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Abstract

While conversational semantic role labeling
(CSRL) has shown its usefulness on Chinese
conversational tasks, it is still under-explored
in non-Chinese languages due to the lack of
multilingual CSRL annotations for the parser
training. To avoid expensive data collection and
error-propagation of translation-based meth-
ods, we present a simple but effective approach
to perform zero-shot cross-lingual CSRL. Our
model implicitly learns language-agnostic, con-
versational structure-aware and semantically
rich representations with the hierarchical en-
coders and elaborately designed pre-training
objectives. Experimental results show that our
model outperforms all baselines by large mar-
gins on two newly collected English CSRL test
sets. More importantly, we confirm the useful-
ness of CSRL to non-Chinese conversational
tasks such as the question-in-context rewriting
task in English and the multi-turn dialogue re-
sponse generation tasks in English, German and
Japanese by incorporating the CSRL informa-
tion into the downstream conversation-based
models. We believe this finding is significant
and will facilitate the research of non-Chinese
dialogue tasks which suffer the problems of
ellipsis and anaphora.

1 Introduction

Conversational Semantic Role Labeling (CSRL)
(Xu et al., 2021) is a recently proposed dialogue
understanding task, which aims to extract predicate-
argument pairs from the entire conversation. Figure
1 illustrates a CSRL example where a CSRL parser
is required to identify “《泰坦尼克号》(Titanic)”
as the ARG1 argument of the predicate “看过
(watched)" and the ARG0 argument of the pred-
icate “是 (is)". We can see that in the original con-
versation, “《泰坦尼克号》(Titanic)” is omitted in
the second turn and referred as “这 (this)" in the
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Figure 1: An example of CSRL parsing.

last turn. By recovering the dropped and referred
components in conversation, CSRL has shown its
usefulness to a set of Chinese dialogue tasks, in-
cluding multi-turn dialogue rewriting (Su et al.,
2019) and response generation (Wu et al., 2019).
However, there remains a paucity of evidence on
its effectiveness towards non-Chinese languages
owing to the lack of multilingual CSRL models.
To adapt a model into new languages, previous
solutions can be divided into three categories: 1)
manually annotating a new dataset in the target
language (Daza and Frank, 2020) 2) borrowing ma-
chine translation and word alignment techniques
to transfer the dataset from the source language
into the target language (Daza and Frank, 2019; Fei
et al., 2020a) 3) zero-shot transfer learning with
multilingual pre-trained language model (Rijhwani
et al., 2019; Sherborne and Lapata, 2021). Due
to the fact that manually collecting annotations is
costly and translation-based methods might intro-
duce translation or word alignment errors, zero-
shot cross-lingual transfer learning is more practi-
cal to the NLP community.

Recent works have witnessed prominent perfor-
mances of multilingual pre-trained language mod-
els (PrLMs) (Devlin et al., 2019; Conneau et al.,
2020) on cross-lingual tasks, including machine
translation (Lin et al., 2020; Chen et al., 2021),
semantic role labeling (SRL) (Conia and Navigli,
2020; Conia et al., 2021) and semantic parsing (Fei
et al., 2020b; Sherborne and Lapata, 2021). How-
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ever, cross-lingual CSRL, as a combination of three
challenging tasks (i.e., cross-lingual task, dialogue
task and SRL task), suffers three outstanding dif-
ficulties: 1) latent space alignment - how to map
word representations of different languages into
an overlapping space; 2) conversation structure
encoding - how to capture high-level dialogue fea-
tures such as speaker dependency and temporal
dependency; and 3) semantic arguments identi-
fication - how to highlight the relations between
the predicate and its arguments, wherein PrLMs
can only partially encode multilingual inputs to
an overlapping vector space. Although there are
some success that can separately achieve structural
conversation encoding (Mehri et al., 2019; Zhang
and Zhao, 2021) and semantic arguments identifica-
tion (Wu et al., 2021a), a unified method for jointly
solving these problems is still under-explored, es-
pecially in a cross-lingual scenario.

