
Findings of the Association for Computational Linguistics: NAACL 2022, pages 465 - 475
July 10-15, 2022 ©2022 Association for Computational Linguistics

Entailment Tree Explanations via
Iterative Retrieval-Generation Reasoner

Danilo Ribeiro1,2,∗Shen Wang2, Xiaofei Ma2, Rui Dong2, Xiaokai Wei2, Henry Zhu2,
Xinchi Chen2, Zhiheng Huang2, Peng Xu2, Andrew Arnold2, Dan Roth2,

1Northwestern University, 2AWS AI Labs
{dnribeiro}@u.northwestern.edu,

{shenwa, xiaofeim, ruidong, xiaokaiw, henghui}@amazon.com,
{xcc, zhiheng, pengx, anarnld, drot}@amazon.com

Abstract
Large language models have achieved high per-
formance on various question answering (QA)
benchmarks, but the explainability of their out-
put remains elusive. Structured explanations,
called entailment trees, were recently suggested
as a way to explain and inspect a QA sys-
tem’s answer. In order to better generate such
entailment trees, we propose an architecture
called Iterative Retrieval-Generation Reasoner
(IRGR). Our model is able to explain a given
hypothesis by systematically generating a step-
by-step explanation from textual premises. The
IRGR model iteratively searches for suitable
premises, constructing a single entailment step
at a time. Contrary to previous approaches,
our method combines generation steps and re-
trieval of premises, allowing the model to lever-
age intermediate conclusions, and mitigating
the input size limit of baseline encoder-decoder
models. We conduct experiments using the EN-
TAILMENTBANK dataset, where we outperform
existing benchmarks on premise retrieval and
entailment tree generation, with around 300%
gain in overall correctness.

1 Introduction

Large neural network models have successfully
been applied to different natural language tasks,
achieving state-of-the-art results in many natural
language benchmarks. Despite this success, these
results came with the expense of AI systems be-
coming less interpretable (Jain and Wallace, 2019;
Rajani et al., 2019a).

With the desire to make the output of such mod-
els less opaque, we propose a question answering
(QA) system that is able to explain their decisions
not only by retrieving supporting textual evidence
(rationales), but by showing how the answer to a
question can be systematically proven from sim-
pler textual premises (natural language reasoning).

∗Work done during an internship at the AWS AI. Code
and model checkpoints are publicly available at https://
github.com/amazon-research/irgr.

- s1: eruptions produce ash clouds
- s2: plants die without sunlight
- s3: ash clouds blocks sunlight

…

s1: eruptions
produce ash clouds

s2: ash clouds
blocks sunlight

s3: plants die
without sunlight

e1: eruptions
block sunlight

Hypothesis H: “Eruptions can cause plants to die”

Corpus of
premisses C
(evidence)

Task: explain a hypothesis from premises

s1: eruptions
produce ash clouds

H: eruptions
can cause plants

to die

s3: plants die
without sunlight

e1: eruptions
block sunlight

Figure 1: Task has as input a hypothesis H (e.g. an
answer to a question) and a corpus of premises C (simple
textual evidences), the goal is to generate an entailment
tree that explains the hypothesis H by using premises
from C.

These explanations are represented using entail-
ment trees, as depicted in Figure 1. First introduced
by Dalvi et al. (2021), entailment trees represents
a chain of reasoning that shows how a hypothesis
(or an answer to a question) can be explained from
simpler textual evidence. In comparison, other ex-
planation approaches such as retrieval of passages
(rationales) (DeYoung et al., 2020) or multi-hop
reasoning (chaining) (Jhamtani and Clark, 2020)
are less expressive than entailment trees, which
are comprised of multi-premise textual entailment
steps.

In order to generate such entailment trees, previ-
ous works (Tafjord et al., 2021; Dalvi et al., 2021;
Bostrom et al., 2021) have used encoder-decoder
models that takes as input a small set of retrieved
premises and output a linearized representation of
the entailment tree. Such models are limited by
(1) the language model’s fixed input size, and they
may construct incorrect proofs when the retrieval
module cannot fetch all relevant premises at once

465

https://github. com/amazon-research/irgr
https://github. com/amazon-research/irgr

(B) Evidences
(rationales)

(A) Textual
(unstructured)

(C) Multi-hop
(chaining)

(D) Entailment Tree
(reasoning)

Figure 2: Comparison among different natural language explanation approaches. The images show (A) plain textual
explanations (B) retrieval of evidence passages (C) multi-hop explanations (D) entailment trees. The approach in
(D) allows for more detailed inspection of the reasoning behind an explanation. Nodes in gray are retrieved from a
corpus, nodes in blue are generated, and the red node is the hypothesis or answer that is being explained.

(2) such approaches do not leverage the partially
generated entailment trees. In contrast, we propose
Iterative Retrieval-Generation Reasoner (IRGR),
a novel architecture that iteratively searches for
suitable premises, constructing a single entailment
step at a time. At every generation step, the model
searches for a distinct set of premises that will
support the generation of a single step, therefore
mitigating the language model’s input size limit
and improving generation correctness.

