to recommend to users. However, these
systems require a named-entity recognition (NER)
module to extract mentioned entities from the di-
alog context. Thus we need to collect additional
domain-specific data to train the NER module. In
practice, such NER modules have deficient perfor-
mance, leading to a bad accuracy of CRS. Second,
existing CRSs built upon graph neural networks
(Kipf and Welling, 2017; Schlichtkrull et al., 2018)
cannot quickly scale up or respond to rapid changes
of the underlining entities. In e-commerce, items
for recommendation change frequently due to con-
stant updates of merchants and products. Exist-
ing approaches require either re-training the en-
tire system when the structure of knowledge graph
changes (Dettmers et al., 2018) or adding complex
architectures on top to be adaptive (Wu et al., 2019).
A more flexible architecture can help the system
react to rapid changes and adapt itself to new items.

Moreover, meta-information about the items can
be leveraged. Similar information can be found
in both dialog context and item meta-information.
For example, in a movie recommendation setting,
words like "crime, gangsters, etc." are likely to ex-
ist in the dialog context when a user is searching
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for crime movies. In the synopsis of a crime movie,
such keywords are likely to exist as well. Ideally,
an alignment between the semantics of dialog con-
text and the item meta-information can be used to
improve system’s performance.

Driven by the motivations above, we present
a Metadata Enhanced learning approach via
Semantic Extraction from dialog context i.e.
MESE. The major components of MESE contain
a pre-trained language model (PLM) and an item
encoder architecture. The item encoder takes item
metadata as input and outputs a vector embedding.
By jointly training the encoder and the PLM, the en-
tire system can extract co-occurring information be-
tween dialog context and item metadata, and item
encoders can systematically construct representa-
tions reflecting this alignment. Item embeddings
are then consumed with dialog context by the self-
attention mechanism of the PLM. This mechanism
smoothly integrates dialog context and item infor-
mation well into the recommendation and response
generation tasks.

The key contributions of this paper are summa-
rized as follows: This paper presents MESE, a
novel CRS framework that considers both item
metadata and dialog context for recommendations.
Our model employs a simple yet effective item
metadata encoder that learns to represent rich item
information during training. Such encoder can
adapt to database changes quickly and is indepen-
dent of task-specific architectures. Extensive exper-
iments on standard dataset REDIAL demonstrate
that MESE outperforms previous state-of-the-art
methods on both response generation and recom-
mendation with a large margin.

2 Related Work

The current CRS paradigm contains two major
modules: a recommendation module that suggests
items based on conversational context and a re-
sponse generation module that generate responses
based on dialog history and the recommended
items. Integrating these two modules to perform
well on both tasks has been a major challenge.
Chen et al. (2019) leverage external knowledge and
employees graph neural networks as the backbone
to model entities and entity relations in the knowl-
edge graph (KG) to enhance performance. Zhou
et al. (2020) introduce a word-level KG (Speer
et al., 2017) to the system with semantic fusion
(Sun et al., 2019a) to enhance the semantic repre-

sentations of words and items. Since item informa-
tion and dialog context are processed separately in
the above approaches, they loss integrated sentence-
level information. We propose to condition recom-
mendation on integrated contextual information of
both dialog context and mentioned entity informa-
tion. More recent works adopt pre-trained language
models (PLM) (Vaswani et al., 2017; Radford et al.,
2019; Zhang et al., 2020) and template-based meth-
ods to facilitate response generation. Liang et al.
(2021) generate a response template containing a
mixture of contextual words and slot locations to
incorporate recommended items better. Wang et al.
(2021) expand the vocabulary list of the PLM to
include items to unify the process of item recom-
mendation with response generation. We propose
to enhance our PLM with an item metadata en-
coder to extract context-aware representations by
jointly training on both recommendation and re-
sponse generation tasks. We also generate response
templates with slot locations to better incorporate
recommended items into responses.

