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Abstract

Distant supervision uses triple facts in knowl-
edge graphs to label a corpus for relation ex-
traction, leading to wrong labeling and long-
tail problems. Some works use the hierarchy
of relations for knowledge transfer to long-
tail relations. However, a coarse-grained rela-
tion often implies only an attribute (e.g., do-
main or topic) of the distant fact, making it
hard to discriminate relations based solely on
sentence semantics. One solution is resort-
ing to entity types, but open questions remain
about how to fully leverage the information of
entity types and how to align multi-granular
entity types with sentences. In this work,
we propose a novel model to enrich distantly-
supervised sentences with entity types. It con-
sists of (1) a pairwise type-enriched sentence
encoding module injecting both context-free
and -related backgrounds to alleviate sentence-
level wrong labeling, and (2) a hierarchical
type-sentence alignment module enriching a
sentence with the triple fact’s basic attributes
to support long-tail relations. Our model
achieves new state-of-the-art results in overall
and long-tail performance on benchmarks.

1 Introduction

Human-curated knowledge graphs (KGs), play a
critical role in many downstream tasks but suffer
from the incompleteness (Xiong et al., 2018; Yao
et al., 2019). As a remedy, relation extraction is to
distinguish the relation between two entities accord-
ing to their semantics in text, but a major obstacle is
a lack of sufficient labeled corpus. Fortunately, dis-
tant supervision can be used to annotate a raw text
corpus via KGs for relation extraction, a.k.a. dis-
tantly supervised relation extraction (DSRE). This
is based on a strong assumption that a sentence
containing two entities will express the semantics
of their relation in a KG (Riedel et al., 2010).

The assumption cannot always hold, leading to
the wrong labeling problem. For example, both

This is the tale of the depression-era boxer james_j._braddock, played by 
russell crowe, who was described by the new_york_city, police.
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Figure 1: Two sentences with the same long-tail relation. For
each sentence, multi-granular relations from top to bottom
are pointed by its best pairwise types, which indicates not all
pairwise types provide the same contribution. Blue is sub-
ject entity, and red is object entity. The 1st sentence relies
on the direct pairwise types due to its relation-irrelevant se-
mantics while the 2nd sentence integrates its relation-relevant
semantics and pairwise types to enhance its representation.

“Jobs founded Apple” and “Jobs ate Apple” are
labeled with “/BUSINESS/COMPANY/FOUNDERS”
according to a KG triple fact (Steven Jobs, /BUSI-
NESS/COMPANY/FOUNDERS, Apple Inc). A basic
technique for this problem is selective attention
(Zeng et al., 2015; Lin et al., 2016; Ji et al., 2017)
under multi-instance learning framework (Riedel
et al., 2010; Hoffmann et al., 2011). Given a bag
of sentences with the same entity pair, it learns
to select correct one(s) by an end-to-end attention.
The other major challenge is known as the long-tail
problem, caused by domain mismatching during
distant supervision. That is, many relation labels
correspond only to a limited number of training
sentences in the corpus (Ye et al., 2019). For ex-
ample, in a DSRE benchmark, the distant super-
vision is an encyclopedic KG (i.e., Freebase (Bol-
lacker et al., 2008)) while the corpus is news arti-
cles from the New York Times (NYT), so relations,
like “/PEOPLE/PERSON/RELIGION”, scarcely ap-
pear. As illustrated by Li et al. (2020b) and Zhang
et al. (2019), more than 70% of relation labels in
NYT can be regarded as long-tail relations.

To mitigate the long-tail problem, some works
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(Han et al., 2018; Zhang et al., 2019; Li et al.,
2020b) resort to the hierarchy of relations for
knowledge transfer from data-rich relations to
the long-tail ones since the relations have coarse-
grained overlap. They focus on interactive opera-
tions between hierarchical relations and intra-bag
sentences, including relation-to-sentence attention
(Han et al., 2018) as a hierarchical extension of se-
lective attention, and sentence-to-relation attention
(Li et al., 2020b) enriching sentences with multi-
granular relations. As such, they achieve knowl-
edge transfer by learning to distinguish coarse-
grained relations for sentences with sufficient data,
which provides a latent constraint for the long-tail
relations. However, a coarse-grained relation usu-
ally denotes the only basic attribute of the distant
oracle triple fact in KG, so a sentence scarcely
contains its semantics and we can only imply the
relation via background information. Again, true-
labeled “Jobs founded Apple”, does not explicitly
contain any semantics of its coarse-grained rela-
tion “/BUSINESS/COMPANY”, but we can directly
reason it from the predicate founded and type of
Apple. Thus, it is a challenge for a hierarchical
DSRE model to correctly imply coarse-grained re-
lations based solely on sentences, not to mention
the existence of the wrong labeling problem.

