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Abstract

Taxonomy expansion is a crucial task. Most of
the taxonomy expansion approaches are of two
types, attach and merge. In a taxonomy like
WordNet, both merge and attach are integral
parts of the expansion operations, but the major-
ity of studies consider them separately. This pa-
per proposes a novel multi-task learning-based
deep learning method known as Taxonomy Ex-
pansion with Attach and Merge (TEAM) that
performs both the merge and attach operations.
This is the first study that integrates both the
merge and attach operations in a single model
to the best of our knowledge. The proposed
models have been evaluated on three separate
WordNet taxonomies, viz., Assamese, Bangla,
and Hindi. From the various experimental se-
tups, it is shown that TEAM outperforms its
state-of-the-art counterparts for attach opera-
tion and also provides highly encouraging per-
formance for the merge operation.

1 Introduction

Taxonomy, such as the WordNet, is a crucial re-
source for developing NLP related technologies, as
it plays a vital role in various text processing tasks
such as information retrieval, information extrac-
tion, text classification, summarization, etc. (Pang
et al., 2008; Allan et al., 1998; Singhal et al., 2001)
(Miller, 1998). As most of the WordNets are man-
ually curated, it often suffers from the problem of
limited coverage. Therefore, an automatic taxon-
omy expansion is a crucial problem to handle the
above issue. For taxonomy expansion, WordNet
in particular, may need two types of operations;
(i) merge, where a new concept ' is merged to an
existing node, and (ii) attach, where a new concept
is inserted as a new node. Figure 1 illustrates these
two operations where the word Mango is inserted
as a new concept with the attach operation, and the
*Equal contributions.

Concept is a basic building block of WordNet, which
refers a definition with associated synonym words
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Expanded taxonomy

Attach

Concept- words | Concept definition (d)

Synset (s)
Object
Rock, Stone

Food Any sul that can be metabolized by an organism to
give energy and build tissue.

A tangible and visible entity.

A lump or mass of hard consolidated mineral matter.

Vegetable,Veggie | Edible seeds or roots or stems or leaves or bulbs or tubers or
non sweet fruits of any of numerous herbaceous plant

Fruit The ripened reproductive body of a seed plant.

Nutrient A sub
reproduce.

used by an organism to survive, grow, and

Mango A mango is an edible stone fruit.

Figure 1: Example of WordNet taxonomy expansion
with attach and merge operations to include new terms
"Mango" and “Nutrient”.

“Mango” is a specific concept of Fruit not present in the existing WordNet. Hence,

a new concept node is created in the taxonomy by attaching it to its generic
concept Fruit . As “Nutrient” refers to the same concept as "Food", no new
concept is created. “Nutrient” is merged with the existing concept “Food”.

word Nutrient is inserted as a new synonymy in an
existing concept with the merge operation.

Though both of these operations are integral
parts of a WordNet taxonomy expansion, all of
the existing studies on taxonomy expansion have
considered expansion with either attach opera-
tion (Schlichtkrull and Alonso, 2016; Vedula et al.,
2018; Shen et al., 2020; Yu et al., 2020b; Zhang
et al., 2021; Takeoka et al., 2021; Liu et al., 2021)
or merge operation (Nakashole et al., 2012; Nguyen
et al., 2017; Nakashole et al., 2012; Qu et al., 2017;
Boteanu et al., 2018; Wang et al., 2019; Fei et al.,
2019), but not together. Realizing the need to ap-
ply both the operation, SemEval-2016:task 14 (Se-
mantic taxonomy enrichment) Jurgens and Pilehvar
(2016) includes a call for expansion with both at-
tach and merge operations. However, none of the
submissions incorporate both operations in a single
model.
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Motivated by the above observations, in this
study, we propose an integrated deep learning-
based method, namely, Taxonomy Expansion with
Attach and Merge (TEAM), which performs both
the attach and merge operations in a multitask-
learning framework. Though most of the existing
studies consider the expansion a regression prob-
lem (Shen et al., 2020; Yu et al., 2020b; Zhang et al.,
2021), considering that our method performs both
the attach and merge operation in a single model,
it can also be considered a classification task. As a
result, we propose two versions of TEAM, namely,
TEAM-RG: Regression, and TEAM-CL: Classifi-
cation to perform with explicit and implicit rank-
ings. The proposed models have been evaluated
on three different WordNet taxonomies, viz., As-
samese, Bangla, and Hindi. From the various ex-
perimental setups, it is observed that the proposed
TEAM-RG and TEAM-CL outperform their base-
lines counterparts for attach operation, and also
obtained encouraging performance for merge oper-
ation as well. The major contributions of the paper
are summarized as follows:

* A multi-task learning based taxonomy expan-
sion framework TEAM is jointly trained to
perform both the Attach and Merge operations.
To the best of our knowledge, it is the first in-
tegrated model to perform both the Aftach and
Merge operations in a single model.

* Two variants of TEAM, namely TEAM-
Regression (RG) and TEAM-Classification
(CL) are proposed.

2 Taxonomy Expansion - Attach and
Merge

In this study, we have considered WordNets as our
target taxonomies. A WordNet may be defined by a
collection of concepts connected by various seman-
tic relationships such as hypernymy, hyponymy, tro-
ponymy, etc., where each concept is further defined
by a set of attributes such as definition, synonyms,
examples, etc (Bhattacharyya, 2010). In this study,
we have considered only the hypernymy relation
and the definition and synonymy attributes.