Our work is also inspired by studies from
other areas. Recent works have shown that cross-
modality training across vision and language tasks
can lead to outstanding results in building multi-
modal representations (Tan and Bansal, 2019; Lu
et al., 2019). In (Tan and Bansal, 2019), a large-
scale transformer-based model is adapted with
cross-modal encoders to connect visual and linguis-
tic semantics and pre-trained on vision-language
pairs to learn cross-modality relationships. Prompt
tuning (Li and Liang, 2021; Gao et al., 2021) meth-
ods show that PLMs are capable of integrating dif-
ferent sources of information into the same embed-
ding space. In terms of using PLM as a recom-
mendation system, Sun et al. (2019b) train a bidi-
rectional self-attention model to predict masked
items and achieve remarkable results. Inspired by
the above studies, we propose to use an encoder
module to map item meta-information to an embed-
ding space. By jointly training on dialog context
and encoded item representations, the system can
align these two information streams by fusing the
semantic spaces.

3 Approach

In this section, we present our framework MESE
that integrates item metadata with dialog context.
We first introduce how to encode item metadata
and how to blend item information into dialog con-
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text. We then illustrate how the recommendation
module and the response generation module are
built. Finally, we describe the training objectives
and the testing process.

3.1 Encoding Item Metadata

We propose to use an item encoder to directly map
the metadata of each item to an embedding. In the
movie recommendation setting, description on title,
genre, actors, directors, and plot are collected as
metadata and concatenated with a "[SEP]" token
for each movie. This concatenated information is
the input to the item encoder which produces a vec-
tor representation for each item. The item encoder
consists of a DistilBERT (Sanh et al., 2019) model
that maps the input sequence to a sequence of vec-
tor embeddings, a pooling layer that condenses the
sequence embeddings to a single vector embedding,
and a feed-forward layer to produce the output em-
bedding with a certain dimension. A visualization
of this module is shown in Figure 1.

DistilBERT

Venom [SEP] Tom Hardy … When Eddie …

(Title) (Actor) (Movie Plot)

Pooling Layer

Feed Forward Layer

Output Embedding

[SEP]

Figure 1: Item Encoder takes in the metadata of an item
and outputs an embedding of the item

Next, we discuss how to incorporate items into
dialog context with the encoded embeddings and
the PLM (Radford et al., 2019). Previous studies
have shown that KG-based frameworks cannot al-
ways integrate recommended items into generated
replies (Wang et al., 2021). To solve this issue,
we introduce a special placeholder token "[PH]" to
the vocabulary list of the PLM. Every occurrence
of item name in the corpus is replaced with this
"[PH]" token. This modified dialog sequence is
then mapped to a sequence of word token embed-
dings (WTE) by the vocabulary embedding matrix
of the PLM. To include item information into the
context, an instance of the item encoder is used to
encode item metadata into token embeddings. The
item encoder takes in item metadata and outputs
an item token embedding (ITE) with the same di-

mensionality as a WTE of the PLM. The ITE is
then concatenated with the WTEs constructed from
the dialog context to be consumed by the PLM. An
example is shown in 2.

Have you seen Venom ?

Have you seen [PH] ?

ITEWTEs

Item Encoder

Venom Metadata

GPT-2

Figure 2: Dialog context is represented as a concatena-
tion of WTEs and ITEs to be consumed by the PLM.

3.2 Recommendation Module

Similar to (Covington et al., 2016), we pose rec-
ommendation as a two-phase process: candidate
selection and candidate ranking. During candidate
selection, the entire item database is traversed and
narrowed down to a few hundred candidates based
on a calculated similarity score between the dialog
context and the item metadata. During candidate
ranking, similarity scores between the dialog con-
text and the generated candidates are recomputed
with finer granularity by the self-attention mecha-
nism of the PLM.

3.2.1 Candidate Selection
In this section, we describe the training objective
of candidate selection. We add a special token
"[REC]" to the vocabulary embedding matrix of
PLM. This token is used to indicate the start of the
recommendation process and to summarize dialog
context. At the end of each turn, a token embed-
ding sequence is created following Figure 2 in the
format of an interleaving of word token embed-
dings (WTE) and item token embeddings (ITE) to
represent all previous dialog context. When recom-
mendation is labeled in a conversation turn in the
training dataset, the WTE of "[REC]" is appended
to the previous token embedding sequence to form
a new sequence D. Next, the PLM takes in D
and produces an output embedding sequence. We
denote the last vector of this output embedding se-
quence as DR which corresponds to the appended
special token "[REC]". DR summarizes dialog
context and can be used to retrieve candidate items.
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Dialog Context

User: Hi!