A direct yet promising way to overcome this
challenge is to incorporate extra information for
entities (Vashishth et al., 2018; Hu et al., 2019;
Chu et al., 2020). One popular source is the entity
types, i.e., an entity’s “ISA” attributes in KG, which
characterizes the entity from multiple perspectives
(Chen et al., 2020). As Figure 1 shows, although
the 1st sentence’s semantics is irrelevant to relation,
the pairwise types people.deceased_person and lo-
cation.location directly align with the fine grained
relation. However, existing works (Vashishth et al.,
2018; Chu et al., 2020) ignore this potential of ex-
plicit structured types information.

In this work, we aim to improve DSRE by ex-
ploiting structured information in the entity types
from both pairwise and hierarchical perspectives
to alleviate the wrong labeling and the long-tail
problems respectively. To this end, we first propose
a context-free type-enriched embedding module to
generate word embeddings with pairwise types as-
sociated with the entity pair in a bag. As shown in
Figure 1, even without the corresponding semantic
support, pairwise types can provide direct attributes
of entities to align with the relation. Besides, we

develop a context-related type-sentence alignment
module to generate robust sentence representation
with pairwise types. Since entities have specific
characteristic in certain semantics, we leverage se-
mantics to select proper pairwise types and then
enrich sentence representation, as the 2nd sentence
in Figure 1 shows. Such an alignment is enhanced
by a guidance from the relation to auto-seek for
associations between pairwise types and sentences.

At the meantime, hierarchical information has
been proven crucial in knowledge transfer for long-
tail relations (Han et al., 2018; Zhang et al., 2019;
Li et al., 2020b). Thereby, we naturally extend the
base alignment module into a hierarchy by propos-
ing a hierarchical type-sentence alignment module.
An intuitive example in Figure 1 shows that differ-
ent grained relations are pointed by various gran-
ular pairwise types. This indicates that these pair-
wise types contain hierarchical semantics, which
makes it feasible to extend base alignment into
hierarchy. Thus, the strong association between
pairwise types and coarse-grained relations can im-
prove knowledge transfer for long-tail relations.

We conduct extensive experiments on two popu-
lar benchmarks, NYT-520k and NYT-570k, show-
ing that our model achieves new state-of-the-art
overall and long-tail performance. Further analy-
ses reveal insights into our model.

2 Approach

Task Definition. Given a bag of sentences B =
{s1, . . . , sN} containing a pair of subject e(s) and
object e(o) entities, the distant supervision (Mintz
et al., 2009) assigns the sentence bag with a rela-
tion label r according to KG triple fact. The goal
of relation extraction is to predict the relation label
r̂ of an entity pair based on the corresponding sen-
tences bag B. Labels of coarse-grained relations,
[r(1), . . . , r(M)], can be derived from the mention
of r. For instance, when r = /BUSINESS/COMPA-
NY/FOUNDERS, r(1) = /BUSINESS/COMPANY and
r(2) = /BUSINESS. In the following, we will detail
our approach, as illustrated in Figure 2.

2.1 Context-Free Type-Enriched Word Emb

Following most previous DSRE works, we first
tokenize each sentence sj ∈ B and employ a
word2vec method (Mikolov et al., 2013) to de-
rive a sequence of word embeddings by looking
up a learnable matrix W (emb) ∈ Rde×|V|, i.e.,
X̃j = [x̃j

1, . . . , x̃
j
n] ∈ Rde , where V denotes word
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Figure 2: Our proposed model, called Hierarchical Relation-guided Type-Sentence Alignment Model (HiRAM), for DSRE.

vocabulary. j denotes the index of a sentence in
the bag and n denotes the sentence length. In the
sequel, we omit j if no confusion is caused. Then,
as a common practice in DSRE (Zeng et al., 2014),
a word’s relative distances to both the subject and
object entities (a.k.a relative positions) also play
significant roles. The distances are first denoted
as two integers (dist(s) and dist(o) ∈ Z) and then
embedded into two learnable vectors (x̃(ds)

i and
x̃
(do)
i ∈ Rdp). Therefore, the updated sequence

of word embeddings is Xj = [x1, . . . ,xn], where
xi = [x̃i; x̃

(ds)
i ; x̃

(do)
i ] ∈ Rdw , [; ] denotes vector

concatenation, and dw := de + 2dp.

