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Abstract

Individuals, educational institutions, and busi-
nesses are prolific at generating instructional
video content such as “how-to” and tutorial
guides. While significant progress has been
made in basic video understanding tasks, iden-
tifying procedural intent within these instruc-
tional videos is a challenging and important
task that remains unexplored but essential to
video summarization, search, and recommen-
dations. This paper introduces the problem
of instructional intent identification and extrac-
tion from software instructional livestreams.
We construct and present a new multimodal
dataset consisting of software instructional
livestreams and containing manual annota-
tions for both detailed and abstract procedu-
ral intent that enable training and evaluation
of joint video and text understanding mod-
els. We then introduce a multimodal cascaded
cross-attention model to efficiently combine
the weaker and noisier video signal with the
more discriminative text signal. Our experi-
ments show that our proposed model brings
significant gains compared to strong baselines,
including large-scale pretrained multimodal
models. Our analysis further identifies that
the task benefits from spatial as well as mo-
tion features extracted from videos, and pro-
vides insight on how the video signal is pref-
erentially used for intent discovery. We also
show that current models struggle to compre-
hend the nature of abstract intents, revealing
important gaps in multimodal understanding
and paving the way for future work.1

1 Introduction

Instructional videos have become increasingly
ubiquitous as users generate diverse “how-to”, DIY,
and tutorial videos. A Pew Research Center 2018
survey of U.S. adult YouTube users (Smith et al.,
2018) found that over half of surveyed users use

1Code and data are available at https://github.
com/adymaharana/VideoIntentDiscovery.

video content to learn how to do things they had
not done before. These instructional videos convey
both abstract and specific intent for physical tasks
such as cooking where e.g., an abstract culinary
intent is "let’s bring out the flavor" and a detailed
intent is "add a pinch of nutmeg". Thus, a key task
in instructional video understanding is to discover
both abstract and detailed intents. By discover-
ing these intents, we can enable or improve im-
portant tasks such as semantic indexing of videos
(Kofler et al., 2016), knowledge graph creation for
video search and recommendations (Pei et al., 2011;
Kofler et al., 2014), intent highlighting, and video
summarization (Nalla et al., 2020).

An important domain with rich and complex ex-
amples of both abstract and detailed intent types
are software training videos for creative tasks such
as making photo or video effects. These types
of software training videos have been shown to
be effective for enhanced learning (Van der Meij,
2017) and are also considered a valuable resource
in the era of online learning (Meyer, 2015). Exist-
ing video and phrase datasets such as HowTo100M
(Miech et al., 2019) cover a wide variety of tu-
torials for visual tasks demonstrated by humans;
however, software-based instructional videos are
not a part of such corpora. Hence, in this paper,
we present a new corpus of software-instructional
videos containing instructional intents, which are
derived from Behance Livestreams demonstrating
the use of Adobe Photoshop software.2

Intent detection has been well-studied in dia-
logue systems (Wu et al., 2020), but is less explored
for instructional video content, especially emerging
livestream content (Fraser et al., 2019). While rich
in complex procedural instruction and intent, the
interactive and social nature of livestreams poses
unique challenges. Analyzing language features
alone will provide only limited information about

2https://www.behance.net/live, https://
www.adobe.com/products/photoshop.html
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the actual instructional intent and the tools and
commands used. For instance, the phrase “flipping
the canvas” in “Are you flipping the canvas?” indi-
cates a tool intent, but a closer look at the video clip
reveals that it is in fact part of livestream chit-chat
and does not take place on-screen. Incorporating
both language and video modalities can enhance
intent extraction of such ambiguous intents. Hence,
in this paper, we present a new joint language-video
intent discovery task and a multimodal dataset con-
sisting of: Behance Intent Discovery, and the Be-
hance Livestream video and transcript corpus that
intents are found in. We frame intent discovery as
a sequence labelling task; each sample in the in-
tent discovery dataset contains a transcribed phrase
annotated with token-level tags for abstract and de-
tailed intents, and an associated video timestamp.
Our goal is to predict the instructional intents from
the transcript in each video.

To perform intent discovery within instructional
videos, we propose a multimodal cascaded cross-
attention model to predict both the abstract and
detailed procedural intents that are present. Ad-
ditionally, we use late fusion of multimodal em-
beddings to prevent the visual modality from over-
whelming the textual signal, and show significant
improvements on the video-based intent detection
task using unimodal and multimodal pretrained
models like HERO (Li et al., 2020). Further, we
compare the performance of various video feature
extractors as well as different video lengths, and
present benchmark results on the proposed dataset.
We find that discovery of tool intents benefit from
sparsely-sampled spatial features while creative in-
tents benefit from densely-sampled motion features.
In the absence of motion features, most models
struggle to utilize the video signal for identification
of creative intents. Further, visualization of cross-
attention and visual gate modules in the late fusion
model suggests strong and meaningful interaction
between the two modalities. Our contributions are:

• We introduce and explore the novel task of
video-based multimodal intent discovery, and
present an annotated dataset consisting of
nearly 20K sentences from 66 livestreams for
extraction of procedural intents from instruc-
tional videos.