In order to be able to apply the proposed model,
we first transform the original WordNet taxon-
omy into an experimental intermediate taxonomy
( directed unweighted acyclic graph) T = (V, E)
where V represents the set of concepts and E rep-
resents the set of hypernymy relations between the

concepts. A concept v € V is further defined by
a tuple v = (d,, s,) where d,, represents the def-
inition of the concept, and s, represents the set
of associated synonyms. An edge e € F rep-
resents a hypernymy relation from a parent con-
cept v, to its child concept v.;, and is denoted as

e: (vp yper, ven)- The taxonomy T is arranged
in a hierarchical manner with directed edges in F,
as shown in Figure 1. Given the taxonomy 7 and
a query concept ¢ = (dg, S¢), the attach and the
merge expansion operations are defined below.
Attach (A) — An attach operation is performed
when the concept ¢ is not present in T. The objec-
tive of the attach operation is to identify the best
matching parent node in taxonomy network known
as anchor concept a = (dg, s4), and insert a new

concept ¢ with an edge e : (a per, q). In a tax-
onomy network, a parent node represents a more
generic concept of its children. After an attach op-
eration i.e., insertion of ¢ in T under the anchor a,
the expanded taxonomy is updated as follows.

T = (VU{gh, EU{e}) (D

Merge (M) — A merge operation is performed
when an equivalent concept a = (dg, o) of the
query q (i.e., d, = dg) is already present in 7, but
the synset s, is not present in a (i.e., s; N s = ().
The objective of the merge operation is to identify
the best matching concept a = (dg, s4), known
as the anchor concept, in the taxonomy network
7 and add the synset s, to s,. It neither creates a
new node nor adds a new edge. It only updates the
synset of the anchor concept. After the merge oper-
ation, the updated anchor concept in the expanded
taxonomy can be expressed as follows.

a =

(dg,5aUsq) :aeV 2)
3 Proposed Methods

Our objective is to develop an integrated model that
performs both attach and merge operations for tax-
onomy expansion. Since we have two tasks to unify
in a single model, we resort to a multi-task learning
framework known as Taxonomy Expansion Frame-
work with Attach and Merge (TEAM). This joint
learning objective facilitates information flow so
that the two tasks can aid each other. Also, we are
interested in deciding which expansion operation is
to perform given a triplet (expansion task classifi-
cation) and retrieving the ranked list of candidates
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Query Anchor Label | Operation
Rock(d, “rock”) |Object (d, ) True |Attach
Rock(d, “rock”) | Fruit (d.s) False

Rock(d, “rock”) |Stone True | Merge

Vegetable, (parallel_d, s)
Veggie
(d, s)

Rock(d, “rock”) | Fruit(d, s) False

Figure 2: Example of training dataset generation.
The table shows positive and negative training instances corresponding to the
query concept "Rock” for both operations Attach and Merge.

(ranking) as prospective anchors to associate the
query with. For this first-of-its-kind novel taxon-
omy expansion task, we propose two versions of
TEAM, namely TEAM-Regression (TEAM-RG)
and TEAM—Classification (TEAM-CL) — where
we show that using either regression or classifica-
tion learning objectives, this task can be accom-
plished.

3.1 Training dataset generation

Given a transformed taxonomy 7T (as described in
Section 2), we generate a training dataset for build-
ing the model as follows. The training samples are
defined by a 3-tuple < ¢, a, label >, where q is
the query, a is the potential anchor, and label is
associated class, i.e., true/false (1/0). We randomly
select a set of nodes in T as a set of queries 2, and
generate the training samples for the attach and the
merge operations separately as follows.

Attach (A) — We first remove the query nodes
from the T. For each query ¢ = (dg,sq), we
consider its parent as anchor node a = (dg, s4)
and generate positive sample < ¢,a, TRUE >.
We then randomly pick up N number other nodes
a’' = (dg, sq), and generate N negative samples
< q,a',FALSE >. Thus, for a given query node
q, we extract one positive and N negative samples.

Merge (M) — For each of the randomly selected
query node x = (d, s, >) in T, we generate the
following positive training sample < ¢, z, True >
where ¢ = (dy,84),5¢ C sy is the query and
x = (dy, Sz —Ss4) is the anchor.The s, is a randomly
selected synonym in s,. Unlike attach, for gener-
ating the training sample for the query ¢, we only
remove the query synset s, from the anchor synset
Sz 1.€., Sz = Sz — 54, and, not the node. Like attach,
we randomly pick up N number other nodes a’, and
generate N negative samples < ¢,a’, FALSE >.

2As we consider the same query set for both attach and
merge experiments, nodes with at least two synonyms are
considered.

Anchor

Vegetable,
veggie

Children

{Mcngo } [Orange} [Cabbage }

Figure 3: Ego tree of the anchor node "Food". 1-hop
ego-tree is extracted around the anchor "Food". The color-codes distinguish
various roles w.r.t the anchor node "Food", eg., Deep Purple: Grand-parent, Red:
Anchor/ Parent, Orange: Childrens

Figure 2 illustrates the generation of the training
samples from a taxonomy.

3.2 TEAM-Regression (TEAM-RG)

The proposed TEAM-RG works in two tiers process.
Given a training input sample < ¢, a,c >, it first
generates encoding of the query ¢ and the anchor a.
It then merges to a shared layer to produce two dif-
ferent multi-tasking dense networks; one for merge
and another for attach, as shown in figure 4.D.