System: Hello!

User: I like action films.

System: Have you seen Venom ?

User: …

System: …

Item Encoder GPT-2

Similarity

I like action films REC

M samples from Item 

DB + ground truth

NNIDR

I like action films REC

FFN & Softmax

GPT-2

I like action films REC TVenom Have you seen [PH] ?

Item Encoder

(Ground Truth)

T0 T1 … TM

Item Encoder

K Nearest Candidates

DR
SMS0

ℒselect

ℒrank

ℒres

…

Training

Candidate Selection Candidate Ranking Response Generation

Venom 0.3

Titanic 0.2

… Venom 0.8

Avatar 0.1

…

Venom

GPT-2

I like action films REC

GPT-2

I like action films REC

GPT-2

Item Encoder

T0 T1 … TK-1

FFN & Softmax

Item Encoder

TVenom Have you …

Venom

Rank #1 Item

Item DB Item Encoder

Have you seen …
Testing Step (1) Testing Step (2) Testing Step (3)

Figure 3: Overview of MESE. During training, M items are sampled from the database to compute the joint loss
Lselect and Lrank, which are then combined with the response generation loss Lres and jointly optimized. During
testing, the entire metadata DB is stored as a nearest neighbor index (NNI). First, dialog context is condensed
into a vector DR. An approximate nearest neighbor search is performed on DR to get candidate items, which is
then passed to the ITE Encoder to compute their ranking scores and the the highest-ranked candidate is used as a
prompt to generate responses. We only present the case when there’s only one ground truth recommendation in the
utterance. However, it’s easy to extend the above approach to multiple recommendations.

We randomly sample M items and their meta-
data from the database as negative examples and
combine them with the ground truth item labeled
in the dataset to get the training samples. Another
instance of the item encoder, is used to create candi-
date token embeddings for each item in the training
samples. The item Encoder takes in the metadata of
samples items and outputs a set of candidate token
embeddings C = (c0, c1, ..., cM ), each with the
same dimensionality as DR. The recommendation
task at this phase is posed as a multi-class classifi-
cation problem of predicting the ground truth item
over the negative samples (Covington et al., 2016).
The probability of each candidate item is defined in
(1) and optimized by a cross-entropy loss function,
denoted as Lselect:

P (i) =
eci·DR

∑M
n=0 e

cn·DR
(1)

Note that the purpose of this learning objective
is to let the model learn how to construct the DR

representation instead of learning the probabilities
of candidate items. The DR representation is later
used in an approximate nearest neighbor search
(Liu et al., 2004) to select candidates from the en-
tire database in testing 3.5.

3.2.2 Candidate Ranking

In this section, we describe the training objective of
candidate ranking. The goal of candidate ranking
is to further perform more fine-grained scoring on
the similarities between generated candidates and
dialog context so that the final rankings of items
can better reflect users’ preferences. We propose
to use the PLM and its self-attention to compute
ranking scores.

During training, the same context token embed-
ding sequence D and the same training sample with
M negative examples are used. The ITE encoder
from section 3.1 is used to map the metadata of the
sample to an ITE set T = (t0, t1, ..., tM ), where
the subscript of each ti corresponds to their index
in the database. A concatenation of context se-
quence D and T are created and consumed by the
same PLM used above and the output embeddings
are computed. The order of candidate items should
not make a difference in the values of the outputs.
Therefore, we add the same positional encoding
to each ITE in T and remove the attention masks
among the ITEs. The output embeddings of PLM
that correspond to the ITEs in T are then passed to
a feed-forward layer to reduce each vector from a
higher dimension to a single number with dimen-
sionality equals 1. This set of numbers is denoted
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by Q = (q0, q1, ..., qM ) where the index of each
number corresponds to their index in T . The final
ranking score of each candidate item is defined in
(2) and optimized by a cross-entropy loss function,
denoted as Lrank:

R(i) =
eqi

∑M
n=0 e

qn
(2)

3.3 Response Generation Module
In this section, we describe how to train the model
to generate responses based on the recommended
items’ metadata. The same token embedding se-
quence D is used as context and current system
utterance U = (w0, w1, ..., wn) is used as targets
where each wi represents a WTE. We only optimize
the PLM to reconstruct system utterances.