Our contributions are two-fold. First, we design
a retrieval method that is able to better identify
premises needed to generate a chain of reasoning,
which explains a given hypothesis. Our retrieval
method outperforms previous baselines by 48.3%,
while allowing for a dynamic set of premises to
be retrieved. Secondly, we propose an iterative
retrieval-generation architecture that constructs par-
tial proofs and augments the retrieval probes using
intermediate generation results. We show that in-
tegrating the retrieval module with iterative gener-
ation can significantly improve explanations. Our
proposed approach achieves new state-of-the-art re-
sult on entailment tree generation with over 306%
better results on the All-Correct metric (strict com-
parison with golden data), while using a model
with one order of magnitude fewer parameters.

2 Related Work

Traditionally, natural language processing (NLP)
frameworks were based on white-box methods such
as rule-based systems (Allen, 1988; Ribeiro et al.,
2019; Ribeiro and Forbus, 2021) and decision trees
(Boros et al., 2017), which were inherently in-
spectable (Danilevsky et al., 2020). More recently,
large deep learning language models (black-box
methods) have gained popularity (Song et al., 2020;
Raffel et al., 2020), but their improvements in re-
sult quality came with a cost: the system’s outputs

lack explainability and inspectability.
There have been many attempts to mitigate

this issue, including input perturbation (Ribeiro
et al., 2018) and premises selection (DeYoung
et al., 2020). One promising explanation approach
is to combine the model’s output with a human-
interpretable explanation. For instance, Camburu
et al. (2018) introduced the concept of natural lan-
guage explanation in their e-SNLI dataset while
Rajani et al. (2019b) expanded this idea to com-
monsense explanations. Jhamtani and Clark (2020)
further explored the notion of explanation in multi-
hop QA, where explanations contain a chain of
reasoning, instead of simple textual explanations.
Different from these explanation approaches, our
work generates explanations in the form of entail-
ment trees, introduced by Dalvi et al. (2021), which
are composed of multi-premise textual entailment
steps. Entailment trees are more detailed expla-
nations, making it easier to inspect the reasoning
behind the model’s answer. Figure 2 shows a dia-
gram compering different natural language expla-
nation methods according to their structure and use
of textual evidence.

The first approach used to generate entailment
trees was based on the EntailmentWriter model by
Tafjord et al. (2021). However, their approach is
limited by the input size of the encoder-decoder
language models, where a fixed set of supporting
facts is used to generate an explanation. Instead,
our model iteratively fetches a set of premises using
dense retrieval conditioned on previous entailment
steps, allowing for more precise explanations.

Our work is also related to some recent ap-
proaches that combine retrieval and neural net-
works for QA tasks (Karpukhin et al., 2020; Guu
et al., 2020). The work of Lewis et al. (2020) com-
bined dense retrieval with encoder-decoder models,
where a different set of passages were retrieved

466

Corpus of
Premises (C)

Entailment
Steps (𝒮)

Top-k Retrieval Entailment Generator

Hypothesis h

Entailment
Tree (T)

“Eruptions can cause plants to die”

c1: “Eruptions produce ash clouds”
c2: “Plants have green leaves”

c3: “Ash blocks sunlight”
[…]

c1 & c3 => s1 : “Eruptions block sunlight”
[…]

t ≥ 1 Iterations

Figure 3: IRGR is composed of two modules, IRGR-retriever and IRGR-generator . The IRGR-retriever
iteratively fetches a set of premises from a corpus C in order to generate an entailment tree (structured explanation
for a given hypothesis). The IRGR-generator computes a single entailment step at a time, and the intermediate
generated steps are stored and used for subsequent retrieval and generation.

for each generated character. Conditioning the re-
trieval of a passage on previously retrieved pas-
sages has been explored in the context of multi-hop
QA (Zhao et al., 2021; Xiong et al., 2021), and
multi-hop explanations (Valentino et al., 2021; Car-
tuyvels et al., 2020). However, these approaches
either are not used to generate explanations or do
not use inferred intermediate reasoning steps to
retrieve premises.

3 Approach

3.1 Problem Definition

The problem input consists of a corpus of premises
C (simple textual statements) and a hypothesis h.
The objective is to generate an entailment tree T
that explains the hypothesis h by using a subset of
the premises in C as building blocks. Entailment
trees are represented as a tuple T = (h,L, E ,S),
where leaf nodes li ∈ L are retrieved from the
corpus (i.e. L ⊆ C), internal tree nodes ei ∈ E
are intermediate conclusions (new sentences not
present in corpus C, note that intermediate con-
clusions are generated by the model), and si ∈ S
is a list of entailment steps that can explain the
hypothesis h, which is always the tree root and the
final conclusion. An illustration of the problem and
expected entailment tree can be found in Figure 1.

Each entailment step si represents one inference
step from a conjunction of premises to a conclusion.
For instance, “l1 ∧ l2 ⇒ e1” or “l1 ∧ l2 ∧ e1 ⇒ h”
could be valid entailment steps in S . Note that the
root of T is always the node representing h.