• We release a large corpus of software-based
instructional videos (2,049 sessions, 3,128
hours total), accompanied by timestamped
transcripts, that can be used for pretraining

multimodal models.

• We propose the multimodal cascaded cross-
attention model and demonstrate the effective-
ness of late fusion of multimodal embeddings
in this task.

• We present empirical results for the proposed
dataset using unimodal and multimodal ap-
proaches, and provide insights from analysis
of modelling choices for future research.

2 Related Work

Intent discovery has been widely studied in the con-
text of dialog modelling and generation wherein it
has been framed as a binary or multi-class classifi-
cation problem. The SNIPS (Coucke et al., 2018)
and ATIS (Dahl et al., 1994) datasets consist of
concise single-sentence texts containing intents
with constrained vocabulary and attributes. Sev-
eral works have explored intent classification of
internet posts in the context of racial/radicalized in-
tent (Agarwal and Sureka, 2016), purchase intents
(Gupta et al., 2014; Wang et al., 2015), discussion
forums (Chen et al., 2013) and health queries (Cai
et al., 2017). Vedula et al. (2019) propose open
intent discovery with unconstrained vocabulary as
a sequence tagging task. Using this framework, we
present our dataset on instructional intents.

In the wake of exploding visual social-media
content, several image-based multi-modal intent
datasets have been previously proposed. Kiela et al.
(2020); Aprosio et al. (2020) study abusive lan-
guage and hateful intent in memes and photo posts.
Jia et al. (2021) explore intent categories derived
from social psychology and use object localization
to integrate visual context in task models. Insta-
gram posts are another interesting source for multi-
modal content (Chen and Hsieh, 2020; Kruk et al.,
2019). We introduce the task of video-based multi-
modal intent discovery, which has been unexplored.

Several tasks have been proposed in the recent
years to probe joint video and text understanding.
Lei et al. (2018); Kim et al. (2017); Maharaj et al.
(2017); Jang et al. (2017); Tapaswi et al. (2016)
and Yi et al. (2020) introduce video-based question
answering datasets created from various sources
of creative visual content, i.e. movies, TV shows,
GIFs etc. Lei et al. (2020b) and Lei et al. (2020a)
propose the task of video-moment retrieval and
next frame prediction respectively, based on query
subtitles, while Liu et al. (2020) present the multi-
modal version of natural language inference. Early
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Figure 1: Examples of the output predictions for can-
didate creative and tool intents given an instructional
livestream video and its associated transcript.

models for performing these tasks involve combin-
ing pretrained image representations from sparsely
sampled videos, and text encodings from pretrained
encoders (Devlin et al., 2019; Liu et al., 2019) in ar-
chitectures for modelling global-local interactions
(Zhu and Yang, 2020; Yang et al., 2020), temporal
localization (Kim et al., 2019; Zhang et al., 2020),
graph-based reasoning (Huang et al., 2020) etc.
More recent attempts involve pretraining models
on large video+text corpora (Miech et al., 2019)
and finetuning on downstream tasks (Sun et al.,
2019; Cho et al., 2021; Tang et al., 2021; Lei et al.,
2021; Luo et al., 2020). We explore late-fusion
of video and text embeddings (Yu et al., 2020) for
intent detection in pretrained and non-pretrained
multimodal settings.

3 Problem Setting: Intent Discovery
from Livestreams

In our setting, each video captures a Behance
livestream in which an instructor demonstrates the
steps needed to accomplish various image editing
or compositing tasks. We specifically focus on rich
creative instructional or tutorial livestreams that
teach photo editing and compositing methods us-
ing an image application such as Photoshop, which
consists of over 1,300 basic menu commands and
subcommands, tool icons, panels, and galleries.

The livestream itself consists of a screencast
of the instructor’s application software, a smaller
video window showing the instructor, a time-coded
transcript of the dialog within the session, and a

give

dobj prep pobj

VERB NOUN ADP NOUN
a sense of dimensionality

Figure 2: Example of dependency structure of an intent.

Attribute Statistics
#Sessions 3,356
Min/Max/Avg. session length 1/426/80 mins.
Min/Max/Avg. phrase length 1/142/8 words
Min/Max/Avg. #phrases per session 1/4,552/587
#Distinct tools in corpus 282

Table 1: Statistics of the Behance Livestreams corpus
for sessions and transcribed phrases.

tool timeline which is a time-coded log of the spe-
cific application tools used during the livestream.
Given the transcript of an instructional video, the
video itself, and optional Tool Usage (TU) informa-
tion from the tool timeline, Fig. 1 shows examples
of the Creative Intents (CI, shown at 01:36.16 and
01:37:09) and Tool Intents (TI, shown at 01:36:21,
01:36:29 and 01:36:46) we seek to discover. Fur-
ther, we wish to combine joint language and video
knowledge to gain improvements in detecting can-
didate intents that are false positives such as the text
at 01:37:09, which is only a parenthetical comment
by the instructor.