Previous works (Li et al., 2020a,b) also found
that explicitly enriching each word with both entity
embeddings (i.e., e(s) and e(o)) in a context-free
manner is important to DSRE’s success. However,
many entities scarcely appear in the raw corpus and
have multi-characteristics (e.g., Apple could be a
fruit or a company). Thus, the model is hard to dis-
tinguish the relations only via sentence semantics.

Therefore, we leverage entity types to character-
ize entities’ attributes. That is, given an entity e,
its types are defined as a set of type mentions, i.e.,
T = {t1, t2, . . . }. However, previous works (Chu
et al., 2020) directly concatenate the entity types of
both e(s) and e(o), completely regardless of poten-
tials of explicit structured information of types. As
demonstrated by Krompaß et al. (2015), a relation
in KG is usually constrained by the entity types of
e(s) and e(o) simultaneously (i.e., pairwise types),
instead of their individuals. We thereby propose
a pairwise type embedding module to enrich the
word embedding X also in a context-free manner.

Type and Pairwise Type Embedding. First,
given an entity type set T = {t1, t2, . . . } (either
T (s) for subject or T (o) for object), we tokenize
each type mention tj into a sequence of words, then
embed the words by looking up W (emb), and lastly
derive the type embedding tj by applying a mean-
pooling to the word embeddings of the mention.
The embedding of the entire type is

T = [t1, t2, . . . ] ∈ R|T |×de . (1)

As such, we subsequently define the embedding
of the pairwise type by considering a combina-
tion of every subject ∀t(s)l ∈ T (s) and object type
∀t(o)k ∈ T (o). Instead of sole semantics via a vector
concatenation, we take into account the prior struc-
tured information in each type pair by leveraging a
translational scheme (Bordes et al., 2013). Hence,
we represent each type pair (t(s)l , t

(o)
k ) as

cl,k = [c̃
(sem)
l,k ; c̃

(str)
l,k ] ∈ R4de , (2)

where, c̃(sem)
l,k = t

(s)
l �W (sem)t

(o)
k ,

and c̃
(str)
l,k = t

(o)
k − t

(s)
l .

Here, “�” denotes Hadamard product, and W (sem)

denotes a learnable projection. c̃(sem)
l,k aims to cap-

ture the prior semantic relation in the pair (Nickel
et al., 2011) since not all types combinations are
valid in the whole dataset. c̃(str)l,k aims to measure
its structured relation. Lastly, we denote all the
embeddings of pairwise types as

C = {cl,k}∀l∈[1,|T (s)|],∀k∈[1,|T (o)|], (3)

where C ∈ R4de×m and m = |T (s)| · |T (o)|.
318



Type-Enriched Word Embedding. However,
an open question still remains about how to operate
on variable-length embeddings of pairwise types,
C, to enrich each word embedding, xj ∈X , in a
context-free manner. Inspired by self-attentive sen-
tence encoding (Lin et al., 2016), we present a bag-
level type-attentive module, which compresses C
into a single vector representation to facilitate type-
enriching. Intuitively, such self-attentive module
is focused on the prior knowledge of the type pair
in the corpus. Formally, we first generate a global
query (Lin et al., 2016) with structured information
of both entities and types to retrieve possible prior
pairwise types, i.e.,

q̃(f)=[e(o);Pool(T (o))]−[e(s);Pool(T (s))], (4)

followed by a standard Bilinear-based attention,

q(f)=C · softmax(CTW (sa)q(f))∈R4de , (5)

where “·” denotes matrix multiplication and W (sa)

is a learnable weight matrix. Lastly, we use a gate
as in (Li et al., 2020b) to derive the context-free
type-enriched word embedding, i.e.,

g
(gf)
i = Sigmoid(MLP([xi; q

(f)]; θ(gf1))), (6)

x
(gf)
i = MLP([xi; q

(f)]; θ(gf2)), (7)

vi = g
(gf)
i � xi + (1− g

(gf)
i )� x

(gf)
i , (8)

where MLP denotes a multi-layer perceptron
(MLP) module. Hence, word embeddings for s
are updated to V = [v1, . . . ,vn] ∈ Rdw×n.

