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Abstract
Extracting temporal relations (e.g., before, af-
ter, and simultaneous) among events is crucial
to natural language understanding. One of the
key challenges of this problem is that when
the events of interest are far away in text, the
context in-between often becomes complicated,
making it challenging to resolve the temporal
relationship between them. This paper thus
proposes a new Syntax-guided Graph Trans-
former network (SGT) to mitigate this issue,
by (1) explicitly exploiting the connection be-
tween two events based on their dependency
parsing trees, and (2) automatically locating
temporal cues between two events via a novel
syntax-guided attention mechanism. Experi-
ments on two benchmark datasets, MATRES
and TB-DENSE, show that our approach sig-
nificantly outperforms previous state-of-the-art
methods on both end-to-end temporal relation
extraction and temporal relation classification;
This improvement also proves to be robust on
the contrast set of MATRES. The code is pub-
licly available at https://github.com/VT-NLP/
Syntax-Guided-Graph-Transformer.

1 Introduction

Temporal relationship, e.g., Before, After, and Si-
multaneous, is important for understanding the
process of complex events and reasoning over
them. Extracting temporal relationship automat-
ically from text is thus an important component in
many downstream applications, such as summariza-
tion (Jiang et al., 2011; Ng et al., 2014), dialog un-
derstanding and generation (Ritter et al., 2010; Sun
et al., 2021), reading comprehension (Harabagiu
and Bejan, 2005; Sun et al., 2018; Ning et al., 2020;
Huang et al., 2019) and future event prediction (Li
et al., 2021; Lin et al., 2022). While event mentions
can often be detected reasonably well (Lin et al.,
2020; Huang and Ji, 2020; Wang et al., 2021, 2022),
extracting event-event relationships, especially tem-
poral relationship, still remains challenging (Chen
et al., 2021).

Temporal Relation (e1     e2): Before

S2: Mr. Erdogan' s office (e1: said) he had (e2: accepted) the apology
, " In the name of the Turkish people ".  

S3: "The desk thing really (e1: stuck) with me ", Ms. Ayotte (e2: said).  

Temporal Relation (e1     e2): Before

S1: Now, Lockheed Martin which (e1: bought) an early version of
such a computer from the Canadian company D-Wave systems two
years ago is confident enough in the technology to upgrade it to
commercial scale, becoming the first company to (e2: use) quantum
computing as part of its business.

bought
relcl

Matin is becoming
advcl attr

company use
nsubj relcl

Temporal Relation (e1     e2): AFTER

Figure 1: Examples of temporal relation annotations.
Event mentions are boldfaced, the temporal relations
between these events are listed below each sentence,
and the temporal cues deciding those temporal relations
are highlighted in red.

Recent studies (Han et al., 2019b; Ning et al.,
2017; Vashishtha et al., 2019; Wang et al., 2020a)
have shown improved performance in temporal re-
lation extraction by leveraging the contextual repre-
sentations learned from pre-trained language mod-
els (Devlin et al., 2018; Liu et al., 2019). However,
one remaining challenge of this task is that it re-
quires accurate characterization of the connection
between two event mentions and the cues indicat-
ing their temporal relationship, especially when the
context is wide and complicated. For instance, by
manually examining 200 examples of human anno-
tated temporal relations from the MATRES (Ning
et al., 2018) dataset, we find that about 52% of the
temporal cues1 come from the connection between
two event mentions (e.g., S1 in Fig. 1), 39% from
their surrounding contexts (S2 in Fig. 1) and the
remaining 9% from others, e.g., event co-reference
or subordinate clause structures (S3 in Fig. 1).

1Temporal cues refer to the words of which the seman-
tic meaning or related syntactic relations can determine the
temporal relation of two event mentions.

379

https://github.com/VT-NLP/Syntax-Guided-Graph-Transformer
https://github.com/VT-NLP/Syntax-Guided-Graph-Transformer


Graph Attention Over Ingoing and
Outgoing Edges

Ingoing
He won the Gusher

No Yes No No

...