For learning embedding of the anchor concept
from the taxonomy network and the query con-
cept from the associated attributes, we consider the
publicly available Fasttext pre-trained embedding
available at https://fasttext.cc/docs/
en/crawl-vectors.html.

Processing of the query concept: As men-
tioned in Section 2, a query concept consists of
its definition and the associated synset i.e., ¢ =
(dg, sq). The definition is a piece of text describing
the concept, and the synset is a synonym associated
with the query concept. . The two embeddings are
then concatenated to represent the query.

Processing of the anchor concept: For gen-
erating the encoding of the anchor concept, we
exploit the proximity structure of the nodes in the
taxonomy 7. For a given anchor node a € T, we
first extract its ego-tree from the taxonomy. An ego
tree T, : (V4, E,) of anode a in the taxonomy T is
a sub-tree that comprises the node a and its k-hop
neighborhood nodes. In this study, we considered
k =1, i.e., the anchor node, its parent node, and all
its children nodes. Figure 3 illustrates an example
of an ego tree. A similar approach has also been
used in (Wang et al., 2021; Yu et al., 2020b; Zhang
et al., 2021; Shen et al., 2020) studies. To obtain
the embedding of the anchor concept, we further
apply graph embedding as described below.
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3.2.1 Embedding Ego-tree

Ideally, we should be able to use any graph embed-
ding method to obtain the embedding of the anchor
node. As the objective is to incorporate the posi-
tional information of the parent and children node
in the ego tree, we use the Graph Attention Net-
work (GAT) proposed in Taxo-Expan (Shen et al.,
2020). This GAT is a special type of graph neural
network (GNN) (Kipf and Welling, 2016) with a
neighborhood-based attention mechanism. The de-
tails of GAT and its difference from GNN are given
in Section B of Appendix. Thus we used position
enhanced GAT to obtain the node embeddings of
an anchor’s ego tree.

We summarize the tree by applying an activation
function over the average of the embedding vectors
of all nodes in the ego-tree as given in equation 3
to define the encoding of the anchor node.

‘J'a:a<‘éa‘ Z:E) 3)

CEEVa

where o(.) is an activation function. We have con-
sidered Sigmoid function in this study.

3.2.2 Multi-task Learning

Once we obtain the embeddings of the anchor and
query concepts, the concatenated vector is sub-
jected to a shared dense layer and then build two
multi-task layers to perform the merge and attach
operations as shown in Figure 4.D. Given a query
concept and its true anchor concept with N false
anchor concepts, the task is to design a regression-
based ranking model such that the true concept is
ranked higher than the N false concepts. This ob-
jective should be realized for all the queries in the
training dataset.

Given the embedding vectors of anchor @ and
query ¢ as learned above, we first estimate sim-
ilarity between the two using a bi-linear model
proposed in (Gutmann and Hyvirinen, 2010). It
learns the discrimination between ¢ and a through
a learnable bi-linear scoring matrix B € RI7*/al
via a function D : RI9*lal — R as follows.

D(q,a) = o(¢* Ba) 4)

Here o is sigmoid non-linearity. The output of this
matching module is a probability estimate indicat-
ing the strength of association between the query
and anchor. Now, considering the query concept
q and its associated N + 1 anchor concepts, we
estimate the probability of being the correct anchor

using InfoNCE loss proposed in (Oord et al., 2018).
Let X be a set of query concepts and their respective
N + 1 anchor nodes (one positive and N negative).
An element of z, € X for a given query g consists
of {(¢,a,1),(q,a},d),...,ay,0)}, where a is the
positive anchor, and o’ are the negative anchors of
q. InfoNCE estimates loss function using an aver-
age probability of being true anchor node across
the dataset X as follows.

D(q,a)
vEM(q) D(q_7 ﬂ)

1
Lam = i > lOQE &)

xq€X

where M(q) denotes the set of both positive and
negative anchors of q. As mentioned earlier, the
loss defined in Equation 5 is estimated separately
for attach and merge operations. Therefore, we
generate two different training datasets for attach
and merge, and estimate £ 4 and L, separately
using respective datasets, The final model loss is
defined as £ = £ 4 + L) — considering both the
operations attach and merge.

3.3 TEAM-Classification (TEAM-CL)

Figure 4E shows the schematic diagram of the
TEAM-CL. We use the identical representations
for query ¢ and candidate anchors a4, aps as de-
scribed for TEAM-RG. We also adopt the same
position-enhanced graph propagation and read-out
modules as described in Section 3.2.1 for learning
anchor a = (d,, s,) concept representation. Once
we obtain the query and anchor representations,
we model the strength of association of an input
query and the candidate anchors based on their
features to predict the expansion task i.e., merge
M or attach A. The matching module, a multi-
layer perceptron (MLP) based classifier, takes the
features of query § € Rl and anchor a € R4,
and generates a contextualized pair representation
k= [q®(¢—a)®(qxa) ) (assuming || = [al).
Here, @ denotes concatenation. The anchor a can
be any of the attach or merge candidates (a4 /any).
A three-way classifier is learned to produce the
categorical probability distribution over the train-
ing samples for Merge (M), Attach (A) and No-
operation (N) — three classes (|Z| = 3) of oper-
ations. If # € RI¥I*IZl be a learnable projection
matrix that projects the contextualized pair embed-
ding k to the label space Z € R3. The predictions
are obtained as below,

Y = softmax(MLP(k; 0)) (6)
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Figure 4: Taxonomy Expansion framework with Attach and Merge (TEAM) D: TEAM-Regression-RG — *1. (Query Q, Anchor,
(N+1) Negative Anchors) are fed to the model, *2. Representation learning via shared graph propagation and readout modules, 3. Projection to shared hidden layers,
4. Task-specific matching modules with non-shareable weights, *5. Task-specific regression outputs. E: TEAM-Classification (CL) — 1. (Query Q, Anchor-A,
Anchor-M, (N+1) Negative Anchors) are fed to the model, 2. Representation learning via shared graph propagation and readout modules, 3. Projection to shared
hidden layers, *4. Simultaneous optimization of classification and ranking losses. *5.Three-way merge, attach, no-operation (M, A, N) prediction.