2.2 Context-Related Type-Sent Alignment

Sentence Encoding. In DSRE, piecewise convo-
lutional neural network (PCNN) (Zeng et al., 2015)
is used for sentence embedding. 1D-CNN (Kim,
2014) is first invoked over V for contextualized
representations. Then a piecewise max-pooling per-
forms over the output sequence to obtain sentence-
level embedding with highlighted entity positions:

H = [h1, . . . ,hn] = 1D-CNN(V ; θ(cnn)),

s=tanh([Pool(H(1));Pool(H(2));Pool(H(3))]),

where H(1), H(2) and H(3) are three consecutive
parts of H by dividing H w.r.t. the indices of
subject e(s) and object e(o) entities. Consequently,
s ∈ Rdh is the resulting sentence-level embedding.

Type-Sentence Alignment. Consider that types
are not comprehensive enough to align with multi-
granular relations, we leverage semantic context
to select valid pairwise types for generating robust
sentence representation. Hence, we first calculate
alignment scores between a sentence s ∈ Rdh and
the embeddings of pairwise types C ∈ R4de×m by
using a simple Bilinear layer, i.e.,

C̃ = MLP(C; θ(p)) ∈ Rdh×m, (9)

a = softmax(C̃TW (al)s) ∈ Rm. (10)

Then, we enrich the sentence embedding with the
aligned type pairs via another gating mechanism:

z = C̃ · a (11)

g = Sigmoid(MLP([s; z]; θ(g))), (12)

ũ = g � s+ (1− g)� z. (13)

Lastly, following previous success (Li et al., 2020b;
Devlin et al., 2019), we leverage a residual con-
nection (He et al., 2016) with layer normalization
(Ba et al., 2016) to derive the final context-related
type-enriched sentence embedding, i.e.,

u = LayerNorm(s+ ũ; θ(lm)). (14)

Relation-Guided Alignment at the Sentence
Level. Due to the severe wrong labeling problem
at the sentence level, previous DSRE works usually
skip over sentence-level relation supervisions. For-
tunately, empowered by the proposed context-free
type enrichment and context-related type-sentence
alignment, we can utilize the sentence-level rela-
tion label even if the relation label is wrong. The
reason for this is that, a sentence has already been
equipped with structured background to support
sentence-level relation even if the sentence seman-
tics cannot deliver the relation. We applied an
MLP-based neural classifier to the type-enriched
sentence embedding, u, to determine the relation
at the sentence level, i.e.,

P (sl)(r̂|u) = softmax(MLP(u; θ(sl))), (15)

where, P (sl)(r̂|u) is a categorical distribution over
all possible relations. Hence, the training objective
is to minimize the cross-entropy loss,

L(sl) = −
∑

D

∑

B
logP (sl)(r̂ = r|u), (16)

where D denotes a DSRE dataset consisting of sen-
tence bags B. The guidance from the sentence-level
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relation leads to strong type-sentence alignment
(as illustrated in §3.1 and §3.2). As a result, the
sentence-level wrong labeling problem is alleviated.
In contrast, previous works w/ sentence-level rela-
tion supervisions (Li and Roth, 2002) suffer from
the confirmation bias problem (Chen et al., 2019)
caused by the sentence-level wrong labeling.

2.3 Hierarchical Type-Sentence Alignment
Inspired by former works (Han et al., 2018; Zhang
et al., 2019; Li et al., 2020b) for handling long-tail
relations, we also extend our basic model into hier-
archy. However, the basic attributes contained by
coarse-grained relation are irrelevant to the seman-
tics in sentences. Thus, instead of direct operating
on the hierarchy of relations (i.e., from fine-grained
r to coarse-grained [r(1) . . . r(M)] relations), we
leverage coarse-grained entity types describing the
domain/type properties of the entities in the triple
facts to enrich each sentence via the guidance from
coarse-grained relation.