N

N N

Graph
Attention

Source
Node

Neighbor
Node

Source
Node

Target
NodePath Neighbor Node

Syntax-guided Attention  
over Src-To-Tar Path

Outgoing
Aggregated Temporal

Information

Fusion of Event Node
Representations

Temporal Query

Event Detection
hs hst hst ht

hst
won finishing

Representation 
 of won

Representation
of finishing

Temporal Relation Extraction Module

ht

hswon

Input  
Sentence

BERT 
Layer

the

Gusher

Marathon,

finishing

in

3:07:35

He

Event  
Extraction 

Module

Syntax-guided Graph Transformer

EEM Linear

Fusion Layer

Feed Forward Layer

Add &
LayerNorm

Add &
LayerNorm

Syntax-guided
Attention

Graph  
Multi-Head  

Attention 

Encoder Stack
Input Graph Structure

He won the Gusher Marathon, finishing in 3:07:35

nsubj

advcl

compound

dobj

det
prep

pobj

Residual
Connection

Figure 2: Architecture overview. The tokens highlighted with red and blue colors in the Input Sentence show
the source and target events to be detected. The bold edges in the Input Graph Structure indicate the triples from
the dependency path between the source and target event mentions as well as their surrounding context, and are
considered by the syntax-guided attention.

Syntactic features, such as dependency parsing
trees, have proved to be effective in characterizing
the connection of two event mentions in pre-neural
methods (Chambers, 2013; Chambers et al., 2014;
Mirza and Tonelli, 2016). However, how to make
use of these features has been under-explored since
the adoption of neural methods in this field. This
paper closes this gap with a novel Syntax-guided
Graph Transformer (SGT) network – in addition to
the attention heads in a typical Graph Transformer,
we bring in a new attention mechanism that specif-
ically looks at the path from a source node to a
target node over dependency parsing trees. SGT
thus not only learns event representations as in
a typical Graph Transformer, but also provides a
way to represent syntactic dependency informa-
tion between a pair of events (for temporal relation
extraction, this means attending to the aforemen-
tioned temporal cues). We conduct experiments
on two benchmark datasets, MATRES (Ning et al.,
2018) and TB-DENSE (Cassidy et al., 2014) on
both end-to-end temporal relation extraction and
classification, which demonstrate the effectiveness
of SGT over previous state-of-the-art methods. Ex-
periments on the contrast set (Gardner et al., 2020)
of MATRES further proves the robustness of our
approach.

2 Approach

Figure 2 shows the overview of our approach.
Given an input sentence s̃ = [w1, w2, ..., wn] with
n tokens, we aim to detect a set of event mentions
{e1, e2, ...} where each event mention ei may con-
tain one or multiple tokens by leveraging the con-
textual representations learned from a pre-trained
BERT (Devlin et al., 2018) encoder. Then, fol-
lowing previous studies (Ning et al., 2019, 2017;
Han et al., 2019b; Wang et al., 2020a), we consider
each pair of event mentions that are detected from
one or two continuous sentences, and predict their
temporal relationship.

To effectively capture the temporal cues between
two event mentions, we build a dependency graph
from one or two input sentences and design a new
Syntax-guided Graph Transformer network to au-
tomatically learn a new contextual representation
for each event mention by considering the triples
that they are locally involved as well as the triples
along the dependency path of the two event men-
tions within the dependency graph. Finally, the two
event mention representations are concatenated to
predict their temporal relationship.
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2.1 Sequence Encoder

Given an input sentence s̃ = [w1, w2, ..., wn], we
apply the same tokenizer as BERT (Devlin et al.,
2018) to get all the subtokens. Then, we feed the
sequence of subtokens as input to a pre-trained
BERT model to get a contextual representation for
each token wi. If a token wi is split into multiple
subtokens, we use the contextual representation of
the first subtoken to represent wi. To enrich the
contextualized representations, for each token, we
create a one-hot Part-of-Speech (POS) tag vector
and concatenate it with BERT contextual embed-
dings. In this way, we obtain a final representation
ci

2 for each wi. These representations will be later
used for event mention detection and also as the
initial representations to our syntax-guided graph
transformer network.