If the current utterance contains recommenda-
tions, we create ITEs by passing metadata of the
recommended items through the item Encoder used
in 2 and append the ITEs to context token embed-
ding sequence D to obtain D′. If the current utter-
ance doesn’t contain recommendations, D′ is the
same as D. The PLM is trained to reconstruct the
ground truth U based on D′. The probability of
generated response is formulated as:

P (U |D′) =
n∏

i=1

P (wi|wi−1, ..., w0, D
′) (3)

The loss function is set to be:

Lres = − 1

N

N∑

i=1

log(P (Ui|D′)) (4)

Where N is the total number of system utterances
in one dialog.

3.4 Joint Training
Finally, we use the following combined loss to
jointly train both the encoders and the PLM:

Loss = a · Lselect + b · Lrank + c · Lres (5)

Where a, b and c are the weights of language train-
ing and recommendation training objectives. Dur-
ing training, all weight parameters of the two item
encoders, the PLM and relevant feed-forward lay-
ers participate in back-propagation. An overview
of training is shown in Figure 3.

3.5 Testing

During testing, a candidate embedding set over
the entire item database is built by running meta-
data through the item encoder used in section 3.2.1
and stored with a nearest neighbor index (NNI)
(Muja and Lowe, 2014). During response genera-
tion, when a "[REC]" token is generated, candidate
selection 3.2.1 is activated. An approximate near-
est neighbor search is conducted over the NNI and
K closest candidates are selected based on their
similarities from the DR vector2. Candidate rank-
ing is then activated and the PLM and the item
encoder from Figure 2 are used to generate a score
for each candidate. When ranking finishes, the ITE
that receives the highest ranking score is appended
to the dialog context D and response generation
continues until the end-of-sentence token is gener-
ated. After generation is completed, we replace the
occurrence of the placeholder token "[PH]" with
the title of the recommended item to form the fi-
nal response. Note that when the turn involves
no recommendation, our PLM simply generates a
clarification question or a chitchat response with
no placeholder tokens. An overview of testing is
shown in Figure 3.

4 Experiments

In this section, we discuss the datasets used, exper-
imental setup, experimental results on both recom-
mendation and language metrics, and report analy-
sis results with ablation studies.

4.1 Datasets

We evaluated our model on two datasets: ReDial
dataset (Li et al., 2018) for comparison with previ-
ous models and INSPIRED dataset (Hayati et al.,
2020) for ablation studies. Both datasets were col-
lected on Amazon Mechanical Turk (AMT) plat-
form where workers made conversations related
to movie seeking and recommending following a
set of extensive instructions. The statistics of both
datasets are shown in Table 1.

Dataset dialogs utterances avg turns
ReDial 10006 182150 18.2

INSPIRED 1001 35811 10.73

Table 1: Statistics of Datasets

2Multi-Source Selection in Appendix A
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4.2 Experimental Setup
4.2.1 Baselines
The baseline models for evaluation on the ReDial
dataset is described below:

ReDial (Li et al., 2018): A dialogue generation
model using HRED (Sordoni et al., 2015) as back-
bone for dialog module

KBRD (Chen et al., 2019): The dialog genera-
tion module based on the Transformer architecture
(Vaswani et al., 2017). It exploits external knowl-
edge to perform recommendations and language
generation.

KGSF (Zhou et al., 2020): Concept-net is used
alongside knowledge graph to perform semantic-
aware recommendations.

CR-Walker (Ma et al., 2021): performs tree-
structured reasoning on a knowledge graph and
guides language generation with dialog acts

CRFR (Zhou et al., 2021): conversational
context-based reinforcement learning model with
multi-hop reasoning on KGs.

NTRD (Liang et al., 2021): an encoder-decoder
model is used to generate a response template with
slot locations to be filled in with recommended
items using a sufficient attention mechanism.

RID (Wang et al., 2021): pre-trained language
model and knowledge graph are used to improve
CRS performance.