Formally, we adapt the relation-guided type-
sentence alignment (§2.2) into hierarchy, which
shares a high-level inspiration with multi-head at-
tention (Vaswani et al., 2017). First, we reuse the
architecture from Eq.(9-14) by defining

a(l), C̃(l) = TS-Align(l)(s,C), ∀l ∈ [1,M ],

u(l) = TS-Integrate(l)(a(l), C̃(l), s), (17)

where TS-Align() denotes Eq.(9-10) to obtain
type-sentence alignment a(l) and TS-Integrate()
denotes Eq.(11-14) to generate enriched sentence
representation u(l) at level l. Note that, these mod-
ules are parameter-untied from each other. Then,
we update the sentence-level relation-guided loss
in Eq.(16) to its hierarchical version, i.e.,

L(sl) = −
∑

D,B,l∈[1,M ]

logP (sl)(r̂(l)=r(l)|u(l)) (18)

Again, learnable parameters of the sentence-level
classifiers across l are also untied. Lastly, we obtain
the hierarchical type-enriched representation, i.e.,

u(h) = [u;u(1); . . . ;u(M)] ∈ R(1+M)dh . (19)

Different to previous works (Han et al., 2018;
Zhang et al., 2019; Li et al., 2020b) focusing on hi-
erarchical relation embeddings, our work explores
the constraints by pairwise types for relations to
mitigate sentence-level wrong labeling and uses
the hierarchy of entity types on par with that of the
relation to improve long-tail performance.

2.4 Relation Classification and Objectives
Lastly, we put the sentences back into the bag and
derive bag-level embedding for the final relation
classification. Hence, for a bag B = [s1, ...sN ],
we can obtain sentence embeddings of all the sen-
tences U (h) = [u

(h)
1 , . . . ,u

(h)
N ], where u(h)

j is hier-
archical type-enriched sentence encoding derived
from Eq.(19). To preserve the hierarchical informa-
tion learned in u

(h)
j , we proposed to apply multiple

selective modules to its different parts, i.e.,

b = Mul-Sel-Attn(U (h)) = [b(0); b(1); . . . ; b(M)],

b(0) = Sel-Attn([u1;. . . ,uN ]),

b(l)=Sel-Attn([u
(l)
1 ; . . . ,u

(l)
N ]), ∀l ∈ [1,M ].

where, Sel-Attn() represents the selective attention
among the sentences in each granular relation, and
Mul-Sel-Attn() represents the selective attention
among the multi-granular bag representations. For
bag representation, b(0) denotes the finest grained
and b(l) denotes coarser grained. Lastly, we use an
MLP-based classifier upon b to derive a bag-level
categorical distribution, i.e.,

P (bl)(r̂|e(s), e(o),B). (20)

Meanwhile, the corresponding training loss is

L(bl) = −
∑

D
P (bl)(r̂ = r|e(s), e(o),B). (21)

Therefore, the final training objective is to mini-
mize a linear combination of both sentence-level in
Eq.(16) and bag-level (in Eq.(21)) losses, i.e.,

L = L(bl) + βL(sl). (22)

3 Experiments

Datasets. We evaluate our HiRAM on DSRE
benchmarks, New York Times – NYT (Riedel et al.,
2010), including NYT-520K and NYT-570K. NYT
datasets have 53 distinct relations, including an
NA class denoting the unavailable relation between
entity pairs. Each relation includes two coarse-
grained relations (i.e., M = 2), and the number
of relations from fine to coarse are 53, 36 and 9.
NYT-520K and NYT-570K have the same testing
set containing 172,488 sentences, with 96,678 en-
tity pairs. The only difference is that there is an
overlap of 11,416 entity pairs between training and
testing in NYT-570K. Thus, NYT-520K has severer
wrong labeling and long-tail problems.
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P@N (%) One Two All AUC100 200 300 Mean 100 200 300 Mean 100 200 300 Mean
Comparative Approaches
CNN+ATT (Lin et al., 2016) 76.2 65.2 60.8 67.4 76.2 65.7 62.1 68.0 76.2 68.6 59.8 68.2 -
PCNN+ATT (Lin et al., 2016) 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2 0.341
CoRA (Li et al., 2020b) 78.0 69.0 66.0 71.0 79.0 72.0 66.3 72.4 81.0 74.0 68.3 74.4 0.344
RESIDE (Vashishth et al., 2018) 80.0 75.5 69.3 74.9 83.0 73,5 70.6 75.7 84.0 78.5 75.6 79.4 -
InSRL (Chu et al., 2020) - - - - - - - - - - - - 0.451