4 Behance Datasets

Dataset Collection. We first obtain 2,049 videos
along with their transcripts and tool timelines from
the Behance platform. The tool timeline contains
a time-stamped record of the tools used in the
software during the tutorial. The average session
length is 80 minutes with an average of 587 tran-
scribed phrases per session (see Table 1). The tool
timelines contain 282 distinct tools with varying
frequencies; Color, Select Brush, Select
Layer are some of the most frequent ones. The
instructional software-based domain of this dataset
is significantly different from existing large cor-
pora drawn from YouTube instructional videos
(Miech et al., 2019) and TV content (Lei et al.,
2018, 2020b), but it is an important learning re-
source. Hence, we include the unlabelled Behance
Livestreams corpus as an addition to the pool of
video+text corpora that can be leveraged for contin-
ued pretraining of multimodal models and finetun-
ing on downstream tasks relevant to software-based
livestream videos.

In order to prepare the intent discovery dataset,
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1:34:28.55 --> 1:34:33.45 3:40:48.59 --> 3:50:51.76 

Select the inverse and give
a little bit of detail right to 
that edge.

So I am blurring some of
my groups.

4:47:40.83 --> 4:47:48.12 

I'm happy with that, so I merge
it down and then we'll make a 
new layer and let's add some 
more plants and stuff.

1:48:14.45 --> 1:48:21.65 

I am going to make a new 
layer and use a clipping 
mask again on the wood and
I might use a textured brush.

Figure 3: Examples of tool intent (blue) and creative intents (magenta) from the Behance Intent Discovery dataset.

Attribute Training/Validation/Test
#Sentences 13989/2,105/3,917
#Tool intents 3,478/414/825
#Creative intents 674/106/189
#Livestream videos 54/6/6

Table 2: Statistics of the various splits in the Behance
Intent Discovery dataset.

we extract candidate intent phrases from the tran-
scripts of the Behance Livestream corpus. Follow-
ing Vedula et al. (2019), we define an intent as
a text phrase consisting of: (i) an action word or
phrase, which constitutes a definite task, goal or
activity and (ii) an object, which represents those
words or phrases that the action is going to act or
operate upon. We generate the dependency graph
of sentences, and extract the VERB node as action
and the direct object of the VERB as the object,
along with all other children nodes (see example in
Fig. 2).3 Through manual analysis, we identified
two major categories of meaningful intent: tool
and creative. Tool intents are low-level intents that
can be typically mapped to a single tool in the soft-
ware. Creative intents are abstract intents used to
describe a high-level creative goal that consist of a
complex set of actions or tool intents. For instance,
in Fig. 3, “make a new layer” is a tool intent that
can be mapped to the tool Create Layer, while
“add more plants and stuff” is a creative intent. All
other intents in the corpus, predominantly from
chit-chat statements, are irrelevant to our task. We
frame the task of intent discovery as a sequence-
tagging problem and tag the intent phrases within
each sentence with IOB (inside, outside, begin-
ning) span annotations for the two classes: tool
and creative intents. Each sample consists of a
timestamped sentence with span annotations and
the video session it is extracted from.

Based on the above defined framework, we col-

3https://spacy.io/api/dependencyparser

Top Unique Verbs in Action
Tool Intents merge, select, add, use, paint, dupli-

cate, make, delete, painting, do, flip,
decrease, using, lower, figure, erase

Creative Intents add, make, give, change, paint, create,
convey, fill, animate, use, have

Top Unique Nouns in Object
Tool Intents layer, color, mask, things, brush,

shapes, selection, tool, shift, opacity,
canvas, adjustment, stuff, thing

Creative Intents colors, details, light, shadow, tex-
ture, contrast, highlights, vibe, depth,
sense, bounce, feeling, elements

Table 3: Unique words in the intent discovery dataset.

lect manual annotations of tool and creative intents.
We employed two annotators using the UpWork
crowdsourcing platform and trained them for identi-
fying intents from Behance videos and transcripts.4

They were instructed to annotate spans for tool and
creative intents within each sentence. The annota-
tions were created using the open-source Doccano
annotation tool.5 In total, we collected annota-
tions for 20,011 sentences from 66 Behance videos.
The resulting Behance Intent Discovery dataset
contains 13,989/2,105/3,917 samples in training,
development and test splits respectively (see statis-
tics in Table 2). We do not specify the duration
of video clips for each sentence in the annotation.
In our experiments, we explore varying clip dura-
tion and empirically choose a window of 10 sec-
onds (±5s) around the sentence’s timestamp (see
Sec. 8.2). The full video sessions are released for
further research.

Dataset Analysis. We analyzed tool and creative
intents to find the most frequent, unique verbs and
nouns mentioned in the phrases. While there are ac-
tion verbs which are distinctly tool-specific, such as
merge, select, and duplicate, there are many verbs

4https://www.upwork.com/. Annotators were
compensated per the $20/hr rate.