3.2 Architecture

Our approach, which we call Iterative Retrieval-
Generation Reasoner (IRGR), consists of
two modules, the IRGR-retriever and the
IRGR-generator . The initial input to the model
is the hypothesis h and the corpus of premises
C. The generation process is performed through
multiple iterations. At each iteration step t ≥ 1
the IRGR-retriever selects a subset of premises
from the corpus Lt ⊆ C. The IRGR-generator
outputs one entailment step st per iteration
until the entailment tree T is fully generated.
Given S1:t−1 = (s1, . . . , st−1) as the list of the
entailment steps generated up to the previous
iterations t − 1, the generator takes as input Lt
and S1:t−1 and produces the next entailment step
st. The generation stops when the entailment
step’s conclusion is the hypothesis h, i.e., the
proof is finished. Formally, the t-th iteration of the
generation process is defined as:

Lt = IRGR-retriever(h, st−1) (1)

st = IRGR-generator(h,Lt,S1:t−1) (2)

The IRGR-retriever searches over the premises
in corpus C using dense passage retrieval
(Karpukhin et al., 2020). Meanwhile, the
IRGR-generator was implemented using T5, the
Text-to-Text Transformer (Raffel et al., 2020),
while any other sequence-to-sequence language
model could also be used. An overview of the
model can be seen in Figure 3.

467

3.2.1 IRGR-retriever
The IRGR-retriever module proposed in this work
aims to retrieve premises from the corpus C. In
existing baseline models the retrieval is done in one
single step, fetching a fixed set of premises before
generation (Tafjord et al., 2021). However, the
generation of entailment trees requires a different
set of leaves for each entailment step. To address
this issue, our IRGR-retriever fetches kt premises
from C to produce Lt at iteration step t. Note that
the size of C can be very large (kt << |C|). The
value kt is chosen such that the size of Lt is small
enough to fit in the context of a language model
while still being large enough to fetch as many
premises as possible (in our experiments, the value
kt is always below 25). We define the retrieval
probability of a premise c ∈ C at a certain iteration
step t as:

P (c | h, st−1) =
exp(⟨c,qt⟩)∑

c′∈C exp(⟨c′,qt⟩)
(3)

Where ϕ is the sentence encoder function used to
encode both premises and hypothesis, transforming
the input text into a dense vector representation in
RM . The values c = ϕ(c), c′ = ϕ(c′) and qt =
ϕ(h, st−1) are dense M -dimensional vectors. The
operator ⟨.⟩ represents the inner product between
two vectors.

The encoder follows the Siamese Network archi-
tecture from Reimers and Gurevych (2019). We
select a set of N positive and negative examples
in the form of query-value pairs {(qj , cj)}Nj=1 for
training. Queries qj encode both the hypothesis
h and previous entailment step st−1 by concate-
nating their textual values. The positive examples
are taken from the golden entailment trees, where
cj ∈ L. For negative examples, we pair a query qj
with either random premises from C or premises
retrieved using the not fine-tuned version of the
encoder (hard negatives).

We define ŷj as the label given to the training
example (qj , cj). For positive examples, the label
ŷj depends on how close the leaf node li ∈ L is to
the intermediate step st−1 in the golden tree:

ŷj =




0, if negative
λ, if positive and li ̸∈ ant(st−1)
1, if positive and li ∈ ant(st−1)

(4)

Where ant(st−1) denotes the set of antecedents
in some entailment step st−1, and li ∈ ant(st−1)
means that the leaf node li is used in the entailment

Higher similarity

H: an astronaut requires the
oxygen in a spacesuit backpack

to breathe

spacesuit backpacks
contain oxygen

an astronaut requires
oxygen to breathe

an animal requires
oxygen to breathe

an astronaut is a kind
of animal

[…]

a human is a kind of
animal

an astronaut is a kind
of human

Lower similarity

Figure 4: Entailment tree example showing how some
retrieval examples are challenging. Leaf sentences are
not always directly related to hypothesis.

Algorithm 1: Conditional Retrieval
Data: hypothesis h, corpus C, number of

retrieved premises k0
Result: retrieved premises L0
Parameter :conditioning factor ω
Q← {h} ; /* set of queries */
L0 ← {};
for i← 0 to k0 do

C ′ ← {c ∈ C : c ̸∈ L0};
if i ≥ ω then

li ← argmax(c∈C′) P (c | Q);
Q← Q ∪ {li};

else
li ← argmax(c∈C′) P (c | h);

end
L0 ← L0 ∪ {li};

end

step st−1. The value λ ∈ [0 : 1] is used to give
lower priority to leaf nodes not relevant to the cur-
rent entailment step (λ = 0.75 gave the best results
in our experiments). Finally, we fine-tune the en-
coder ϕ by minimizing the following loss function
Lϕ, where N is the number of training examples:

Lϕ =
1

N

N∑

j=1

(
ŷj −

⟨ϕ(qj), ϕ(cj)⟩
∥ϕ(qj)∥∥ϕ(cj)∥

)
(5)

One significant challenge is that for the first
generation step, when t = 1, the list of pre-
viously generated entailment steps S0 is empty.
The retrieval only depends on h, meaning L1 =
IRGR-retriever(h). It is more difficult to retrieve
premises for leaf nodes when the entailment tree’s

468

depth is large since the leaf nodes have low syntac-
tic and semantic similarity with the hypothesis h.
For instance, the example in Figure 4 shows how
leaf node “a human is a kind of animal” (depth 3)
is needed to build the entailment tree, but is syntac-
tically distinct to hypothesis “an astronaut requires
the oxygen in a space suit backpack to breath”.