HiRAM 93.0 89.0 83.0 88.3 93.0 88.5 84.0 88.5 93.0 88.5 86.0 89.2 0.484

Ablations
HiRAM w/o Hierarchy in §2.3 88.0 84.5 83.0 85.2 90.0 86.0 85.0 87.0 90.0 86.5 85.0 87.2 0.450
HiRAM w/o CF in §2.1 78.0 75.5 74.3 75.9 87.0 76.5 74.0 79.2 87.0 77.5 74.7 79.7 0.425
HiRAM w/o Rel Guidance in Eq. 16 89.0 86.0 76.7 83.9 93.0 88.0 81.7 87.6 93.0 87.0 86.7 88.9 0.482
HiRAM w/ TC 84.0 82.0 75.3 80.4 85.0 81.5 79.7 82.1 89.0 82.5 78.0 83.2 0.462
RoBERTa (Liu et al., 2019) 44.0 46.5 43.3 44.6 38.0 39.5 38.7 38.7 33.0 36.5 37.7 35.7 0.301
RoBERTa w/ CF 80.0 76.0 74.0 76.7 81.0 78.5 76.0 78.5 81.0 76.0 75.0 77.3 0.488
RoBERTa w/ HiRAM 85.0 83.0 79.3 82.4 86.0 85.5 81.3 84.3 89.0 86.0 81.7 85.6 0.518

Table 1: Model Evaluation and ablation study on NYT-520K. “P@N” denotes precision values for the entity pairs with the
top-100, -200 and -300 prediction confidences by randomly keeping one/two/all sentence(s) in each bag. The abbreviation
“CF” represents Context-Free embedding in §2.1; “TC” represents Type Concatenation replacing CF. “RoBERTa” directly
predicts relations via [CLS] token. “RoBERTa w/ CF” adds context-free type-enriched word embedding module on the output of
RoBERTa to generate sentences representation. “RoBERTa w/ HiRAM” denotes the combination of HiRAM and RoBERTa.

P@N (%) One Two All AUC100 200 300 Mean 100 200 300 Mean 100 200 300 Mean
Comparative Approaches
PCNN+HATT (Han et al., 2018) 84.0 76.0 69.7 76.6 85.0 76.0 72.7 77.9 88.0 79.5 75.3 80.9 0.42
PCNN+BAG-ATT (Ye and Ling, 2019) 86.8 77.6 73.9 79.4 91.2 79.2 75.4 81.9 91.8 84.0 78.7 84.8 0.42
SeG (Li et al., 2020a) 94.0 89.0 85.0 89.3 91.0 89.0 87.0 89.0 93.0 90.0 86.0 89.3 0.51
CoRA (Li et al., 2020b) 94.0 90.5 82.0 88.8 98.0 91.0 86.3 91.8 98.0 92.5 88.3 92.9 0.53

HiRAM 96.0 91.5 85.7 91.1 98.0 94.5 89.3 93.9 98.0 95.0 92.3 95.8 0.580

Table 2: Model Evaluation on NYT-570K, published by PCNN+HATT (Han et al., 2018)
.

Evaluation Metrics. Following previous works
(Lin et al., 2016; Han et al., 2018; Zhang et al.,
2019; Li et al., 2020b; Chu et al., 2020), we use
area under precision-recall curve (AUC) and top-N
precision (P@N) to measure models’ performance
with the disturbance of wrong labeling, and use
Hits@K to measure the performance on long-tail
relations. AUC measures the ability of relation clas-
sification, while P@N measures the precision of
high-confidence predictions ranked by the model.

Settings. For both versions of NYT datasets, de,
dp, dw, dh and M are 50, 5, 60, 690, and 2 respec-
tively. The types number of each entity is various
but we set an upper limit and pad BLANK as a
choice. We use AdaDelta (Zeiler, 2012) with 0.1
learning rate. Batch size is 160 with 15 epochs and
5-th is the best, dropout probability is 0.5, weight
decay of L2-reg is 10−5. We use random initializa-
tion or RoBERTa-base to initialize our models.