2.2 Event Detection

To detect event mentions from the sentence, we
take the contextual representation of each word
as input to a binary linear classifier to determine
whether it is an event mention or not, which is op-
timized by minimizing the following binary cross-
entropy loss:

ỹi = softmax(W eveci + beve)

Leve = −
∑

s̃∈S

|s̃|∑

i=1

∑

π∈{0,1}
απyi,π log(ỹi,π)

where Leve denotes the cross-entropy loss for event
detection. S is the set of sentences in the training
dataset. απ is a weight coefficient for each class (0
or 1) to mitigate the data imbalance problem and
α0 + α1 = 1. yi,π is a binary indicator to show
whether π is the same as the groundtruth binary
label (yi,π = 1) or not (yi,π = 0). ỹi,π denotes the
probability of the i-th token in s being predicted
with a binary class label π. W eve and beve are
learnable parameters.

2.3 Syntax-guided Graph Transformer

From the example sentences in Fig. 1, the temporal
cues for characterizing the temporal relationship be-
tween two event mentions mainly come from their
surrounding contexts as well as their connections
from their syntactic dependency path. However,
a sequence encoder usually fails to capture such
information, especially when the context between

2We use bold lower case symbols to denote vectors.

two event mentions is complicated, thus we further
design a new Syntax-guided Graph Transformer
(SGT) network.

Given a source event es and a target event et
detected from one or two continuous sentences, we
apply a public dependency parser3 to parse each
sentence into a tree-graph and connect the graphs
of two continuous sentences with an arbitrary cross-
sentence edge (Peng et al., 2017; Cheng and Miyao,
2017) pointing from the root node of the preceding
sentence to the root node of the following one, and
obtain a graph G = (V,E). For each node vi, we
use N in

i = {(vk, rki, vi) ∈ E|vk, vi ∈ V } and
N out

i = {(vi, rij , vj) ∈ E|vi, vj ∈ V } to denote
all the neighbor triples of vi with in-going and out-
going edges respectively, r ∈ Υ where Υ is the
label set for syntactic dependency relation, and use
Pij = {(vi, rig, vg), ..., (vh, rhj , vj)} as the triple
set along the path from vi to vj .

Node Representation Initialization For each
node vi in graph G, we map it to a particular token
wi′ from the original sentence and obtain a con-
textual representation ci′ from the BERT encoder.
Then, we learn an initial node representation for
each node vi as:

h0
i = W eci′ + be

where W e and be are learnable parameters.

Graph Multi-head Self-attention Following
transformer model (Vaswani et al., 2017; Wang
et al., 2020b), we adapt the multi-head self-
attention to learn a contextual representation for
each node in the graph G. Each node vi in graph
G is associated with a set of neighbor triples
N in

i ∪N out
i and a node representation hl−1

i where
l is the index of a layer in our transformer archi-
tecture. To perform self-attention, we first apply
a linear transformation to obtain a query vector
based on each node vi, and employ another two lin-
ear transformations to get the key and value vectors
based on the node’s neighbor triples:

Ql
i = Wm

q hl−1
i

K l
ij = Wm

k Rl−1
ij

U l
ij = Wm

u Rl−1
ij

Rl−1
ij = Wm

r (hl−1
i

n
rij

n
hl−1
j ) + bmr

where m is the index of a particular head. Ql
i

denotes a query vector corresponding to node vi,
3https://spacy.io/api/dependencyparser
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K l
ij and U l

ij is a key and value vector respec-
tively, and both of them are learned from a triple
(vi, rij , vj) ∈ N in

i ∪N out
i , which is represented as

Rij . m is the index of a particular head.
f

denotes
the concatenation operation. rij denotes the repre-
sentation of a particular relation rij between vi and
vj , which is randomly initialized and optimized
by the model. Wm

q , Wm
k , Wm

u , Wm
r and bmr are

learnable parameters.
For each node vi, we then perform self-attention

over all the neighbor triples that it is involved, and
compute a new context representation with multiple
attention heads:

gl
i = (

Mn

m

Headmi )W o

Headmi = softmax(
Ql

i(K
l)⊤√

dk
)U l

where gl
i is the aggregated representation computed

over all neighbor triples of node vi with M atten-
tion heads at l-th layer. gl

i will be later used to
learn the updated representation of node vi.