4.2.2 Implementation Details
We employed GPT-2 model (Radford et al., 2019)
as the backbone of MESE for dialog generation,
which contains 12 layers, 768 hidden units, 12
heads, with 117M parameters. We recruited 2 item
encoders (Sanh et al., 2019) to encoder items in
candidate generation 3.2.1 and candidate ranking
3.2.2, respectively, each has a distil-bert model
with 6 layers, 768 hidden units, 12 heads, with
66M parameters. We used the AdamW optimizer
(Loshchilov and Hutter, 2019) with epsilon set to
1e−6, learning rate set to 3e−5. The model was
trained for 8 epochs on ReDial dataset, and the
first epoch was dedicated to warm up with a linear
scheduler. We set the sample size M during can-
didate generation and candidate ranking to be 150.
We set a=0.8, b = 1.0 and c = 0.28 as coefficients
for 3 loss functions respectively. We chose K = 500
for the number of candidates during testing.

4.2.3 Evaluation Metrics
We performed two evaluations, recommendation
evaluation and dialog evaluation, for the model. For

recommendation evaluation, we used Recall@X
(R@X), which shows whether the top X items rec-
ommended by the system include the ground truth
item suggested by human recommenders. In par-
ticular, we chose R@1, R@10 and R@50 follow-
ing previous works (Chen et al., 2019; Zhou et al.,
2020). We also defined recall accuracy of MESE
to be the percentage of ground truth items that ap-
pear among the 500 generated candidates in the
candidate generation phase 3.2.1 and ranking ac-
curacy to be the percentage of items that appear in
the top k (k=1, 10, 50) position of the sorted can-
didates in the candidate ranking phase 3.2.2. The
product of the recall and ranking accuracy is the
final recommendation accuracy of MESE. We also
adopted end-to-end response evaluation following
(Wang et al., 2021). We computed response recall
(ReR) as whether the final response contains the tar-
get items recommended by human annotators. For
dialog evaluation, we adopted perplexity, distinct n-
grams (Li et al., 2016), and BLEU score (Papineni
et al., 2002) for automatic evaluations. Human
evaluation (on a random sampling of 100 dialogs
from the test set) is also conducted on dialog evalu-
ation in comparison with KGSF. We invite three
annotators to score the generated samples in two
aspects, Fluency and Informativeness. The annota-
tor is asked to select a better response based on the
given context. Ties are allowed if two responses
have similar qualities. The score is the percentage
of the model’s response being selected. The final
performance is calculated using the average scores
of the three annotators.

5 Experimental Results

5.1 Evaluation Results

We first report recall, ranking, and final accuracy
on REDIAL dataset of MESE in table 3. From the
results, it can be seen that candidate ranking has
remarkable performance gains in scoring the items.
It demonstrates that PLMs have great potential in
making recommendations. One possible reason
behind this is that the PLM and its self-attention
mechanism is effective in learning the similarities
and discrepancies between item semantics and dia-
log semantics.

Table 2 compares different models on REDIAL

dataset. The superiority of MESE persists across
recommendation and language generation. On all
recommendation metrics, including R@1, R@10,
and R@50, MESE outperforms the state-of-the-art
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Model
Recommendation metrics Language generation metrics

R@1 R@10 R@50 ReR PPL Dist2 Dist3 Dist4 Bleu2 Bleu4
ReDial 2.4 14.0 32.0 0.7 28.1 0.225 0.236 0.228 0.178 0.074
KBRD 3.1 15.0 33.6 0.8 17.9 0.263 0.368 0.423 0.185 0.074
KGSF 3.9 18.3 37.8 0.9 5.6 0.289 0.434 0.519 0.164 0.074

CR-Walker 4.0 18.7 37.6 - - - - - - -
CRFR 4.0 20.2 39.9 - - - - - - -
RID - - - 3.1 54.1 0.518 0.624 0.598 0.204 0.110

NTRD - - - 1.8 4.4 0.578 0.820 1.005 - -
MESE 5.6 25.6 45.5 6.4 12.9 0.822 1.152 1.313 0.246 0.143

Table 2: Results and comparison with the literature on REDIAL.

top k Ranking Acc Recall Acc Final Acc
@1 7.2 0.778 5.6

@10 33.0 0.778 25.6
@50 58.5 0.778 45.5

Table 3: Recall, Ranking and Final Accuracy of MESE.

models by a large margin. We argue in 5.2 that
this significant gain of performance is due to the
effectiveness of the item encoder. MESE also per-
forms well on the ReR score, which indicates that
the filling placeholder tokens can help integrate
recommended items into responses. For language
generation, MESE also achieves significantly bet-
ter performance than all other models on distinct
ngrams and bleu scores with the exception that the
PPL is worse than those of KGSF and NTRD. This
indicates that MESE can generate more diverse
responses while sticking to the topic.