Comparative Approach. We compare our Hi-
RAM with many strong competitors, including
(1) PCNN+ATT (Lin et al., 2016) proposes a se-

lective attention to alleviate wrong labeling. (2)
PCNN+HATT (Han et al., 2018) extends selec-
tive attention with hierarchical relations. (3) RE-
SIDE (Vashishth et al., 2018) leverages side KGs’
information to improve DSRE. (4) PCNN+BAG-
ATT (Ye and Ling, 2019) proposes intra-bag and
inter-bag attentions to handle the wrongly labeled
sentences. (5) PCNN+KATT (Zhang et al., 2019)
integrates externally pre-trained graph embeddings
with relation hierarchies for long-tail relations. (6)
SeG (Li et al., 2020a) focuses on one-sentence bags
and proposes entity-aware embedding. (7) CoRA
(Li et al., 2020b) transfers multi-granular relations
features into sentences in hierarchies for long-tail
relations. (8) InSRL (Chu et al., 2020) integrates
sentence, entity description and types together via
intact space representation learning.

3.1 Overall Performance on Benchmarks

As shown in Tables 1 and 2, HiRAM outperforms
former baselines on NYT-570K. Different from
CoRA’s poor performance on NYT-520K, HiRAM
achieves a new state-of-the-art on both popular
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# Training Instance <100 <200

Hits@K (Macro) 10 15 20 10 15 20

PCNN+ATT (Lin et al., 2016) <5.0 7.4 40.7 17.2 24.2 51.5
PCNN+HATT∗ (Han et al., 2018) 29.6 51.9 61.1 41.4 60.6 68.2
PCNN+KATT∗ (Zhang et al., 2019) 35.3 62.4 65.1 43.2 61.3 69.2
CoRA∗ (Li et al., 2020b) 66.6 72.0 87.0 72.7 77.3 89.4
CoRA (Li et al., 2020b) 66.6 66.6 75.9 71.7 72.7 80.3

HiRAM 72.2 96.3 96.3 77.3 96.9 96.9

HiRAM w/o Hierarchy in §2.3 50.0 88.9 92.6 59.1 90.9 93.9
HiRAM w/o CF in §2.1 66.6 88.9 92.6 72.7 90.9 93.9
HiRAM w/o Rel Guidance in Eq. 16 55.6 66.7 88.9 63.6 72.7 90.9
HiRAM w/ TC 72.2 77.7 88.9 77.3 81.8 90.9
RoBERTa (Liu et al., 2019) 0 0 0 0 0 11.6
RoBERTa w/ HiRAM 38.8 61.1 66.6 50.0 54.5 72.7

Table 3: Hits@K (Macro) tests only on the relations whose number of training instance < 100/200. “Hits@K” denotes whether
a test sentence bag whose gold relation label r(0) falls into top-K relations ranked by their prediction confidences.“Macro”
denotes macro average is applied regarding relation labels. “∗” denotes the model is trained on NYT-570K.

Case Sentence 1: although the regime of president bashar_al-assad hails from an obscure offshoot of shiism
– the alawites – syria is nearly three-quarters sunni, with alawites, members of other muslim sects and ...
r(2): /people r(1): /people/person r(0): /people/person/religion

Case Sentence 2: having so many operating systems makes it expensive to make software , said faraz_hoodbhoy, the
chief executive of camera phones save and share multimedia content.
r(2): /business r(1): /business/company r(0): /business/company/founder

Table 4: Two cases with long-tail relations are mis-classified by previous works whereas HiRAM is competent. Analysis of the
attention probability shown in Figure 3 proves the utility of context-related type-sentence alignment with relation guidance.

benchmarks in P@N and AUC. Compared with
InSRL integrating both clean entity types’ concate-
nation and accurate entity descriptions, HiRAM
increases the AUC score by nearly 7%, verifying
the capability of our specific model designer.

3.2 Ablation Study

We conduct an ablation study on NYT-520K, as
shown at the bottom of Table 1. Compared to
HiRAM, “HiRAM w/o Hierarchy” drops 6% in
AUC. “HiRAM w/o Rel Guidance” performs well
on P@N and AUC but has huge gap in P@One,
which represents that the relation-Guided align-
ment in hierarchy can empower sentence repre-
sentation with less data in Multi-instance Learn-
ing. Meanwhile, top-n precision of “HiRAM w/o
CF” drops by nearly 10.5%. To prove the superior-
ity of our specific design, we replace the pairwise
type in §2.1 with simple type concatenation. The
AUC score of “HiRAM w/ TC” decreases by 4.5%
and nearly 5.6% of top-n precision. To further
emphasize our word embedding §2.1 is module-
agnostic, we combine RoBERTa (Liu et al., 2019)
with our module respectively. As the bottom panel
shows, “RoBERTa w/ CF” makes great progress,
and “RoBERTa w/ HiRARM” achieves the best

performance among three RoBERTa-related ex-
periments. However, due to the strong ability of
RoBERTa model, the wrong labeling problem hurt
the performance severely, especially in P@N.