Explanation of used color-codes. Light-Purple: Anchor (A/M) nodes, Orange: Children of the anchor, Purple: Parent of the anchor. Green: Definition representation

of anchors, Blue: Synset representation of anchors, Yellow: Query representation.

For two versions of TEAM, we chose two different
kinds of matching models based on empirical per-
formances to capture different kinds of embedding
interaction in the latent space.

3.3.1 Multi-task Learning

Classification. Unlike in TEAM-RG, where we
posit taxonomy expansion as a regression task with
implicit ranking viz. discriminating true and false
examples via InfoNCE loss, in TEAM-CL, we si-
multaneously optimize for classification and ex-
plicit ranking objectives. We obtain classification
predictions from the matching module as described
before. Given a training set X, and a set of classes
Z (M: Merge, A: Attach, N: No-operation), we op-
timize for the self-supervised cross-entropy loss
over the task predictions Y given the ground-truth
task-classes Y for an input query-anchor pair.

i€X z€Z

)

Ranking. The classification objective can only
learn and infer the confidence score of an operation
(M/ A/ N) for a training sample. It fails to give
us a reliable ranked list of prospective anchors-(A/
M) given a query — since it does not learn the
relative ranks of positive and negative anchors for
a query. As illustrated in Figure 4, for a query
g, (1) the ego-tree of anchor-A comprises of that
query’s parent’s hierarchical neighborhood, and (ii)
the ego-tree of anchor-M comprises of that query’s

replica’s (same/similar definition with a missing
portion of synset) hierarchical neighborhood. Since
a query q is very similar to both of its anchor-A and
anchor-M’s ego-trees — these operations are hardly
distinguishable. Thus, a model must accommodate
a provision for directly comparing the prediction
scores of M and A operations and learning a margin
of separation between the scores. Here, we intro-
duce two ranking objectives in the framework —
(i) a contrastive objective to compare and contrast
among a positive anchor and N negative anchors,
(ii) a pair-wise hinge loss to learn a maximum mar-
gin between the M and A prediction scores.

Let, dist(.) be a function to measure the distance
between a query ¢ and its true/ false anchor-(A/
M) representations (a4, a4’), (aar, ans’). We use
"slash" (/) to denote either. We intend to rank a
positive query-anchor pair (¢, a4/aps) higher than
N no of negative pairs (g, a’y/a’,,) by enforcing a
group-wise contrastive loss using a margin A as,

LR, =
1 1 ,
= — Z max(0,\ —m +m’)
X 2@ A

7 ap€N(G:)
m = — dist(q; — da;), m' = — dist(q; — da)

(®)

We can similarly compute the margin-based group-
wise contrastive loss £ r1,, for the Merge (M).

Now, to distinguish between M and A opera-

tions, let, f(k) be a function that projects the con-

textualized (¢, @) embedding k in Equation 6, to
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a hidden space R”. Here we introduce a margin-
based hinge-loss on sample anchor pairs attach-
merge (a4, ays) for a given query ¢ via their con-
textualized vectors (ka,kps). If class labels of
merge and attach are M = 2, A = 1, we ensure
the prediction scores Y, = f (ka /nr) for M and
A are separated by a margin of A.

D

Y (ka)>Y (kar)

LRQ = max(O, A — f(k?;\/[) + f(k‘_A))

Therefore, the final loss is, L = Lo + LRg1, +
LR1,, + Lr2 — considering both margin-based
group-wise contrastive loss and pairwise hinge loss
comprising the overall ranking loss.

34

We follow Taxo-Expan’s (Shen et al., 2020) evalua-
tion strategy for inferring the best candidate anchor
a given a query q. We use our classification ob-
jective to decide which operation among merge,
attach, or no-operation (M, A, N) to perform when
q is given. i) For TEAM-RG, we augment a classi-
fication layer on top of the task-specific regression
layers. Given a query ¢ and a set of candidate
anchors a, we obtain the merge and attach regres-
sion scores and choose the best value along with
the corresponding operation as the apt operation to
perform. ii) For TEAM-CL choosing which opera-
tion to perform is obtained based on the three-way
prediction scores, given < ¢, a, (0/1) > as input.
Since both of our proposed frameworks optimize
for ranking loss, i.e., discriminates true candidate
pairs from the negative ones — we get a ranked
list of candidate anchors a while matching each of
them with ¢ via respective matching modules.

Model Inference

4 Experiments and Results

Here we give you an overview of our experiment
settings and provide the detailed reproducibility in-
formation in the Sections C, D, E of the Appendix.