5https://github.com/doccano/doccano
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which are common to both tool and creative in-
tents such as add, make, and paint. Hence, the task
model needs to learn the difference between tool
and creative intents to be able to classify intents
with similar action verbs into the correct categories.
Further, we examined the unique nouns occurring
in the intents and found lesser overlap between the
two intent classes. Creative intents contain abstract
and subjective visual concepts which pose a unique
and interesting challenge to multimodal models.
See Appendix for probing experiments.

5 Methods for Intent Discovery

Intuitively, as in a lot of instructional sources like
text books, the text or audio serves as the primary
mode of high-level information transfer, while the
video/image signal provides detailed context or
demonstration. Thus, we start our exploration
using text models, which are built on two pre-
trained models: RoBERTa (Liu et al., 2019) and
GPT2 (Radford et al., 2019). There are several
previous works focusing on a limited set of intents
(Xia et al., 2018), and thus, treat the problem of
intent discovery as a classification problem. In our
case, given the vast possibilities of potential intents
in our sources, we cast the problem as a span detec-
tion problem, and design our models accordingly.

5.1 Unimodal Sequence Labelling

Our text models are designed similar to Named-
Entity-Recognition models with a pretrained em-
bedding layer and a sequence classification layer on
top. Each phrase in the transcript is annotated sepa-
rately in the intent dataset, leading to efficient pro-
cessing. Although it is possible to process longer
spans of text, in our annotations, we found out
that each sentence usually gives enough informa-
tion to extract the intent inside it, and extra con-
text (neighboring sentences) does not significantly
help the decision. We denote an input sentence as
X = [x0, ..., xN ] with N as the length of the input
sentence, Z = [z0, ..., zN ] denotes the common
IOB tags of two classes: creative intent and tool
intent. Using text encoder fenc, we extract text
encodings E i.e. E = fenc(X). The encodings are
then passed to the classifier layer for computing
tag probabilities i.e. Ẑ = softmax(Wc ∗ E + bc)
where Wc, bc are parameters of the classifier
layer. The model is trained end-to-end using cross-
entropy loss i.e. Lθ = − 1

N

∑N
i=1 zilog(ẑi), where

θ represents parameters of the entire model.

5.2 Multimodal Sequence Labelling: Naïve
Fusion

Seeking to leverage the video information, in our
first attempt, we tried a simple feature fusion be-
tween the text signal and the video signal in the
sequence labelling framework. We add a cross-
attention layer on top of the pretrained text encoder
in this naïve joint video-text model and use the out-
put of the cross-attention layer for sequence label
classification. Let’s denote the video features as V .
Our model (see Fig. 4 (a)) is described as follows:

Ẑ = softmax(Wc ∗ fself (fcross(E, V )) + bc)

where E, fself and fcross are text encodings,
self-attention and cross-attention layers respec-
tively. This naïve fusion model, however, does not
provide any significant improvements compared
to text-only baselines (see Sec. 7). Analysis of
the results revealed that the textual features dom-
inate the final decision, especially in the creative
intent classes. To understand this behaviour, we
performed a pilot task in which a human annotator
looks through the video segments and tries to guess
the intent without any transcript or audio. Our
annotator found the task very difficult, and only
possible after watching a very long context win-
dow, which partially explains the low performance
of this model. The video signal is much more am-
biguous than the text signal, and when presented
with two sources where one is vastly less informa-
tive than the other, the model learns to rely only
on the text, leading to no improvement compared
to the text-only baseline. Joining two sources of
features with different predictive utility is difficult.
Given the fact that the video feature extractor is
not trained on similar data, the video feature might
not contain enough information for a direct intent
detection task. Fortunately, our pilot task also re-
veals an important insight, i.e., the video signal
is good at identifying whether an intent is present
or not. Many intent candidates identified by the
text models are not creative or tool intents, but are
chitchat utterances from the instructor interacting
with the audience. In these cases, we posit that the
inactivity presented in the video signal is a strong
indication that a creative/tool intent does not occur
at the current time window. Using this idea, we
propose a cascaded model with deeper interaction
between video and text signal.
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Figure 4: Demonstration of multimodal models: (a) Multimodal RoBERTa with naïve fusion of video and text
encodings; (b) Adaptation of HERO for sequence labelling with late fusion, see (c) for visual gate; (c) Multimodal
RoBERTa with cascaded cross-attention and late fusion; σ, +, ∗ represent sigmoid function, concatenation and
matrix multiplication respectively.