Model Fluency Informativeness
KGSF 24% 19%
MESE 38% 31%

Table 4: Human Evaluation of Response Generation

Table 4 presents the results of human evaluation.
Our proposed model MESE outperforms KGSF by
a large margin on both fluency and informativeness.
Responses of MESE have a 50% more chance of
being chosen as the better answer than responses of
KGSF. By using the encoded item embeddings and
joint training, MESE can better integrate its pre-
trained weights with the injected item information.
Therefore, it generates more fluent responses that
contain richer information about the items.

5.2 Ablation Studies and Analysis
In this section, we first analyze the reason behind
the performance gain of our recommendation mod-
ule by analyzing the embeddings learned by the
item encoder.

How much does metadata help recommen-
dation? We argue that our training objectives on
recommendation enable the item encoder to selec-
tively extract useful features pertinent to the recom-
mendation task from item metadata and construct
item representations that resonate with instructional
semantic properties in the dialog histories. For
example, in REDIAL dataset, movie genre infor-
mation is the most frequently mentioned property
in dialog histories and human recommenders of-
ten make recommendation decisions based on this
property. Although other properties like actors also
help with recommendations, they do not appear in
the corpus as often as genres or movie plots. We
designed the following experiments to test our hy-
pothesis. First, we train MESE with movie genre
and plot information removed from the metadata,
which we refer to as MESE w/o content, and com-
pare its recommendation performance with MESE
in Table 5.

Model R@1 R@10 R@50
MESE w/o content 3.9 19.5 37.9

MESE 5.6 25.6 45.5

Table 5: Comparison Results of MESE and MESE w/o
content.

As we can see from the table, there is a signifi-
cant performance decrease after we remove genre
and plot information, which indicates that MESE
depends on the item information to make high-
quality recommendations. We also point out that
movie titles contain weak genre information but
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are not able to provide adequate features for the
item encoder to extract from.

How does the item encoder help recommen-
dation? We claim that the item encoder can con-
struct embeddings in a systematic way that aligns
matching information between its input and dialog
context. We designed an experiment to prove the
point. Specifically, we select all movie items with
only one genre as our candidates, resulting in a sub-
set of ~700 movies. We then select 2 item encoders
(section 3.2.2) from MESE, MESE w/o content,
and the item encoder before training (MESE raw),
respectively, and obtain 3 sets of item embeddings
of the selected movie subset. On each set of em-
beddings, we run a K-means clustering algorithm
with K being set to be 3, 4, and 5, respectively. For
each cluster obtained, we calculated the proportion
of the majority genre among all item candidates.
This process is repeated 20 times and the average
accuracy is reported in Table 6. Genre informa-
tion appears most frequently in dialog context and
most recommendations are made based on genre
attributes. Our item encoder, after joint training,
should construct item embeddings that reflect genre
information. Hence, the embeddings should be
more clustered in terms of genre.

Model K=3 K=4 K=5
MESE raw 0.492 0.514 0.574

MESE w/o content 0.555 0.589 0.606
MESE 0.695 0.725 0.738

Table 6: Item Encoders Clustering Accuracy

As we can see from the table, without training,
MESE raw, being the least sensitive to genre infor-
mation, achieves the lowest accuracy scores on all
clusters. MESE w/o content, although deprived of
genre and plot, still has slightly higher accuracy
than MESE raw due to its exposure to REDIAL

conversations. MESE is most sensitive to genre
information. This is an indication that by aligning
matching information in both dialog context and
item metadata, our item encoder is able to generate
meaningful representations, which can facilitate
the PLM to produce better rankings through its
self-attention mechanism.