To mitigate this problem, we perform a condi-
tional retrieval on the first step, where the retrieval
module uses partial results as part of the query, as
depicted in Algorithm 1. This algorithm assumes
that leaf nodes (premises) further from the root
node (hypothesis) are more similar to each other
than to the root node itself. The parameter ω (value
ω = 15 yields the best results on development set)
is used to split the search, such that part of the re-
trieved premises only depend on the hypothesis h.
In contrast, the other parts of the retrieved premises
depend on the hypothesis and previously retrieved
premises stored in the set Q.

3.2.2 IRGR-generator
The IRGR-generator consists of a sequence-to-
sequence model that outputs one single entailment
step given a context. One key aspect of this module
is encoding the input and output as plain text.

Encoding Entailment Trees: Entailment trees
are linearized from leaves to root. Each leaf node
li ∈ L, intermediate node ei ∈ E and root node
h are encoded with the symbols “sent”, “int”
and “hypothesis”, respectively. The entailment
steps represent conjunctions with “&” and entail-
ment with the symbol “->”. For instance, the en-
tailment tree depicted in Figure 1 can be repre-
sented as:

“sent1 & sent2 -> int1:
Eruptions block sunlight;
sent3 & int1 -> hypothesis;”

Note that the text of intermediate nodes have to be
explicitly represented, since they are not part of the
corpus C. Ultimately, they have to be generated
by the model. The input to the model encodes the
hypothesis h and retrieved premises lti ∈ Lt, which
are straightforwardly encoded as follows:

“hypothesis: Eruptions can
cause plants to die;
sent1: eruptions emit lava
sent2: eruptions produce ash
clouds
sent3: [...];”

Method R@25 All-Correct

Okapi BM25 45.01 22.35
EntailmentWriter 59.76 34.70

IRGR-retriever (sing.) 64.41 40.29
IRGR-retriever (cond.) 68.28 44.70
IRGR-retriever* - 51.47

Table 1: Retrieval results. The methods with * retrieves
more than 25 premises from corpus.

When a leaf sentence lit is used in the entail-
ment step, it is removed from the context for
the following step, and the premise sent iden-
tifier is not used to encode new retrieved premises.
A detailed example of input and output for the
IRGR-generator module is shown in Appendix
A.3.

4 Experiments

4.1 Datasets

We evaluate our architecture on the ENTAILMENT-
BANK dataset (Dalvi et al., 2021), which is com-
prised of 1,840 questions (each associated with a
hypothesis hi and entailment tree Ti) with 5,881
total entailment steps. On average, each entailment
tree has 7.6 nodes (including leaf, intermediate,
and root) and around 3.2 entailment steps. The
corpus of premises C has around 11K entries and
is derived from the WorldTree V2 (Xie et al., 2020)
in addition to a few premises created by the Entail-
mentBank annotators.

4.2 Evaluation Metrics

4.2.1 Retrieval

We evaluate our IRGR-retriever module using
two different sets of metrics. The first one is “Re-
call at k” (R@k), a standard evaluation metric
for information retrieval. The second metric “All-
Correct” is more strict, and the results are only con-
sidered correct if all the premises from the golden
tree are retrieved. Formally, given the retrieved
premises L and the set of gold premises L∗, the
metrics R@k is given by |L ∩ L∗| / |L∗|, and the
metric All-Correct is 1 if |{x ∈ L∗ : x ̸∈ L}| = 0,
or 0 otherwise. For our experiments, we consider k
= 25 since that’s roughly the maximum number of
sentences that can fit in the T5 language model’s
512 tokens context.

469

Method Leaves Steps Intermediates Overall
F1 All-Cor. F1 All-Cor. F1 All-Cor. All-Cor.

EntailmentWriter 39.7 3.8 7.8 2.9 36.4 13.2 2.9
IRGR 45.6 12.1 16.3 11.8 38.8 36.5 11.8
- w/o iter. 46.6 10.0 11.3 8.2 36.3 35.6 8.2
- w/o iter. & cond. 36.1 3.8 6.0 3.2 27.6 14.7 3.2

Table 2: Entailment tree scores for baseline methods and IRGR, along four different dimensions (test set). F1
scores measure predicted/gold overlap, while All-Correct scores are 1 when all the predictions for a tree are correct,
0 otherwise.