5.3 Cascaded Cross-Attention & Late Fusion

Using the intuition that the text signal would pro-
vide candidates for the vision model, which is sub-
sequently used for filtering out the cases without
intent, we design the cascade cross-attention model
as follows: First, we extract the set of contextu-
alized embeddings E from the text encoder fenc
and transform it through two self-attention layers
to create a two-stream architecture (see Fig. 4). In
the first stream, the text encodings are processed
through a single-layer of self-attention to produce
E1. In the second stream, the output from self-
attention i.e. E2, is combined with video embed-
dings through a cascaded cross-attention module.
Let V = [v1, v2, ..., vk] be the input sequence of
video embeddings. The cascaded module contains
three cross-attention layers: video-to-text fv2t(·),
text-to-video ft2v(·) and text-to-text cross-attention
ft2t(·), with outputs computed as:

S1 = fv2t(WmV + bm, E2)

S2 = ft2t(E2, S1)

S3 = ft2i(Es2,WmV + bm)

where Wm, bm are the parameters of a linear
layer for transforming video embeddings. Next,
the outputs from cross-attention layers are concate-
nated, linearly mapped and transformed into 0-1
values using a sigmoid, to generate the visual gate
(see Fig. 4 (c)). Finally, the output from cross-

attention layer is multiplied with this gate, i.e.

Sgate = sigmoid(Wg[S2;S3] + bg)

Sclf = [Sgate ∗ S3;Es1]

The visual gate is dynamically computed using the
contextualized video representations and is used
to trim the video signal to the relevant bits. This
helps in regulating the contribution of the two
modalities for the final prediction as per the in-
put. The concatenation represents the late-fusion
of text-only embeddings and video-contextualized
text embeddings. This merged representation is
then sent to the classifier layer for classification i.e.
Ẑ = softmax(Wc ∗ Sclf + bc).

5.4 Sequence Labelling with Joint Video-Text
Pretraining

In order to leverage joint modelling of video and
text modalities through large-scale pretraining, we
adapt the pretrained HERO (Li et al., 2020) and
ClipBERT (Lei et al., 2021) for sequence tagging.

HERO. For each sample in video-based intent
detection, we send the video clip and the cor-
responding subtitle for context as well as query,
as input to HERO. Vcross represents the cross-
contextualized frame embeddings from the Cross-
modal Transformer module, which is then concate-
nated with query embeddings W q

emb before being
sent to the Temporal Transformer ftemp in HERO
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Type Model Video Embeddings Tool Intents Creative Intents
P R F P R F

Unimodal CRF - 0.43 0.55 0.48 0.17 0.1 0.13
RoBERTa - 0.53 0.65 0.58 0.21 0.39 0.27

GPT2 - 0.41 0.67 0.51 0.12 0.25 0.17

RoBERTa + Naive Fusion 3D ResNext 0.48 0.62 0.54 0.19 0.48 0.27
2D ResNet 0.54 0.65 0.59 0.23 0.38 0.28

Multimodal SlowFast 0.58 0.65 0.61 0.22 0.40 0.29
(Unimodal Pretraining) RoBERTa + Late Fusion 3D ResNext 0.55 0.64 0.59 0.23 0.41 0.29

2D ResNet 0.58 0.62 0.60 0.24 0.26 0.25
SlowFast 0.60 0.66 0.62 0.24 0.41 0.30

Multimodal Pretraining HERO 2D ResNet + SlowFast 0.57 0.65 0.61 0.23 0.43 0.30
HERO + Late Fusion 2D ResNet + SlowFast 0.62 0.61 0.62 0.30 0.31 0.30

ClipBERT - 0.53 0.66 0.59 0.19 0.35 0.25
ClipBERT + Late Fusion - 0.54 0.67 0.60 0.21 0.29 0.27

Table 4: Partial-match based results on the test split of the Behance Intent Discovery dataset.

for global contextualization. Thus, the output is:

Stemp = ftemp([V
cross;W q

emb])

Sout = Stemp[Nv : (Nv +Nt), :]

where Nv and Nt are the number of frames and
tokens in video and query respectively. The output
of ftemp is masked to select the representations
pertaining to the query only. In the naïve fusion
setting, Sout is then sent to the classifier layer.

ClipBERT. Similarly, the output Sout from the
Cross-modal Transformer fcross in ClipBERT is
masked and sent to the classifier layer for predic-
tion i.e. Sout = fcross([V ;W q

emb])[: Nt, :].

Late Fusion. We integrate the late fusion ap-
proach into HERO and ClipBERT as follows:

Sgate = sigmoid(Wg ∗ Sout + bg)

Sclf = [Sgate ∗ Sout;W q
emb]

where the visual gate is computed as in Sec. 5.3
(see Fig. 4) and Sclf is sent to the classifier layer.

6 Experiments

Evaluation. Since the transcribed phrases in Be-
hance Livestreams are the result of an automatic
speech recognition (ASR) system, the exact span
match metrics might be distorted by ASR errors.
Hence, we use a more lenient 75% partial match-
based Precision/Recall/F-score metric i.e., if there
is more than 75% overlap between the ground truth
and predicted span, we consider it as a match.

Video Representations. We experiment with 3D
ResNext-101 (Xie et al., 2017) (fps=6), SlowFast
(Feichtenhofer et al., 2019) (clip length=2s) and
2D ResNet-152 (He et al., 2016) (clip length=2s)
following preprocessing steps in Li et al. (2020).