Datasets. Table 1 shows the basic statistics of

Max-in | Max-out | leaf

Nodes | Edges degree | degree | nodes

Assamese WordNet | 8466 8363 1 525 7072
Bengali WordNet 26007 | 25815 | 1 924 22847
Hindi Wordnet 28242 | 28016 | 1 951 24737

Table 1: Dataset Statistics

three WordNet taxonomies used in this study. The

taxonomy networks are extracted from Assamese,
Bengali, and Hindi WordNets, respectively.

Metrics. We use Mean Rank (MR), Hit@k, and
Mean Reciprocal Rank (MRR) to evaluate the ranks
of the retrieved results obtained from different mod-
els, for the test queries. Like Taxo-Expan (Shen
et al., 2020) evaluation strategy, we scale the MRR
score by a factor of 10 to highlight the discrepancy
of the performances among different methods. Fur-
ther, we use Accuracy, Micro/ Macro F1, Precision,
Recall, and F-Scores to evaluate a method’s predic-
tion capability to decide which operation among
merge (M), attach (A), and no-operation (N) needs
to be performed.

Baselines. We choose two most recent bench-
mark SOTA taxonomy-expansion frameworks Tax-
oExpan (Shen et al., 2020) and Triplet Matching
Network(TMN) (Zhang et al., 2021) as the com-
peting methods. As Taxo-Expan and TMN out-
perform SemEval-2016 (Shen et al., 2020; Zhang
et al., 2021), we have not included SemEval-2016
as baseline in this study. In terms of learning objec-
tive, Taxo-Expan is similar to ours. It uses ego-tree-
based anchor features for matching query features
in a regression-based setting. TMN captures fine-
grained relationship dynamics of query and anchor
concepts using channel-wise gating mechanism-
based attention learning.

All datasets and our model implementa-
tions are available at: https://github.com/
barnal/TEAM

5 Results

Here we report the classification and ranking re-
sults of the competing methods. We also com-
pare and contrast among the variants of our TEAM
framework. Apart from the two versions of the
TEAM, namely, TEAM-RG and TEAM-CL, we
have task-specific model variants specified as —
attach—A, merge—M and merge+attach—-MA. Here,
(attach+merge) means simultaneously optimizing
for both the tasks.

5.1 Ranking Results

In Table [2], we show the performance of the com-
peting methods in terms of (best) ranking scores.
We see similar trends for all taxonomies in the
sub-tables. When considering only attach opera-
tion and the test ranking scores, we see TEAM-
RG clearly beats Taxo-Expan by a large margin
of (196.87,487.75,470.87) in MR, by a margin of

371


https://github.com/barnal/TEAM
https://github.com/barnal/TEAM

‘ Assamese WordNet-Noun

‘ Bengali WordNet-Noun

| Hindi WordNet-Noun

Methods | Micro_ MR Hit@1 Hit@3 MRR | Micro MR Hit@! Hit@3 MRR | Micro_ MR Hit@1 Hit@3 MRR
TEAM-RG(A) | 144.92 027 042  0.67 | 19151 0.17 036 086 |177.85 028 043  0.67
TEAM-CL(A) | 189.75 0.16 028 057 |277.01 005 018 050 |220.98 013 029 054
Taxo-Expan(A) | 341.81 007 011 029 |679.26 003 004 010 |648.72 004 008  0.14
TMN(A) 203.28 028 041 063 |319.36 0.10 015 069 | 24645 031 025 06l
TEAM-RGM) | 1.27 095 098 100 |2.04 092 098 100 |538 083 088 095
TEAM-CL(M) | 6.44 071 082 093 |11.06 061 075 089 |9.80 064 071 091
TEAM-RG(MA) | 73.34 0.61 070 083 |59.81 0.69 080 085 |9L62 063 071 081
TEAM-CL(MA) | 99.00 037 050 074 | 14438 033 046 070 | 113.39 032 047 073

Table 2: Ranking results for test queries

(0.2,0.14,0.24) in Hit@1 and (0.31,0.32,0.37) in
Hit@3 for Assamese, Bengali and Hindi WordNet
respectively. We see TEAM-CL though perform-
ing competitively but is outperformed by TEAM-
RG by a margin of (44.82,86.01,43.04) in MR,
by a margin of (0.11,0.12,0.28) in Hit@1 and
(0.14,0.18,0.43) in Hit@3 respectively for As-
samese, Bengali and Hindi WordNet. In TEAM-
RG(M), we obtain near-perfect MRR scores. This
is because the definitions are already present in
training set for the query concepts with known def-
initions (test sample drawn from the base taxon-
omy). The score of 1 indicates the ability of the
proposed method TEAM-RG(M) to correctly iden-
tify the appropriate anchor nodes for the merge
operation. TMN gives better performance than
Taxo-Expan owing to its useful attention mecha-
nism. But, Team-RG(A) outperforms TMN in all
the metrics except Hits@ 1. We only compare Taxo-
Expan results for the attach since it is originally
proposed for the attach operation. In the (merge-M)
and (merge+attach-MA) section of the tables also,
we see that TEAM-RG outperforms TEAM-CL on
all three WordNet taxonomies. We attribute this
huge performance improvement of TEAM-RG to
InfoNCE based training — as it simultaneously
provides pseudo-supervision from the negative ex-
amples while optimizing for the task-specific re-
gression layers.