4.2.2 Entailment Tree Generation
We adopt the evaluation metrics defined by Dalvi
et al. (2021), which compares the generated en-
tailment tree T = (h,L, E ,S) with the golden en-
tailment tree T ∗ = (h,L∗, E∗,S∗). The metrics
evaluate the correctness along four dimensions: (1)
leaf nodes, (2) entailment steps, (3) generated in-
termediate nodes, (4) and overall correctness. The
first step is to align the nodes from T with the
nodes from T ∗ by Jaccard similarity (alignment
algorithm and further details of metrics described
in Appendix A.2). This method tries to ignore vari-
ations between predicted and gold trees that do
not change the semantics of the output. The four
metric dimensions are described below as follows.
For each metric with F1 value, there is also a strict
“All-Correct” metric that is equal to 1 when F1 = 1
and 0 otherwise.

Leaf (F1, All-Correct): Tests if the predicted
and golden leaf nodes match. This metric compares
the sets L and L∗ using F1 score.

Steps (F1, All-Correct): Tests if the predicted
entailment steps follow the correct structure. Given
that si ∈ S matches sj ∈ S∗ according to the
alignment algorithm, tests if the premises of si are
equal to those of sj , and computes the F1 score
according to the set of all matched steps.

Intermediates (F1, All-Correct): Tests if the
sentences of the generated intermediate nodes are
correct. Given that intermediate nodes ei ∈ E and
ej ∈ E∗ were matched by the alignment algorithm,
the F1 score is computed by comparing the textual
similarity between the set of the aligned and correct
pairs ei and ej .

Overall (All-Correct): Tests all previous metrics
together. The All-Correct value is only 1 if the All-
Correct values for leaves, steps, and intermediates

are 1. Note that this is a strict metric, and any
semantic difference between T and T ∗ will cause
the score to be zero.

4.3 Implementation Details
All experiments were conducted using a machine
with 4 Tesla V100 GPUs with 16GB of mem-
ory. Our code is based on HuggingFace’s Trans-
formers (Wolf et al., 2020) implementation of the
t5-large model (Raffel et al., 2020). The re-
trieval module uses the Sentence Transformers
(Reimers and Gurevych, 2019) sentence embed-
dings by fine-tuning the all-mpnet-base-v2
encoder. Please refer to Appendix A.1 for further
details on hyper-parameters and training settings.

4.4 Results
4.4.1 Retrieval Results
We compare our retrieval module against two base-
lines: Okapi BM25 and the retrieval module of En-
tailmentWriter, which constitutes of a classifier
that retrieves relevant sentences using RoBERTA
(Liu et al., 2020) and performs re-ranking with
Tensorflow-Ranking-BERT (Han et al., 2020).

For comparison, we break down the results of
our approach (the IRGR-retriever module) into
three variations. The IRGR-retriever (sing.)
method retrieves premises from the corpus using
a single query element, namely the hypothesis h.
The IRGR-retriever (cond.) method performs
conditioned retrieval as described by Algorithm 1.
This retrieval method is not iterative and fetches a
fixed set of premises per example. Finally, IRGR-
retriever tries to emulate the retrieval when com-
bined with the generation module. It not only per-
forms conditional retrieval, but also fetches a dif-
ferent set of premises for each iteration depending
on the generated intermediate nodes. In this re-
trieval experiment, the IRGR-retriever uses the in-
termediate nodes from the golden entailment trees.

470

Task Method Leaves Steps Intermediates Overall
F1 All-Cor. F1 All-Cor. F1 All-Cor. All-Cor.

Gold EntailmentWriter 98.7 86.2 50.5 37.7 67.6 50.3 34.4
IRGR 97.9 89.4 50.2 36.8 62.1 45.6 32.3

Gold+Dist. EntailmentWriter 84.3 38.5 35.7 23.5 62.6 50.9 22.4
IRGR 69.9 23.8 30.5 22.3 47.7 56.5 22.0

Table 3: Entailment tree scores for baseline methods and IRGR, along four different dimensions (test set). The
“Gold” and “Gold+Dist.” tasks do not require retrieval and evaluates solely on the model’s entailment tree generation
capabilities.

Therefore, IRGR-retriever results should be consid-
ered an upper bound since the generator might not
produce the desirable intermediate steps used for
queries.

Table 1 shows the R@25 and All-Correct metrics
results for different methods. Our premise retrieval
module performs consistently better than baselines.
For instance, the “IRGR-retriever (cond.)” out-
performs the retriever from EntailmentWriter by
14.2% on R@25 and 28.8% on All-Correct metric.
Note that “IRGR-retriever” may retrieve a variable
number of premises (greater than 25), so we are
not reporting R@25 for this method.

4.4.2 Entailment Tree Generation Results
We compare our method against EntailmentWriter
baseline model on entailment tree generation. As
shown in Table 2, our method outperforms the En-
tailmentWriter in all metrics. The overall tree struc-
ture better matches the golden tree, where the score
for Overall All-Correct metric has an impressive in-
crease of over 300.0%. Note that EntailmentWriter
uses the T5-11B model, which has around 10 times
more parameters than our model.

We also show the ablation results of combining
different retrieval modules with our proposed gen-
eration module on Table 2. The “w/o iter.” method
does not iteratively retrieve premises, relying on
one-shot retrieval at the beginning of the generation.
As for the “w/o iter. & cond.” method, the model
does not use the conditioned retrieval, only relying
on the trained dense retrieval with the hypothesis h
as the query instead.