Models. We use the RoBERTaLARGE (Liu et al.,
2019) models for the unimodal experiments, as
well as the multimodal experiments that are based
on unimodal pretrained models. We use the pre-
trained HERO (Li et al., 2020) and ClipBERT
(Lei et al., 2021) in the remaining experiments;
their language encoders are initialized from pre-
trained RoBERTaBASE and BERTBASE (Devlin
et al., 2019) models. Each model is trained end-to-
end using fully-supervised training and is subjected
to grid-search based hyper-parameter optimization.
The best checkpoints are selected based on overall
F-Score. See Appendix for bounds.

7 Results

In this section, we discuss results from various
models on the Behance Intent Discovery dataset
(see Table 4).

The text baselines. Starting with the text-only
baselines, we see the best performance from the
RoBERTa models, i.e., 58% and 27% partial match
F-scores on the tool and creative intents, respec-
tively (rows 2 and 3 in Table 4). Notably, the tool
intent predictor is biased with high recall but low
precision performance i.e. it retains too many can-
didates, many of which do not correspond to any in-
tents. These results also demonstrate that large pre-
trained language models like RoBERTa and GPT2
struggle to comprehend the abstract ideas repre-
sented in creative intents.

The Naïve Fusion models. The Naïve Fusion
approach with pretrained RoBERTa yields upto 2%
improvement over the text-only baselines. In some
cases, such as the 3D ResNext representations, this
approach degrades the performance, especially in
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the harder creative intent set. We attribute this to
the difference in informativeness between the text
and the video signal, as discussed in Sec. 5.2.

The Late Fusion models. With the Late Fusion
approach, we see significant improvements in al-
most all cases. Compared to the corresponding
Naïve Fusion models, Late Fusion models mainly
improve precision for tool intents. This result sup-
ports our hypothesis that the video signal is most
useful as a gate to filter out non-intent candidates
from the textual signal. The SlowFast represen-
tations prove especially beneficial for creative in-
tents, as seen in row 9 in Table 4. With the use
of multimodal pretrained models like HERO and
ClipBERT, we observe significant improvements
in prediction of tool intents and smaller improve-
ments for creative intents with a simple adaptation
of the prediction head for sequence labelling (see
Sec. 5.4). HERO uses video representations from
pretrained encoders while ClipBERT operates on
raw videos; both approaches work well with the
software-based video domain yielding upto 3% and
1% improvement on tool intents respectively (rows
10, 12 in Table 4) over the unimodal RoBERTa
models. Larger improvements are seen from fur-
ther augmenting these models with late fusion i.e.
1% improvement on tool intents (rows 11, 12 in
Table 4). The late fusion RoBERTa model using
SlowFast features (row 9 in Table 4) performs best
for creative intents, with 3% improvement over the
text-only baseline.

We see similar trends from experiments on the
validation set of the Behance Intent Discovery
dataset. See results in Appendix.

8 Analysis & Discussion

In this section, we perform qualitative analysis
of the late fusion approach and examine the ef-
fect of video clip length. We also discuss a semi-
automated approach to creating annotations for in-
tent extraction and use the data in combination
with manual annotations for improved results. See
Appendix for more analyses.

8.1 Qualitative Analysis
In order to understand the inner workings of the late
fusion architecture, we examine the cross-attention
and visual gate modules of the RoBERTa+Late Fu-
sion model trained with 2D ResNet features. Each
row of the attention score matrix M ∈ Rn×f (for
n tokens and f video segments) in text-to-video

(a)

(b)

Figure 5: Visualization of (a) temporal attention over
video segments from 12 attention heads and, (b) mean
± SD of visual gate values for each token (blue for in-
tent span), using the RoBERTa+Late Fusion model.

I am wondering if I should 
actually paint it in or I should try..

My workflows change a lot 
of noise..

Figure 6: Wrong predictions (red) from unimodal
RoBERTa which are solved by adding video signal.

cross-attention module corresponds to the tempo-
ral attention over video clips (represented by a se-
quence of ResNet feature vectors) for a given token.
We plot this score matrix for the 12 attention heads
in the RoBERTa model in Figures 5(a) and 7(a).
The attention heads are activated in the intent re-
gion suggesting a strong interaction between two
modalities in important segments of the video.

To understand how the video signal helps the
prediction, we first plot the mean and standard de-
viation of visual gate values (Sgate) for each token
in Figures 5(b) and 7(b). Results show that the vi-
sual gate preferentially relies on the video modality
for tokens outside the intent span. Furthermore, in
Fig. 6, we show example phrases where the text
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(a)

(b)

Figure 7: Visualization of (a) temporal attention over
video segments from twelve attention heads and (b)
mean and standard deviations for the distribution of
visual gate values for each token, using the best
RoBERTa+Late Fusion model.

only model classifies wrongly as intent while the
joint model does not. The phrases themselves ap-
pear to be intent but the lack of action in the visual
frame indicates that these are chit-chat interactions.
Both analyses support our hypothesis that the late
fusion model utilizes the video signal to filter intent
candidates and improve precision.