5.2 Classification Results

In Table [3], We observe similar trends on all
three WordNet taxonomies. Since Taxo-Expan is
a regression-based algorithm proposed for only
attach operation in taxonomy expansion task —
we could not obtain its classification performance.
Therefore, we only consider variants of our frame-
works as competing methods. As described in the
sub-section 3.4, using a classification layer on top

of the regression layer in TEAM-RG, we obtain
classification performances for the attach, merge
operations along with both (attach+merge) oper-
ations. Whereas obtaining classification perfor-
mance for TEAM-CL is straightforward since this
is already a classification framework.

When comparing TEAM-RG (attach) and
(merge) variants — we see, unlike ranking results
where ranking results of merge operation were al-
ways better than the attach operation, here the clas-
sification results of merge operation are inferior
to attach operation. It means that the RG variant
learns better ranking as compared to CL variants,
but they fail to distinguish M and A — the opera-
tion to perform. This is expected since we do not
provide a scheme here to contrast M and A opera-
tions — which is the motivation for our CL variant
framework.

When comparing TEAM-RG and TEAM-CL
for (merge+attach), we see TEAM-CL gives better
classification scores using test queries except for
Macro-F1 scores. TEAM-RG gives the best per-
formance for the Macro-F1 score for the test cases.
This essentially means that class-wise prediction
performances are inferior for TEAM-CL. This is
expected behavior since, in each batch of the train-
ing sample, we include a substantially large number
(N) of negative examples with class-label (N-No
operation). We design our training samples like this
so that the contrastive loss is better approximated.
Nevertheless, it leads to a class-imbalance issue
in our three-way classification setup, i.e., a large
number of samples with N class labels as compared
to the other M/ A class labels. Thus, TEAM-CL
biases its prediction towards the N class, leading to
poorer Macro-F1 scores than TEAM-RG.

To summarize, we observe that TEAM-RG gives
the best ranking performances, whereas TEAM-CL
gives the best classification performances. TEAM-
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| Assamese WordNet

| Bengali WordNet

| Hindi WordNet

Methods | Acc Mi-FI MaFl Prec. Recl F-Sc|Acc Mi-FI MaFl Prec. Recl F-Sc|Acc. Mi-FI Ma-Fl Prec. Recl F-Sc
TEAM-RG(A) [ 097 097 049 095 097 096|098 098 050 097 098 097 [090 090 047 081 090 085
TEAM-RGM) | 081 081 045 066 082 073|029 029 029 057 029 048 | 055 055 030 023 015 039

TEAM-RG(MA) | 0.88 0.88 0.88 0.89 0.88 0.88 | 0.51 051
TEAM-CL(MA) | 1.00 1.00 0.50 1.00 1.00 1.00 | 1.00 1.00

0.36 096 071 0.85 | 053 0.53 0.43 0.82 053 0.62
0.48 1.00 1.00 1.00 | 1.00 1.00 0.50 1.00 1.00 1.00

Table 3: Classification results for test queries

CL performs poorly in Macro-F1 since it presum-
ably suffers from class-imbalance issues owing to
the style of training sample generation. Frame-
works with multi-task learning strategy (TEAM-
RG and TEAM-CL) outperform frameworks (Taxo-
Expan) designed to perform a single task — which
is motivated by the fact that simultaneously opti-
mizing for multiple tasks provides self-supervision
to each other, resulting in better performances.

5.3 Expansion of Assamese WordNet
Taxonomy with Out-Of-Vocabulary
(OOV) words

Assamese WordNet-Noun

Methods Micro_ MR Hit@1 Hit@3 MRR
TEAM-RG(A) 65.30 0.33 0.53 0.80
TEAM-CL(A) 240.47 0.02 0.16 0.06
Taxo_Expan(A) 386.30 0.05 0.05 0.11
TEAM-RG(M) 170.79 0.07 0.14 0.38
TEAM-CL(M) 331.93 0.03 0.12 0.29

Table 4: Ranking result for out-of-vocabulary words

To investigate the effectiveness of the proposed
models, we employ the models for expanding a
WordNet with OOV words. For this, first, we
find out-of-vocabulary words, i.e., words that are
not present in Assamese WordNet. Second, we
manually identify true anchors of respective out-of-
vocabulary words with associated operations (At-
tach/Merge) in Assamese WordNet. We evaluate
the predicted results of the proposed model against
the manually identified true anchors. Since we
can either perform an A or M operation with OOV
words and not both, we do not predict expansion
tasks for OOV words using any of the MA variants
of our proposed frameworks. Table 4 shows the
ranking performance of the model in predicting
true anchors for attach and merge expansion opera-
tions. We see a similar trend of prediction ranking
as seen with the test set in our earlier experiments.
TEAM-RG gives the best performance in both ex-
pansion operations. The detailed analysis of results
is in Section F of the Appendix.