The work of Dalvi et al. (2021) defines two other
simplified entailment tree generation tasks for fur-
ther ablation studies. We report the results for what
they define as “Task-1” and “Task-2”, which are
generation tasks where the golden premises are
given as input, disregarding the retrieval compo-
nent. Results in Table 2 report what they define

as “Task-3”. For clarity, we rename “Task-1” and
“Task-2” to “Gold” and “Gold+Dist.”, respectively,
and show the results in Table 3. In the “Gold” task,
each context uses the golden leaves as input, while
the “Gold+Dist.” task uses the golden leaves plus
some distractors (up to 25 distractors). When com-
paring models with the same number of parame-
ters (we use their reported T5-large results), the
generation results without retrieval are roughly the
same as the EntailmentWriter method. This experi-
ment shows that the iterative generation can create
accurate explanations compared to a single pass
generation when using golden retrieved premises.

4.5 Results Breakdown

We investigate how well the system performs rela-
tive to the number of steps in the gold tree. Figure
5 contains two graphs with results breakdown. The
graph on the top shows the all-correct metric values
for all three tasks (golden, golden + distractors, and
retrieval). The bottom graph shows all F1 metrics
(leaves, steps, and intermediates), but only for the
“retrieval” task.

The results demonstrate that generating entail-
ment trees becomes increasingly difficult as the
size of the tree increases. The IRGR model cannot
perfectly predict trees with more than four steps for
any of the three different tasks. For the “retrieval”
task (without the golden leaf sentences provided as
input), the IRGR model cannot successfully gen-
erate trees with three or more steps. This could be
explained by the fact that the all-correct metric is
very strict, and missing or misplacing a single leaf
sentence can result in an incorrect tree.

This downwards trend is also present in the
“Break Down by Metrics” graph. Most noticeably,
the “Intermediates (F1)” metric is especially chal-
lenging, having values close to zero for entailment
trees with more than five steps. This metric is one

471

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

al
l A

ll-
Co

rre
ct

 V
al

ue
Break Down by Task

gold
gold + dist.
retrieval

1 2 3 4 5 6 7 8 9
Number of entailment steps

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 V

al
ue

Break Down by Metric
Leaves (F1)
Steps (F1)
Intermediates (F1)

Figure 5: Result breakdown for number of steps in
explanation (entailment steps).

of the main bottlenecks that lowers the value of the
“Overall All-Correct” metric.

4.6 Analysis

To understand the strengths and weaknesses of our
model, we conduct further analysis of the output
of the IRGR. When analyzing errors in the genera-
tion of entailment trees, we use the results on the
development set for the task with distractors. We
manually annotate 50 predicted trees that contain
some error compared to the golden tree. We cate-
gorize the different types of errors, identifying both
individual generated steps errors and entailment
tree errors.

4.6.1 Retrieval Error Analysis
We use ENTAILMENTBANK’s development set to
automatically compute metrics that will give us
some insights into the type of errors made by the
IRGR-retriever module. We use “IRGR-retriever
(cond.)” to fetch a set of 25 premises for each data
point, where we identify the set of true positives
(correctly retrieved premises) and the set of false
negatives (missing premises).

To understand if the false negatives are more
challenging to retrieve than the true positives, we
compute the number of overlapping uni-grams and
bi-grams between premises and hypotheses in these

two sets. We notice that true positives contain
28.5% more uni-gram overlap and 68.6% more
bi-gram overlap to the hypothesis compared to the
false negatives. These results suggest that premises
lexically dissimilar to the hypothesis are, in theory,
more challenging to retrieve.

We also investigate how the depth (number of
edges in a path from the tree root) of a leaf node
in the gold tree correlates to the errors of the
IRGR-retriever module. We compute the average
depth of true positive nodes as 2.3, while for false-
negative nodes, the average depth is 3.0. These
results strengthen the idea that leaf nodes deeper in
the tree tend to be harder to retrieve, as depicted in
Figure 4.

4.6.2 Entailment Step Error Analysis
The first error case is called invalid entailment
steps (56% of errors), meaning that the conclusion
of a step did not follow from the premises. For
instance, in “kilogram is used to measure heavy ob-
jects” ∧ “an automobile is usually a heavy object”
⇒ “kilogram can be used to measure the mass of
an automobile”, the model assumes that “measure”
is the same as “measure of mass”, even though that
is not explicitly stated.

The second error case accounts for misevalua-
tion and irrelevance (27% of errors). It happens
when the step is correct but does not match the
golden tree, or when the step is correct but is not
relevant or well placed in the final entailment tree.
In the third error case, labeled repetition (17% of
errors), the conclusion directly copied the premises,
not creating a new sentence for the intermediate
step.

4.6.3 Entailment Tree Error Analysis
When analyzing errors between the entire gener-
ated and golden trees, we noticed that incorrect or
missing leaves (52% of errors) is the most common
type of problem. For instance, when explaining
the hypothesis “light year can be used to measure
the distance between the stars in milky way” the
premises “the milky way is a kind of galaxy” and
“a galaxy is made of stars” are missing from the
generated tree, making it impossible to explain the
second part of the hypothesis.