8.2 Video Clip Length

As we discuss in Sec. 4, the video clip durations for
the tool and creative intents are not specified. We
observe that the intended action can span anywhere
between 1 second to several minutes. Longer clip
lengths are relevant for many creative intents like
“make it into something fantasy”, “add the arm to
this little guy”, etc. Hence, we experiment with var-
ious clip lengths (10, 20 and 60 secs), but find that
larger clip lengths do not lead to further improve-
ments. In fact, with 60 second clips the perfor-
mance of RoBERTa+Late Fusion model drops be-
low the performance of text-only RoBERTa. This
issue could be alleviated with long-range video
understanding models (Sener et al., 2020).

8.3 Semi-automated Intent Annotations

Since manual annotation of procedural intents is
time-intensive and expensive, we explore a semi-
automatic pipeline for creation of intent annota-
tions. The Behance Livestreams corpus contains
tool timelines for each livestream, which enumer-
ates the tools used within the software at different
points in the livestream. We compute the tf-idf
scores for co-occurrence of 896, 287 action-object
phrases (from dependency parses of sentences) and
corresponding tools in the tool timelines, in order
to find the phrases that are frequently used for de-
scribing particular tool actions, such as “grab the
smudge tool”. After filtering the phrases for those
with high tf-idf scores, the pool of intent candi-
dates was further cleaned manually, resulting in
a final set of 3,697 tool intent candidates. Using
this pool of candidates, 24,300 phrases from the
Behance Livestreams corpus were identified as tool
intent samples. Since it is not straightforward to
extract creative intents using similar methods, we
first identified key phrases for creative intents from
the set of action-object phrases with high term fre-
quency. We then subjected it to manual cleaning
(two annotators per sample; κ=0.986) followed by
embedding similarity to select creative intents (see
Appendix for full pipeline). Using this method, we
recovered 7,135 phrases containing creative intents.

We use these semi-automatically collected an-
notations as additional training data in our experi-
ments with Late Fusion RoBERTa models. Since
the manually annotated Behance Intent Discov-
ery dataset is skewed towards negative samples
i.e. <25% samples contain intent, we balance the
training data by adding 5,000 samples (containing
tool or creative intents) from the aforementioned
semi-automatically annoated dataset to it. With this
balanced data, we see upto 2% improvement in the
Late Fusion RoBERTa models. See Appendix.

9 Conclusion

In this paper, we explore the novel task of video-
based multimodal intent discovery. We present the
unlabelled Behance Livestream corpus consisting
of instructional videos for software tools, and the
Behance Intent Discovery dataset annotated with
tool and creative intents. We propose a late-fusion
approach for integration of the video signal with
the text signal in a controlled manner for this task,
and show significant improvements with unimodal
and multimodal pretrained models.
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11 Ethics/Broader Impacts

From an ethics standpoint, we provide a detailed
overview of the methods used to create the Be-
hance Livestreams corpus and Behance Intent Dis-
covery dataset in Sec. 4 and more details in the
Appendix. We also provide some analyses of the
data in Table 3. All of the language data consists of
simple English sentences. The dataset comprises
livestreamed video tutorials by users of the Be-
hance platform. Behance users grant full usage
rights of their content and agree to not hold copy-
right claims on content in the livestreams videos
or transcripts. This content is being made avail-
able for free distribution for academic research
purposes only and does not allow for redistribu-
tion. Aside from the name of the instructor in each
video (which is public information), real names of
livestream session users or other identifying infor-
mation does not appear in any of the transcripts.
We provide full descriptions of the models used in
this paper in Sec. 5. Detailed hyperparameters and
bounds for hyperparameter search are included in
the Appendix.

Video-based intent discovery serves to enhance
the information exploration experience of users
on any video-based platform. Since we focus on
extracting procedural intent relevant to the goal of
the video and in the software domain, we do not
anticipate this technology to cause any harm to
users, or have any unintended consequences.
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A Dataset

For the semi-automatically created annotations de-
scribed in Sec. 8.3, we empirically select a window
of 10 seconds for computing the scores and retain
intent phrases with a term frequency of 5 or higher
in the corpus and tf-idf scores of 0.3 or higher with
one or more tools. See the full semi-automated
pipeline of dataset creation in Fig. 8.
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Figure 8: Semi-automated data processing pipeline.

Model Video Embeddings Acc.

3-Layer MLP 3D ResNext 0.706
SlowFast 0.743

3D ResNext-101 - 0.762

Table 5: Results from pilot experiments on usefulness
of video modality for multimodal intent discovery.

Probing Experiments. We conducted pilot
experiments to probe the usefulness of video
signals for intent detection in Behance Livestreams.
We prepare a video-only classification dataset
for intent classification containing 3,000 samples
each for creative, tool and no-intents. We use
off-the-shelf ResNext features with a 3-layer MLP
classifier as well as finetune ResNext on this
task. Using only pretrained video representations,
the 3-layer MLP classifier was able to detect
the presence of an intent with 70% and 74%
accuracy using 3D ResNext and SlowFast features,
respectively, while 66% being the chance baseline.
With finetuned ResNext, the accuracy improved
to 76%. However, the accuracy of classifying
between tool and creative intents remained close
to random for all models, suggesting the complex
nature of creative intents. See Table 5.