√
dk

is the scaling factor denoting the dimension size of
each key vector. W o is a learnable parameter.

Syntax-guided Attention To automatically find
the indicative temporal cues for two event men-
tions from their connection as well as surrounding
contexts, we design a new syntax-guided attention
mechanism. For two event nodes vs and vt, we first
extract the set of nodes from the dependency path
between vs and vt (including vs and vt), which is
denoted as Θst. We then get all the triples from the
dependency path between vs and vt as well as the
triples that any node from Θst is involved, which
are denoted as Φst = ∪vi∈Θst{N in

i ∪N out
i }∪Pst.

To compute the syntax-guided attention over all the
triples from Φst, we apply three linear transforma-
tions to get the query, key and value vectors where
the query vector is obtained from the representation
of two event mentions, and key and value vectors
are computed from the triples in Φst:

Q̃
l
st = W̃

m
q · (hl−1

s

n
hl−1
t )x

K̃
l
ij = W̃

m
k R̃

l−1
ij

Ũ
l
ij = W̃

m
u R̃

l−1
ij

R̃
l−1
ij = W̃

m
r (hl−1

i

n
rij

n
hl−1
j ) + b̃r

where m is the index of a particular head,
Q̃

l
st, K̃

l
ij , Ũ

l
ij denote the query, key and value vec-

tors respectively. R̃
l−1
ij is the representation of a

triple (vi, rij , vj) ∈ Φst. W̃
m
q , W̃

m
k , W̃

m
v and

W̃
m
r are learnable parameters.

Given the query vector, we then compute the at-
tention distribution over all triples from Φst and get
an aggregated representation to denote the meaning-
ful temporal features captured from the connection
between two event mentions and their surrounding
contexts.

g̃l
st = (

Mn

m

˜Head
m
st) · W̃ p

˜Head
m
st = softmax(

Q̃
l
st(K̃

l
)⊤√

dk
) · Ũ l

where g̃l
st is the aggregated temporal related in-

formation from all the triples in Φst based on the
syntax-guided attention at l-th layer. W p is a learn-
able parameter.

Node Representation Fusion Each event node
in graph G will receive two representations learned
from the multi-head self-attention and syntax-
guided attention, thus we further fuse the two rep-
resentations for both the source node vs and the
target node vt:

ĥ
l
s = W̃ f (g

l
s

n
g̃l
st) , ĥ

l
t = W̃ f (g̃

l
st

n
gl
t)

where gl
s and gl

t denote the context representations
learned from the multi-head self-attention for vs
and vt. g̃l

st denotes the representation learned from
the triples from Φst using syntax-guided attention.
ĥ
l
s and ĥ

l
t are the fused representations of vs and

vt, respectively. W̃ f is a learnable parameter.
For each non-event node vi, which only receives

a context representation gl
i learned from the multi-

head self-attention, we apply a linear projection
and get a new node representation:

ĥ
l

i = W tg
l
i

Our Syntax-guided Graph Transformer encoder
is composed of a stack of multiple layers, while
each layer consists of the two attention mechanisms
and the fusion sub-layer. We use residual connec-
tion followed by LayerNorm for each layer to get
the final representations of all the nodes:

H l = LayerNorm(Ĥ
l
+H l−1)
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2.4 Temporal Relation Prediction

To predict the temporal relation between two event
mentions es and et, we concatenate the final hidden
states of vs and vt obtained from the Syntax-guided
Graph Transformer network, and apply a Feedfor-
ward Neural Network (FNN) to predict their rela-
tionship

ỹst = softmax(W z(h
L
s

n
hL
t ) + bt)

where ỹst denotes the probabilities over all possible
temporal relations between event mentions es and
et.

The training objective is to minimize the follow-
ing cross-entropy loss function:

Lrel = −
∑

st∈∆

∑

x∈X
βxyst,xlog(ỹst,x))

where ∆ denotes the total set of event pairs for tem-
poral relation prediction and X denotes the whole
set of relation labels. yst,x is a binary indicator (0 or
1) to show whether x is the same as the groundtruth
label (yst,x = 1) or not (yst,x = 0). We also as-
sign a weight βx to each class to mitigate the label
imbalance issue.