3.3 Performance on Long-Tail Relations

Since former baselines are mainly trained on NYT-
570K, we reproduce CoRA on NYT-520K for fair
comparison as shown in Table 3. HiRAM achieves
a new state-of-the-art result in Hits@K with 20%
superiority. Removing hierarchy module in §2.3,
the performance of “HiRAM w/o Hierarchy” de-
creases by nearly 30% on Hits@10 but is better
than baselines in other settings, verifying the impor-
tance of hierarchical model for long-tail relations.
The huge decline of “HiRAM w/o Rel Guidance”
verifies the necessity of relation guidance. Due to
lacks of plenty reliable training data, RoBERTa is
hard to handle the long-tail problem but our specific
modules further increase its performance.

3.4 Case Study and Error Analysis

Firstly, we conduct a case study to qualitatively
analyze the effect of our model in §2.3 The case
study of two samples are shown in Table 4 and the
type-sentence alignment distribution is shown in
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Figure 3: Each heatmap represents the distribution of type-sentence alignment a in Eq.(10) and al in Eq.(17). The
horizontal axis represents the types of subject entity, and the vertical axis represents the types of object entity. The
top row, from left to right, represents three alignment distributions of first case, and the bottom row represents three
alignment distributions of second case, as Table 4 shows. Notice that “VC” is the abbreviation of venture captial.

Figure 3. Secondly, we investigate the possible
reasons for the misclassifications of HiRAM.

Distribution of Type-Sentence Alignment. For
the first case, despite the failure in expressing the
long-tail relation “/PEOPLE/PERSON/RELIGION”,
the selected pairwise types are sufficient to pre-
dict this relation. As the top row of Figure
3 shows, people.person with BLANK helps to
identify the character of subject entity, and reli-
gion.religion with high alignment score can pro-
vide direct attributes. For the second case, the se-
mantics is implicitly related to its long-tail relation
“/BUSINESS/COMPANY/FOUNDER”. The proper
pairwise types are selected by coarser relation guid-
ance, like (organizer.organizer, organizer.founder).

Error Analysis. To analyse the implicit reasons
for wrong predictions, we have manually checked
several randomly-sampled error test examples. 1)
Most of error cases are annotated as /PEOPLE/PER-
SON/PLACE_OF_BIRTH because the semantics
and the relation may be completely irrelevant and
the types are hard to maintain people’s birth place.
2) Mean pooling in Eq.(4) might not be the most
optimal way to replace entity itself when the entity
has too many characters.

4 Related Work

Wrong Labeling Problem. Many works (Liu
et al., 2016; Ji et al., 2017; Ye and Ling, 2019; Li
et al., 2020a) propose various extensions of vanilla
selective attention (Lin et al., 2016). Ye and Ling

(2019) combine intra-/inter-bag level selective at-
tention for DSRE. For one-sentence bags, Li et al.
(2020a) design the entity-aware embedding in a
context-free manner with a gate mechanism.

Long-tail Relations. Knowledge transfer via hi-
erarchical relations is effective. Han et al. (2018)
design relation-to-sentence attention in hierarchies,
and Li et al. (2020b) modify it to sentence-to-
relation attention. Many works (Vashishth et al.,
2018; Hu et al., 2019; Chu et al., 2020) resort to
extra knowledge, i.e., entity description and en-
tity types. Entity description (Hu et al., 2019; Chu
et al., 2020) mainly stems from the Wikipedia page,
which contains factual statements of the relation
with other entities. Such oracle knowledge can
boost DSRE performance but is impractical.

5 Conclusion

In this work, we propose a new model, HiRAM,
training on a single Titan XP, except for RoBERTa
w/ RTX 6000, to alleviate wrong labeling and long-
tail problems in DSRE. For the wrong labeling
problem, we propose a context-free type-enriched
word embedding to enrich each word with prior
knowledge and a context-related type-sentence
alignment module to complement sentences with
semantics-fitted pairwise types. For the long-tail
problem, we extend the base alignment into the
hierarchy to utilize the multi-granular entity types.
The experiments with extensive analyses show the
superiority of HiRAM.
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