The remaining errors are categorized as invalid
or skipped steps (32% of errors), where the model
commonly concludes an invalid conclusion from
premises. This error often overlaps with miss-
ing leaves due to the fact that the model uses

472

fewer premises when it skips important interme-
diate steps; Imperfect evaluation (12% of errors),
where the tree produced is valid, but does not match
the golden tree; Disconnected or degenerate trees
(4% of errors), where the generated output does not
form a tree, or follows the desired output format.

5 Conclusion

As deep learning models become more ubiquitous
in the natural language field, it is desirable that
users can understand the model’s answer by in-
specting the reasoning chain from simple premises
to the answer hypothesis. To generate rich, system-
atic explanations, we proposed a method that can
iteratively generate and retrieve premises to pro-
duce entailment trees. We show how our approach
has advantages over previous baselines, where the
retrieved premises and generated explanations are
more accurate.

In future work, we plan to improve the gener-
ation module by leveraging the structure of the
entailment tree instead of relying purely on the
encoder-decoder models. This idea could poten-
tially fix the issues with “invalid entailment steps”
and “repetition”, which account for 73% of entail-
ment step errors. We also plan to understand how
explanations can be generated in the case of a false
hypothesis, where we would expect the model to
build a conclusion explaining why a statement is in-
correct. It could help users verify false claims and
understand the meaning behind their incorrectness.

Acknowledgements

We are thankful to Felicity M. Lu-Hill for proof-
reading this paper. The research leading to this
paper was supported in part by the Machine Learn-
ing, Reasoning, and Intelligence Program of the
Office of Naval Research.

References
James Allen. 1988. Natural language understanding.

Benjamin-Cummings Publishing Co., Inc.

Tiberiu Boros, Stefan Daniel Dumitrescu, and Sonia
Pipa. 2017. Fast and accurate decision trees for natu-
ral language processing tasks. In Proceedings of the
International Conference Recent Advances in Natural
Language Processing, RANLP 2017, pages 103–110,
Varna, Bulgaria. INCOMA Ltd.

Kaj Bostrom, Xinyu Zhao, Swarat Chaudhuri, and Greg
Durrett. 2021. Flexible generation of natural lan-
guage deductions. In Proceedings of the 2021 Confer-

ence on Empirical Methods in Natural Language Pro-
cessing, pages 6266–6278, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language expla-
nations. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, ed-
itors, Advances in Neural Information Processing
Systems 31, pages 9539–9549. Curran Associates,
Inc.

Ruben Cartuyvels, Graham Spinks, and Marie-Francine
Moens. 2020. Autoregressive reasoning over chains
of facts with transformers. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 6916–6930, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7358–7370, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Marina Danilevsky, Kun Qian, Ranit Aharonov, Yan-
nis Katsis, Ban Kawas, and Prithviraj Sen. 2020. A
survey of the state of explainable AI for natural lan-
guage processing. In Proceedings of the 1st Confer-
ence of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 447–459, Suzhou, China. Association
for Computational Linguistics.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443–4458, Online.
Association for Computational Linguistics.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. REALM: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Shuguang Han, Xuanhui Wang, Mike Bendersky, and
Marc Najork. 2020. Learning-to-rank with BERT in
tf-ranking. CoRR, abs/2004.08476.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3543–3556, Stroudsburg, PA, USA.
Association for Computational Linguistics.

473

https://doi.org/10.26615/978-954-452-049-6_016
https://doi.org/10.26615/978-954-452-049-6_016
https://doi.org/10.18653/v1/2021.emnlp-main.506
https://doi.org/10.18653/v1/2021.emnlp-main.506
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf
https://doi.org/10.18653/v1/2020.coling-main.610
https://doi.org/10.18653/v1/2020.coling-main.610
https://doi.org/10.18653/v1/2021.emnlp-main.585
https://doi.org/10.18653/v1/2021.emnlp-main.585
https://aclanthology.org/2020.aacl-main.46
https://aclanthology.org/2020.aacl-main.46
https://aclanthology.org/2020.aacl-main.46
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
http://arxiv.org/abs/2004.08476
http://arxiv.org/abs/2004.08476
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357

Harsh Jhamtani and Peter Clark. 2020. Learning to
explain: Datasets and models for identifying valid
reasoning chains in multihop question-answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019a. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4932–4942, Florence, Italy. Association for
Computational Linguistics.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019b. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4932–4942, Florence, Italy. Association for
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Danilo Ribeiro, Thomas Hinrichs, Maxwell Crouse,
Kenneth Forbus, Maria Chang, and Michael Wit-
brock. 2019. Predicting state changes in procedural
text using analogical question answering. In 7th An-
nual Conference on Advances in Cognitive Systems.