3 Experiment

3.1 Experimental Setup

We perform experiments on two public benchmark
datasets for temporal relation extraction: (1) TB-
DENSE (Cassidy et al., 2014), which is a densely
annotated dataset with 6 types of relations: Be-
fore, After, Simultaneous, Includes, Is_included
and Vague. (2) MATRES (Ning et al., 2018), which
annotates verb event mentions along with 4 types
of temporal relations: Before, After, Simultaneous
and Vague. Additionally, we use POS tag infor-
mation from MATRES provided by (Ning et al.,
2019). For TB-DENSE, we use spacy annotation
for predicting POS tag information which is based
on Universal POS tag set4. For both benchmark
datasets, we use the same train/dev/test splits as pre-
vious studies (Ning et al., 2019, 2017; Han et al.,
2019a,b). Note that, for evaluation, similar as pre-
vious work, we disregard the Vague relation from
both datasets (in the evaluation phase, we simply
remove all ground truth Vague relation pairs). In
addition, we will only consider event pairs from ad-
jacent sentences due to the fact that it will require

4https://spacy.io/api/data-formats

an exponential number of annotations if we also
consider event pairs from non-adjacent sentences,
which is beyond the scope of this study. Table 1
shows statistics of the two datasets and Table 2
shows the label distribution.

Corpora Train Dev Test

TB-DENSE
# Documents 22 5 9

# Relation Pairs 4,032 629 1,427

MATRES
# Documents 255 20 25

# Relation Pairs 13K 2.6K 837

Table 1: Data statistics for TB-DENSE and MATRES

Labels TB-DENSE MATRES

Before 384 26.9% 417 49.8%
After 274 19.2% 266 31.8%
Includes 56 3.9% - -
Is_Included 53 3.7% - -
Simultaneous 22 1.5% 31 3.7%
Vague 638 44.7% 133 15.9%

Table 2: Label distribution for TB-DENSE and MATRES.
For each dataset, the first column shows the number of
instances of each relation type while the second column
shows the percentage.

Implementation Details For fair comparisons
with previous baseline approaches, we use the pre-
trained bert-large-cased model5 for fine-tuning and
optimize our model with BertAdam. We optimize
the parameters with grid search: training epoch 10,
learning rate ∈ {3e-6, 1e-5}, training batch size
∈ {16, 32}, encoder layer size ∈ {4, 12}, number
of heads ∈ {1, 8}. During training, we first opti-
mize the event extraction module for 5 epochs to
warm up, and then jointly optimize both event ex-
traction and temporal relation extraction modules
using gold event pairs for another 5 epochs.

3.2 Results

We evaluate SGT against two public benchmark
datasets under two settings: (1) joint event and tem-
poral relation extraction (Table 3); (2) temporal
relation classification, where the gold event men-
tions are known beforehand (Table 4). Note in the
“joint” setting, we adopt the same strategy proposed
in (Han et al., 2019b): we first train the event ex-
traction module, and then jointly optimize both
event extraction and temporal relation extraction

5https://huggingface.co/transformers/pretrained_models.
html
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Dataset Model Pre-trained Model Event Detection Relation Extraction

TB-DENSE
HNP19 (Han et al., 2019b) BERT Base 90.9 49.4

Our Approach BERT Base 91.0 51.8

MATRES
CogCompTime2.0 (Ning et al., 2019) BERT Base 85.2 52.8

HNP19 (Han et al., 2019b) BERT Base 87.8 59.6
Our Approach BERT Base 90.5 62.3

Table 3: Comparison of various approaches on joint event and relation extraction with F-score (%). Note that
HPN19 fixes BERT embeddings but relies on BiLSTM to capture the contextual features.

Dataset Model Pre-trained Model Relation Classification (F-score %)

TB-DENSE

LSTM (Cheng and Miyao, 2017) BERT Base 62.2
HNP19 (Han et al., 2019b) BERT Base 64.5

Our Approach BERT Base 66.7

PSL (Zhou et al., 2020) RoBERTa Large 65.2
DEER (Han et al., 2021) RoBERTa Large 66.8

Our Approach BERT Large 67.1

MATRES

CogCompTime2.0 (Ning et al., 2019) BERT Base 71.4
LSTM (Cheng and Miyao, 2017) BERT Base 73.4

HNP19 (Han et al., 2019b) BERT Base 75.5
Our Approach BERT Base 79.3

HMHD20 (Wang et al., 2020a) RoBERTa Large 78.8
DEER (Han et al., 2021) RoBERTa Large 79.3

Our Approach BERT Large 80.3

Table 4: Comparison of various approaches on temporal relation classification with gold event mentions as input.