6 Related Works

Existing methods for taxonomy expansion can be
divided into two categories: relying on alignment
between multiple taxonomies [Ruiz-Casado et al.
(2005), Toral et al. (2008), Ponzetto and Navigli
(2009), and Yamada et al. (2011)] or relying on
machine learning-based rating sub-graphs. Fur-
ther, the latter category can be divided into two
sub-categories (1) by expanding synonymy rela-
tions/Merge (2) by expanding hypernymy rela-
tions/Attach. Synonymy-based taxonomy expan-
sion leverages synonymy relations of the taxonomy.
Given a seed taxonomy, the distributional approach
discovers synonyms by representing strings with
their distributional feature and learning a classifier
to predict the relation between strings [(Nakashole
etal., 2012), (Wang et al., 2019), (Fei et al., 2019)].
Most of the recent taxonomy expansion approaches
are based on hypernymy expansion. These meth-
ods attempt to determine the attachment position by
scoring between several nodes. Recently numerous
methods have been proposed to solve this prob-
lem(Shen et al., 2018), (Shen et al., 2020), (Yu
et al., 2020b), (Zhang et al., 2021), (Liu et al.,
2021). (Shen et al., 2020). Hence, all the existing
taxonomy expansion approaches expand a taxon-
omy either by merge operation(synonymy expan-
sion) or by attach operation(hypernymy expansion).
However, particular to WordNet expansion it is an
integrated task of Merge and attach operation. We
are the first to study the problem of taxonomy ex-
pansion using both the Attach and Merge taxonomy
expansion operations in a single model. A detailed
related study is in Section A of the Appendix.

7 Conclusion

In this paper, we proposed an integrated framework
called Taxonomy Expansion with Attach and Merge
(TEAM) for expanding taxonomy with attach and
merge operations together. We built two multi-task
learning-based variants of TEAM, namely, TEAM-
Regression and TEAM-Classification, which solve
the taxonomy expansion problem as regression and
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classification, respectively. Our proposed meth-
ods learned to predict the taxonomy expansion
operation (merge, attach, or no-operation) to per-
form and provided a ranked list of candidates. We
evaluated the effectiveness of TEAM on WordNet
taxonomies of three distinct languages, viz., As-
samese, Bangla, and Hindi. In various experimen-
tal setups, the proposed TEAM-RG and TEAM-CL
outperformed its state of the art for attach operation
and provided a highly encouraging performance
on merge operation. We had also investigated the
performance of the proposed model with out-of-
vocabulary concepts.

In the future, we plan to investigate the response
of the proposed model with different types of tax-
onomies and WordNet of different languages. An-
other future research possibility can be to explore
the response of this model using advanced contex-
tual encoders.
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A Related Works

Expansion by resource alignment: In the first
category of studies, Poprat et al. (2008) first at-
tempted to automatically expand a WordNet with
biomedical terminology; however, they were un-
able in developing the resource. Ruiz-Casado et al.
(2005), Toral et al. (2008), Ponzetto and Navigli
(2009), and Yamada et al. (2011) exploit struc-
tured information in Wikipedia to expand Word-
Net with new synsets. Snow et al. (2000) leverage
distributional similarity techniques for WordNet
expansion. Jurgens and Pilehvar (2015) enrich the
existing WordNet taxonomy using an additional
resource, Wiktionary, to extract sense data based
on information in the term concepts.

Synonymy Expansion: Synonymy expansion in
a taxonomy leverages synonymy relations to enrich
a taxonomy with new concepts. Approaches for
synonymy expansion can be divided in to two cat-
egories: (1) Distributional based approach (Wang
et al., 2019), (Fei et al., 2019) (2) Pattern-based ap-
proach (Nguyen et al., 2017), (Nakashole et al.,
2012). Given a seed taxonomy, the distribu-
tional approach discovers synonyms by represent-
ing strings with their distributional feature and
learning a classifier to predict the relation between
strings. However, in the pattern-based approach,
consider the sentences mentioning a pair of synony-
mous strings and learn some textual patterns from
these sentences, which are further used to discover
more synonyms. Qu et al. (2017) proposed an ap-
proach that integrates both the categories. Boteanu
et al. (2018) focus on the problem of expanding tax-
onomies with synonyms for applications in which
entities are complex concepts arranged into tax-
onomies designed to facilitate browsing the product
catalog on amazon.com. They first generate syn-
onymy candidates for each node in the taxonomy
and then filter synonymy candidates using a binary
classifier. Yu et al. (2020a) study a task of synonym
expansion using transitivity named SYNET, which
leverages both the contexts of two synonymy pairs.
Hypernymy expansion : Jurgens and Pilehvar
(2016) formulated a task of synonymy expansion,
where it is proposed to enrich the WordNet taxon-
omy by performing two operations for each new
concept. The first action is Aftach, where a new
concept is treated as a new synset and is attached as
a hyponym of one existing synset in WordNet, and
the second action is Merge, where a new concept
is merged into an existing synset. The best solu-

tion proposed by Schlichtkrull and Alonso (2016)
included only the attach operation. Later solutions
for attaching, as in Shen et al. (2020), adopted self-
supervision and tried to exploit the information of
nodes in the seed taxonomy to perform node pair
matching. On the other hand, Yu et al. (2020b)
resorted to classification along mini paths in the
taxonomy. In contrast, in our current approach,
we have incorporated both the attach and merge
operations.

B Graph Propagation Module (in details)

Graph Neural Network (GNN) allows us to trans-
form and propagate node features as messages to
learn structure-aware node representations. The
EXTRACT() mechanism extracts the messages
from a target node and its neighborhood, which
is later on combined based on a chosen ATTEN-
TION() mechanism by the AGGREGATE() opera-
tion. Next, the aggregated message is propagated
to the rest of the graph. Studies apply various ag-
gregation strategies to combine the propagated and
extracted messages from the target node’s neighbor-
hood based on the importance of each node in the
neighborhood towards that target node. GCN (Kipf
and Welling, 2016) and GAT (Veli¢kovi€ et al.,
2017) are popular GNN frameworks.

GCN uses N (x) neighborhood-based normaliza-
tion constant to calculate the importance (att,—s,,)
of node v towards the target node v without consid-
ering the participating nodes’ features as follows.