Danilo Neves Ribeiro and Kenneth Forbus. 2021. Com-
bining analogy with language models for knowledge
extraction. In 3rd Conference on Automated Knowl-
edge Base Construction.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Anchors: High-precision model-
agnostic explanations. In Proceedings of the AAAI
conference on artificial intelligence, volume 32.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. Mpnet: Masked and permuted pre-
training for language understanding. In Advances in
Neural Information Processing Systems, volume 33,
pages 16857–16867. Curran Associates, Inc.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 3621–3634, Online.
Association for Computational Linguistics.

Marco Valentino, Mokanarangan Thayaparan, Deborah
Ferreira, and André Freitas. 2021. Hybrid autore-
gressive inference for scalable multi-hop explanation
regeneration. In 36th AAAI Conference on Artificial
Intelligence.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Eliz-
abeth Wainwright, Steven Marmorstein, and Peter
Jansen. 2020. WorldTree v2: A corpus of science-
domain structured explanations and inference pat-
terns supporting multi-hop inference. In Proceedings
of the 12th Language Resources and Evaluation Con-
ference, pages 5456–5473, Marseille, France. Euro-
pean Language Resources Association.

Wenhan Xiong, Xiang Li, Srini Iyer, Jingfei Du, Patrick
Lewis, William Yang Wang, Yashar Mehdad, Scott
Yih, Sebastian Riedel, Douwe Kiela, and Barlas
Oguz. 2021. Answering complex open-domain ques-
tions with multi-hop dense retrieval. In International
Conference on Learning Representations.

474

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/P19-1487
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://openreview.net/forum?id=4TpJpZ-_gyl
https://openreview.net/forum?id=4TpJpZ-_gyl
https://openreview.net/forum?id=4TpJpZ-_gyl
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.lrec-1.671
https://aclanthology.org/2020.lrec-1.671
https://aclanthology.org/2020.lrec-1.671
https://openreview.net/forum?id=EMHoBG0avc1
https://openreview.net/forum?id=EMHoBG0avc1

Chen Zhao, Chenyan Xiong, Jordan Boyd-Graber, and
Hal Daumé III. 2021. Multi-step reasoning over un-
structured text with beam dense retrieval. In North
American Association for Computational Linguistics.

A Appendix

A.1 Experiment Details
The IRGR-generator used the T5-large1

model from HuggingFace library. The best mod-
els were chosen according to the best “Overrall
All-Correct” metric on the validation set. During
training, we used the following hyper parameters:
learning rate: 3 · 10−5, epochs: 15, training batch
size: 4, validation batch size: 4, max number of
input tokens: 512, max number of output tokens:
256, warm-up steps: 0, weight decay: 0.

The IRGR-retriever module uses the ver-
sion all-mpnet-base-v22 from the Sentence-
Transformers library. During training, we used the
following hyper parameters: learning rate: 5 ·10−5,
epochs: 10, training batch size: 32, validation
batch size: 32, loss function: cosine similarity loss,
warm-up steps: 0, weight decay: 0.

A.2 Entailment Tree Evaluation Metrics
Details

The alignment algorithm between the nodes from
gold and predicted entailment trees can be roughly
described as follows:

1. For each intermediate node ei ∈ E and ej ∈
E∗, compute the set of leaf sentences in which
the nodes are ancestors.

2. Align each intermediate node ei to the first
golden node ej for which the Jaccard similar-
ity of their respective set of associated leaf
sentences is maximum. If any node ei is asso-
ciated with no gold nodes ej (Jaccard similar-
ity is zero), then ei is aligned to a blank node
(no conclusion).

Given the list of aligned nodes, the metrics “In-
termediates (F1, All-Correct)” compute the similar-
ity between two generated intermediate steps using
BLEURT (Sellam et al., 2020), a learned evalua-
tion metric based on BERT. We use the BLEURT-
Large-512 model to compute textual similarity
scores. The prediction between intermediate nodes
is considered correct if BLEURT (ei, ej) > 0.28

1Model available in https://huggingface.co/t5-large
2Model available in https://huggingface.co/sentence-

transformers/all-mpnet-base-v2

(this threshold was originally picked by Dalvi et al.
(2021) using a subset of 300 manually labeled
pairs).

A.3 Generator Input and Output Examples
The generation is done in multiple steps. Below are
the input and output examples for a tree with two
entailment steps (T=1 and T=2). In the following
example, only the golden premises are used, which
is how the generator is trained. At test time this
format is extended to use the retrieved premises
instead.

INPUT T=1: “hypothesis: notebook
paper can be recycled many times;
sent1: recyclable means a material
can be recycled / reused many times
sent2: paper is recyclable sent3:
notebook paper is a kind of paper;”

OUTPUT T=1: “sent2 & sent3 -> int1:
notebook paper is recyclable;”

INPUT T=2: “hypothesis: notebook
paper can be recycled many times;
sent1: recyclable means a material
can be recycled / reused many times;
sent2 & sent3 -> int1: notebook paper
is recyclable;”

OUTPUT T=2: “int1 & sent1 ->
hypothesis;”

Note that the input for T=2 removed the
premises used in the previous entailment step, i.e.
“sent2” and “sent3”, and added the generated
entailment step from T=1 to the end of the input.

475