(using gold event pairs as input to ensure training
quality) modules. Overall, we observe that our ap-
proach significantly outperforms baseline systems
in both settings, with up to 7.9% absolute F-score
gain on MATRES and 2.4% on TB-DENSE.

From Table 3, we see that our approach achieves
better performance on event detection than base-
line methods though they are based on the same
BERT encoder. This is possibly because, during
joint training, our approach leverages the depen-
dency parsing trees, which improves the contextual
representations of the BERT encoder. In Table 4,
unlike other models which are based on larger con-
textualized embeddings such as RoBERTa, our ap-
proach with BERT base achieves comparable per-
formance, and further surpasses the state-of-the-art
baseline methods using BERT-large embeddings,
which demonstrate the effectiveness of our Syntax-
guided Graph Transformer network.

Some studies (Ning et al., 2019; Han et al.,
2019b; Wang et al., 2020a; Zhou et al., 2020) focus
on resolving the inconsistency in terms of the sym-
metry and transitivity of the temporal relations. For
example, if event A and event B are predicted as
Before, event B and event C are predicted as Before,
then if event A and event C are predicted as Vague
or After, it will be considered as inconsistent. How-

Model Original
Test

Contrast Consistency

CogCompTime2.0
(Ning et al., 2019)

73.2 63.3 40.6

Our Approach 77.0 64.8 49.8

Table 5: Evaluation on the contrast set of MATRES.
Original Test indicates the accuracy on 100 examples
sampled from the original MATRES test set follow-
ing (Gardner et al., 2020). Contrast shows the accuracy
score on 401 examples perturbed from the original 100
examples. Consistency is defined as the percentage of
the original 100 examples for which the model’s pre-
dictions of the perturbed examples are all correct in the
contrast set.

ever, our approach shows consistent predictions
with few inconsistent cases when Simultaneous re-
lation is involved. This analysis also demonstrates
that our approach can correctly capture the tempo-
ral cues between two event mentions.

We also examine the correctness and robustness
of our approach on a contrast set of MATRES (Gard-
ner et al., 2020), which is created with small man-
ual perturbation based on the original test set of
MATRES in a meaningful way, such as rephrasing
the sentence or simply changing a word of the sen-
tence to alter the relation type. The contrast set
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S1: Before (e1: retiring) in 1984 , Mr. Lowe (e2: worked) as an inspector of schools with the
department of education and sciences , and he leaves three sons from a previous marriage .

S2: Mr. Erdogan has long (e1: sought) an apology for the raid in May 2010 on the Mavi 
Marmara , which was part of a Flotilla that (e2: sought) to break Israel's blockade of gaza.  

ExamplePrediction

BERT: Before
BERT-GT: After
BERT-SGT: After

BERT: Before
BERT-GT: Before
BERT-SGT: After

Figure 3: Comparison of the predictions from BERT, BERT-GT and our approach.

provides a local view of a model’s decision bound-
ary, thus it can be used to more accurately evalu-
ate a model’s true linguistic capabilities. Table 5
shows that our approach significantly outperforms
the baseline model on both the original test set and
the corresponding contrast set. The contrast consis-
tency in Table 5 also indicates how well a model’s
decision boundary aligns with the actual decision
boundary of the test instances, based on which we
can see that by explicitly capturing temporal cues,
our approach is more accurate and robust than the
baseline method.

Ablation Study We further conduct ablation
studies to compare the performance of our ap-
proach with two ablated versions of our method:
(1) BERT with Graph Transformer (BERT-GT), for
which we remove the syntaxic-guided attention and
only rely on the standard multi-head self-attention
to obtain graph-based contextual representations
of two event mentions and then predict their rela-
tion; (2) BERT, where we further remove the Graph
Transformer, and only use the pre-trained BERT
language model to encode the sentence and predict
the temporal relationship of two event mentions
based on their contextual representations.