B Experiments

For HERO and ClipBERT models, we use the rec-
ommended hyperparameters for finetuning in their
Github repository.6,7 For RoBERTa-based models,
see the hyperparameters common to all models
in Table 8. We performed grid-search based opti-
mization of the variable hyperparameters using the
bounds in Table 8. The best performing batch size
for all models was found to be 32.

6https://github.com/linjieli222/HERO
7https://github.com/jayleicn/ClipBERT

C Results

See partial match results for the validation split of
Behance Intent Discovery in Table 6.

D Analysis

D.1 Finetuned Video Representations

We see large improvements with sparsely-sampled
2D ResNet video embeddings (see Table 4 which
are extracted from ResNet pretrained on the Im-
ageNet dataset. This begs the question, if larger
improvements can be had by finetuning the feature
extractors on the domain of Behance Livestreams.
To facilitate this, we create a dataset of 10,000 im-
ages containing snapshots of video livestreams and
classified them into one of 50 tool categories us-
ing the tool timeline. We finetune ResNet-152 on
this dataset with a resulting classification accuracy
of 47%. We use the finetuned ResNet to extract
sparsely sampled video embeddings and re-run the
late fusion experiment with RoBERTa. We see 2%
improvement for tool intents and 1% drop in per-
formance on creative intents. This suggests that
finetuning feature extractors on the target domain
can be beneficial for low-level intents.

D.2 Semi-automated Intent Annotations

As discussed in Sec. 8.3, we use semi-automatically
collected annotations as additional training data in
our experiments with Late Fusion RoBERTa mod-
els. Since the manually annotated Behance Intent
Discovery dataset is skewed towards negative sam-
ples i.e. <25% samples contain intent, we balance
the training data by adding 5,000 samples (con-
taining tool or creative intents) from the aforemen-
tioned semi-automatically annoated dataset to it.
With this balanced data, we see upto 2% improve-
ment in the Late Fusion RoBERTa models as seen
in Table 7. However, with increasing amount of
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Type Model Video Embeddings Tool Intents Creative Intents
P R F P R F

Unimodal CRF - 0.36 0.57 0.44 0.16 0.09 0.12
RoBERTa - 0.48 0.78 0.59 0.34 0.52 0.41

GPT2 - 0.40 0.61 0.48 0.15 0.19 0.15
RoBERTa + Naïve Fusion 3D ResNext 0.46 0.75 0.57 0.3 0.34 0.32

2D ResNet 0.47 0.77 0.59 0.34 0.64 0.44
Multimodal SlowFast 0.52 0.76 0.62 0.36 0.56 0.44

(Unimodal Pretraining) RoBERTa + Late Fusion 3D ResNext 0.48 0.78 0.59 0.34 0.52 0.41
2D ResNet 0.48 0.78 0.59 0.34 0.52 0.41
SlowFast 0.54 0.77 0.62 0.38 0.60 0.44

Multimodal Pretraining HERO 2D ResNet + SlowFast 0.51 0.72 0.6 0.34 0.31 0.33
HERO + Late Fusion 2D ResNet + SlowFast 0.56 0.73 0.63 0.37 0.53 0.43

ClipBERT - 0.53 0.71 0.61 0.28 0.47 0.35
ClipBERT - 0.56 0.73 0.63 0.31 0.48 0.37

Table 6: Partial-match based results on the validation split of the Behance Intent Discovery dataset.

Model Video Embeddings Dataset Tool Intents Creative Intents
P R F P R F

RoBERTa + Late Fusion SlowFast 20K Manual Only 0.60 0.66 0.62 0.24 0.41 0.30
SlowFast 20K Manual + 5K Semi 0.59 0.69 0.64 0.20 0.44 0.29
SlowFast 20K Manual + 10K Semi 0.41 0.70 0.51 0.19 0.43 0.25

Table 7: Partial-match based results on the test split of the Behance Intent Discovery dataset using manual annota-
tions and semi-automatically created annotations.

Hyperparameter Value
Common Hyperparameters

#Training Epochs 10
Max Gradient Norm 1.0
Weight Decay 0.0
Max. Sequence Length 70
Seed 0
Warmup Steps 200
LR Decay Linear
Optimizer AdamW (ε=1e-8, β1=0.9, β2=0.98)

Search Bounds
Learning Rate [1e-4, 1e-5, 5e-5, 1e-6, 5e-6]
Batch Size [8, 16, 32]

Table 8: Common Training Hyperparameters and
Search Bounds for RoBERTa models

semi-automatically data, we drastic decline in the
precision of the model for both tool and creative
intents (see row 3 in Table 7). With the use of better
methods for filtering out the useful signal from the
noisy data, there might be better results with semi-
automatically created annotations. This line of
research is important because it promotes scalable
annotations which can cover a diverse population
of livestreamers from many livestream videos.
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