What if we remove mentioned entities from
dialog context? Mentioned entities are crucial
to previous approaches (Chen et al., 2019; Zhou
et al., 2020) in terms of recommendations. We
train MESE with mentioned entities removed from

dialog history and compare its performance with
MESE on REDIAL dataset and INSPIRED dataset
in table 7.

Dataset Model R@1 R@10 R@50
REDIAL MESE w/o item 3.4 18.1 38.7

MESE 5.6 25.6 45.5
INSPIRED MESE w/o item 4.3 11.9 26.7

MESE 4.8 13.5 30.1

Table 7: Results of MESE and MESE w/o on REDIAL
and INSPIRED.

We can see removing the entities led to an aver-
age of 26.3% performance drop on REDIAL and an
average of 11.2% performance drop on INSPIRED.
The recommendation performance on REDIAL is
more impacted by the removal of entities because
the conversations in REDIAL are rich with enti-
ties and weak in semantic information, whereas
INSPIRED is more sparse on entities but contains
richer dialog information. In REDIAL, there is 1
mentioned movies among every 21.85 word tokens.
The sentence level distinct 1-grams and 3-grams
are 0.15 and 2.81. In contract, there is 1 men-
tioned movies among every 63.54 word tokens in
INSPIRED. Its sentence level distinct 1-grams and
3-grams are 0.59 and 6.84. This proves that our
model can efficiently infer user interests from texts
to make high-quality recommendations without ex-
plicitly using mentioned entities. This property
could be useful in an e-commerce setting where
users tend to convey their requirements more with
texts than entities. It could also be useful in a cold
start scenario where we don’t have many entities in
the context.

6 Conclusion and Future Work

In this paper, we introduced MESE, a novel CRS
framework. By utilizing item encoders to construct
embeddings from metadata, MESE can provide
high-quality recommendations that align with the
dialog history. Our approach yields better perfor-
mance than existing state-of-the-art models. Abla-
tion studies explain the reason behind this perfor-
mance gain. As for future work, we will consider
applying this approach to a broader domain of CRS
datasets. Currently, we only experiment on movie
recommendations. However, the encoder of MESE
is flexible and can potentially work well with cross-
modality tasks. Multi-modal CRSs can be explored
in the e-commerce domain with MESE.
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A Candidate Selection With Multiple
Sources

To maximize the performance of candidate selec-
tion, we blend candidates selected from the nearest
neighbor search source with a rule based source.
The rule based source is constructed by travers-
ing the training data and maintaining a list of co-
occurring items for each individual item. For ex-
ample, if item A and item B both occurred in a con-
versation in the training set, we add them to each
other’s list. During testing, if item A is mentioned
in the dialog context, the maintained co-occurring
item list is combined with the candidates retrieved
by nearest neighbor search as the final selection.

B Response Generation and
Recommendation Trade-Off

The trade-off between response generation and
recommendation during training. We separate
language training objective from the jointly trained
loss and compare the trained models on language
generation metrics on ReDial in table 8. MESE-
LG denotes the model trained with only the lan-
guage generation objective Lres.

Model Dist2 Dist4 Bleu2 Bleu4
MESE-LG 1.13 2.25 0.295 0.171

MESE 0.822 1.313 0.246 0.143

Table 8: Results of MESE and MESE-LG on REDIAL.

As we can see, training only on language gener-
ation objective yields better results. In the settings
of MESE, both tasks update the weights of the
same pre-trained language model simultaneously
with different goals: In recommendation, the
language model needs to construct meaningful
scores for generated candidates; In response gener-
ation, the language model aims to generate next
token given previous contexts. This experiment
showed that this joint training approach induces a
trade-off between training on response generation
and recommendation: back-propagation on the
recommendation objective can lead to catastrophic
forgetting of information learned from pre-
training, which leads to worse language metrics.

C Response Generation Example

We include example dialog of human seeker and
MESE model in table 9.

User: Hello, how are you?
System: Good, how are you?

What type of movies do you like?
User: I’m great. thanks!

I’m looking for crime movies to watch.
System: Have you seen Goodfellas?
User: Yes, I love that movie.

Could you recommend another one?
System: If you haven’t seen The Rise of

the Krays you should give it a try.
User: I never saw that I should check it out.

Thank you and have a great afternoon!
System: You too! Have a great day!

Table 9: Conversation Example
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