Ablation F-score (%) Gain (%)

BERT-SGT 79.3 0
BERT-GT 77.5 -2.0
BERT 75.5 -3.8

Table 6: Ablation study on MATRES. We use BERT
base as the comparison basis.

Table 6 also shows that by adding Graph Trans-
former, BERT-GT achieves 2.0% absolute F-score
improvement over the BERT baseline model,
demonstrating the benefit of dependency parsing
trees to temporal relation prediction. By further
adding the new syntax-guided attention into Graph
Transformer, the absolute improvement on F-score
(1.8%) shows the effectiveness of our new Syntax-
guided Graph Transformer and the importance of

capturing temporal cues from the connection of two
event mentions as well as their surround contexts.

Figure 3 shows two examples as qualitative
analysis. In S1, BERT mistakenly predicts the
temporal relation as Before probably because it’s
confused by the context word Before. However, by
incorporating the dependency graph, especially the
triples {worked, prep, Before}, {Before, pcomp,
retiring} and the path between the two event men-
tions, worked→prep→Before→pcomp→retiring,
both BERT-GT and our approach correctly
determine the relation as After. In S2, both BERT
and BERT-GT mistakenly predict the temporal
relation as Before as the context between the two
event mentions is very wide and complicated,
and these two event mentions are not close
within the dependency graph. However, by
explicitly considering and understanding the
connection between the two event mentions,
soughte1→on→Marmara→was→part→Flotilla
→soughte2 , our approach correctly predicts the
temporal relation between the two event mentions.

3.3 SGT on Temporal Cues

To analyze the source of temporal cues for rela-
tion prediction, we randomly sample 100 correct
event relation predictions given gold event men-
tions from MATRES and select the triple that has
the highest temporal attention weight from the last
layer of the Syntax-guided Graph Transformer net-
work as a temporal cue candidate. We manually
evaluate the validity of each temporal cue candi-
date, and further analyze if the cue is from the de-
pendency path between two event mentions, their
surrounding context, or both. Our analysis shows
that about 64% of the temporal cues are valid, 37%
of them come from the dependency path, 17% are
from local context, and the remaining 10% are
from both. This verifies our initial observation
that most of the temporal cues are from the depen-
dency path between two event mentions as well as
their surrounding context. It also demonstrates the
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effectiveness of our new syntax-guided attention
mechanism.

3.4 Impact of Wide Context

We further illustrate the impact of context width
to both baseline model and our approach. For fair
comparison, we use three context width category,
[context length < 10, 10 < context length < 20,
context length > 20 ]. As we can see in Fig. 4,
the first category has 267 pairs, the second cate-
gory has 343 pairs and the third category has 817
pairs. From our results, we observe that the BERT
baseline cannot predict the temporal relation of
two event mentions with wide context but rather
working well when the event mentions are close
to each other. Our model overall performs slightly
worse in the second category but in general is very
good at predicting the temporal relationship for
the event mentions with short and context width.
This also proves the benefit of syntactic parsing
trees to the prediction of temporal relationship. For
the second category where the context length is
within [10, 20], the performance of our approach
slightly drops due to two reasons: (1) the training
samples within this range are not as sufficient as
the other two categories; (2) for most event pairs
from this category, their dependency path is very
long and there is no explicit temporal indicative
features within their context or dependency path,
making it more difficult for the model to predict
their temporal relationship.

Figure 4: Context width analysis on TB-DENSE. The
X axis shows the number of tokens between two events
mentions. The left Y axis shows the data distribution
of each width category indicating with blue bars. The
right Y axis denotes the micro F-score for each width
category.