H,=o( Y atdwH) O

YveN (u)

ATTENTIONGCN (VU — u) ¢
1
-1

att,}, = = =
[N (w)[[N(v)]
EXTRACTGCN (V) Wl_le)_l
AGGREGATEGCN (*) o(*)

where o is non-linear activation function, [/Vl isa
projection matrix for a GNN layer [ and N (x) is a
node’s extended neighborhood structure including
the node itself (i.e., including self-loop edges).
GAT uses the same message extraction and ag-
gregation strategies as above except for the fact that
it uses attentive aggregation strategies that consider

both the participating nodes’ features as well as the
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neighborhood information, as follows.

ArtENTIONGAT (U — u) @ atti Ty, =

YveN (u)

SOFTMAX (cl_l(Wl_leL_l ® Wl_le}_l))

where ¢/~ is a learnable parameter to approximate
the importance of node v towards u (att!_} ) based
on their interaction in the latent space in [ layer-
wise manner, W is the layer-wise projection matrix,

and @ denotes concatenation.

C Dataset Statistics

Table 1 shows the basic statistics of the datasets that
we consider in this study. The taxonomy networks
are extracted from Assamese, Bengali, and Hindi
WordNets, respectively. The Assamese WordNet
dataset consists of 8466 of noun concepts and 8463
edges. The network has the maximum in-degree
path of 1, implying that each concept node has only
one parent node or predecessor. The network con-
sists of 7072 leaf nodes. Bengali WordNet dataset
contains 26007 of noun concepts and 25815 edges
and has the maximum in-degree path of 1. The
network consists of 7072 leaf nodes. Hindi Word-
Net dataset consists of 28242 of noun concepts and
28016 edges. It contains 24737 leaf nodes.

D Ranking and Classification Metrics

We use an array of performance metrics from the
domain of classification and ranking to evaluate
the competing methods’ performances. Among the
ranking metrics, we use Mean Rank (MR), Hit@k
(k=1, 3), and Mean Reciprocal Rank (MRR) to
judge how well a competing method performs in
producing a ranked list of candidate anchors given
a test query and a taxonomy expansion operation
to carry-out — merge or attach.

* Mean Rank: It calculates the average rank of
true anchors among all the candidate anchors
with respect to the matching scores, given a

query.

* Hit@k: It calculates the number of times
a true anchor appears in the top k positions
when matched with a test query.

* Mean Reciprocal Rank(MRR): The Mean
Reciprocal Rank is used to assess the ranking
quality of the true anchor. The reciprocal rank
can be computed by finding and inversing the

rank of a true anchor in the predicted anchors’
list of each query. MRR is averaged over all
queries.

Further, we use Accuracy, Micro/ Macro F1, Pre-
cision, Recall, and F-Scores as classification met-
rics for deciding given a test query and an initial
taxonomy tree, which operation among merge (M),
attach (A), and no-operation (N) is to be performed.

* Accuracy: It summarizes the performance
of the classification model as the fraction of
the number of true tasks predicted over the
total number of ground-truth tasks for a set of
queries.

* Precision: It calculates the fraction of true-
positive predicted expansion task classes
among the total number of true-positive and
false-negative task classes.

* Recall: It calculates the fraction of true-
positive predicted expansion task classes
among all the relevant ground-truth task
classes.

* F-Score: The harmonic mean of precision
and recall. It is also known as F1-Score.

* Micro/ Macro F1 : The Macro F1 computes
F1-Score for each class (merge M/ attach A)
independently but averages the final score by
treating each expansion task-class as equally
contributing. However, Micro F1 computes
the F1-Score for each query sample in the
training set and therefore aggregates the con-
tributions of all expansion task classes to com-
pute the final average metric.

E Evaluation Strategy

We obtain the initial feature vector for train and
test concepts using pre-trained subword-aware Fast-
text embeddings. For each concept, we generate
its definition embedding by averaging the embed-
ding of each word in its textual definition. We
employ PyTorch and DGL framework * to load and
train embeddings. In TEAM, we use a two-layer
position-enhanced GAT where the first layer (of
size 300) has four attention heads and the second
layer (of size 600) has one attention head. We use
50-dimension position embeddings for both layers
and apply dropout with the rate of 0.1 on the input

*https://github.com/dmlc/dgl
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feature vectors. We use Adam optimizer with an
initial learning rate of 0.001.

F Ranking result for out-of-vocabulary
words

In the case of attach expansion, TEAM-RG beats
state-of-the-art Taxo-expan by a large margin
of (321,0.31,0.48,0.69) in MR, Hit@1, Hit@3,
MRR, respectively. However, our proposed frame-
works are seen not to perform so well in merge M
operation as compared to the attach A operation.
Intuitively, this is because, for OOV words, we use
a set of manually collected paraphrase definitions
of the OOV words to match them with the can-
didate anchor concepts in the existing taxonomy.
Whereas for actually training our model, we have
used the same definitions in the replica nodes. That
is, we have used the same definition in the origi-
nal anchor concept and in the input query-concept
with mutually exclusive synset information. Thus,
in this case-study, the paraphrase-based definition
matching deems challenging for our learning model
resulting in poorer results for M operation. We be-
lieve we can always eliminate this drawback by
using a description generation tool (Wang et al.,
2021) to generate different definitions of the same
concept nodes and train our learning model in a
more powerful way.
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