3.5 Remaining Errors

We randomly sample 100 classification errors from
the output of our approach and categorize them into
four categories. As Figure 5 shows, the first cate-
gory is due to the complex or ambiguous context
(54% of the total errors). The second category is
due to the complicated subordinate clause structure,
especially the clauses that are related to quote or
reported speech, e.g., S2 in Figure 5. The third
error category is that our approach cannot correctly
differentiate the actual events from the hypothetical
and intentional events, while in most cases, the tem-
poral relation among hypothetical and intentional
events is annotated as Vague. The last category is
due to the lack of sufficient annotation. We ob-
serve that none of the Simultaneous relation can
be correctly predicted for MATRES dataset as the
percentage of Simultaneous (3.7%) is much lower
than other relation types. In TB-DENSE dataset,
labels are even more imbalanced as the percentage
of Vague relation is over 50% while the percentage
of Includes, Is_Included and Simultaneous are all
less than 4%.

4 Related Work

Early studies on temporal relation extraction
mainly model it as a pairwise classification prob-
lem (Mani et al., 2006; Verhagen et al., 2007; Verha-
gen and Pustejovsky, 2008; Verhagen et al., 2010;
Bethard et al., 2016; MacAvaney et al., 2017) and
rely on hand-crafted features and rules (Verhagen
and Pustejovsky, 2008; Bethard et al., 2007) to ex-
tract temporal event relations. Recently, deep neu-
ral networks (Dligach et al., 2017; Tourille et al.,
2017) and large-scale pre-trained language mod-
els (Han et al., 2019a, 2021; Wang et al., 2020a;
Zhou et al., 2020) are further employed and show
state-of-the-art performance.

Similar to our approach, several studies (Ling
and Weld, 2010; Nikfarjam et al., 2013; Mirza
and Tonelli, 2016; Meng et al., 2017; Cheng and
Miyao, 2017; Huang et al., 2017) also explored
syntactic path between two events for temporal re-
lation extraction. Different from previous work,
our approach considers three important sources of
temporal cues: local context, denoting the neigh-
bors of each event node within the dependency
graph; connection of two event mentions, which is
based on the dependency path between two event
mentions; and rich semantics of concepts and de-
pendency relations, for example, the dependency
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S2: "We were pleased that England and New Zealand knew about it, and we (e1: thought) that's where it would
stop." He also (e2: talked) about his " second job " as the group's cameraman. (Vague)

ExampleError Category (Percent)

Subordinate Clause (22%)

Complex Context (54%)
S1: "This is not a Lehman , " he (e1: said) to the disastrous chain reaction (e2: touched) off by the collapse
of Lehman brothers in 2008 .  (After)

Hypothetical Events and
Intentional Events (18%)

S3: The day before Raymond Roth was  (e1: pulled) over, his wife, Ivana, showed authorities emails she
had discovered that  (e2: appeared) to detail a plan between him and his son to fake his death. (Vague) 
 
S4: Microsoft (e1: said) it has identified three companies for the china program to (e2: run) through June .
(Simultaneous)

Imbalanced Labels (6%)

Figure 5: Types of remaining errors

relation nmod between two event mentions usually
indicates a Before relationship. All these indica-
tive features are automatically selected and aggre-
gated with the multi-head self-attention and our
new syntax-guided attention mechanism.

Our work is also related to the variants of Graph
Neural Networks (GNN) (Kipf and Welling, 2016;
Veličković et al., 2018; Zhou et al., 2018), espe-
cially Graph Transformer (Yun et al., 2019; Chen
et al., 2019; Hu et al., 2020; Wang et al., 2020b).
Different from previous GNNs which aim to cap-
ture the context from neighbors of each node within
the graph, in our task, we aim to select and capture
the most meaningful temporal cues for two event
mentions from their connections within the graph
as well as their surrounding contexts.

5 Conclusion

Temporal relationship between events is important
for understanding stories described in natural lan-
guage text, and a main challenge is how to dis-
cover and make use of the connection between
two event mentions, especially when the event pair
is far apart in text. This paper proposes a novel
Syntax-guided Graph Transformer (SGT) that rep-
resents the connection between an event pair via
additional attention heads over dependency parsing
trees. Experiments on benchmarking datasets, MA-
TRES, TB-DENSE, and a contrast set of MATRES,
show that our approach significantly outperforms
previous state-of-the-art methods in a variety of set-
tings, including event detection, temporal relation
classification (where events are given), and tempo-
ral relation extraction (where events are predicted).
In the future, we will investigate the potential of
this approach to other relation extraction tasks.
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