In this work, we summarize our contributions
as follows: (1) We propose a simple but effective
model which consists of three modules, namely
cross-lingual language model (CLM), structure-
aware conversation encoder (SA-Encoder) and
predicate-argument encoder (PA-Encoder), and five
well-designed pre-training objectives. Our model
implicitly learns language-agnostic, conversational
structure-aware and semantically rich representa-
tions to perform zero-shot cross-lingual CSRL. (2)
Experiments show that our method achieves im-
pressive cross-lingual performance on the language
pair (Zh→En) , and outperforms all baselines on
the two newly collected English CSRL test sets. (3)
We confirm the usefulness of CSRL to the question-
in-context rewriting task in English and multi-turn
response generation tasks in English, German and
Japanese. We believe this finding is important and
will facilitate the research of non-Chinese dialogue
tasks that suffer from ellipsis and anaphora. (4) We
release our code, the new annotated English CSRL
test sets and checkpoints of our best models to facil-
itate the further research at https://github.
com/hahahawu/Zero-Shot-XCSRL.

2 Related Work

Zero-shot cross-lingual transfer learning. Re-
cently, thanks to the rapid development of multilin-
gual pre-trained language models such as multilin-
gual BERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020), a number of approaches have
been proposed for zero-shot cross-lingual transfer

learning on various downstream tasks, including
semantic parsing (Sherborne and Lapata, 2021),
natural language generation (Shen et al., 2018) and
understanding (Liu et al., 2019; Lauscher et al.,
2020). In this work, we claim our method is zero-
shot because no non-Chinese CSRL annotations are
seen during the CSRL training stage. For decod-
ing, we directly use the cross-lingual CSRL model
trained on Chinese CSRL data to analyze conver-
sations in other languages. To our best knowledge,
our work is the first step to cross-lingual CSRL.

Conversational semantic role labeling. While
ellipsis and anaphora frequently occur in dia-
logues, Xu et al. (2021) observed that most of the
dropped or referred components can be found in
dialogue histories. Following this observation, they
proposed conversational semantic role labeling
(CSRL) which required the model to find predicate-
argument structures over the entire conversation
instead of a single sentence. In this way, when ana-
lyzing a predicate in the latest utterance, a CSRL
model needs to consider both the current turn and
previous turns to search potential arguments, and
thus might recover the omitted components. Fur-
thermore, Xu et al. (2020, 2021) also confirmed
the usefulness of CSRL to Chinese dialogue tasks
by applying CSRL information into downstream
dialogue tasks. However, there are still two main
problems to be solved for CSRL task: (1) the per-
formance of current state-of-the-art CSRL model
(Xu et al., 2021) is still far from satisfactory due to
the lack of high-level conversational and semantic
features modeling; (2) the usefulness of CSRL to
conversational tasks in non-Chinese languages has
not been confirmed yet due to the lack of cross-
lingual CSRL models. In this work, we primar-
ily focus on the latter problem and propose a sim-
ple but effective model to perform cross-lingual
CSRL. We would like to distinguish our work from
the work (Wu et al., 2021b) which purely focuses
on improving the monolingual CSRL performance
where they try to model predicate-aware represen-
tations. This solution could benefit to monolingual
CSRL task, but hurt the cross-lingual performance,
because the relative positions of the predicates may
differ from language to language.

3 Methodology

Following Xu et al. (2021), we solve the CSRL
task as a sequence labeling problem. Formally,
given a dialogue C = {u1, u2, ..., uN} of N utter-
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Figure 2: Overall model architecture.

ances, where ui = {wi
1, w

i
2, ..., w

i
|ui|} consisting

of a sequence of words, and a predicate indicator
p = (p11, ..., p

i
k, ..., p

N
|uN |) used to identify whether

a word is the predicate or not, our goal is to assign
each word with a semantic role label l ∈ L where
L is the label set. We also incorporate speaker role
indicator r to distinguish speakers, and dialogue
turn indicator t to distinguish dialogue turns.

3.1 Architecture

Cross-lingual Language Model (CLM) We con-
catenate all utterances into a sequence and then use
a pre-trained cross-lingual language model such as
XLM-R (Conneau et al., 2020) or mBERT (Devlin
et al., 2019) to capture the syntactic and semantic
characteristics. Following Conia et al. (2021), we
obtain word representations e ∈ R|S|×d by concate-
nating the hidden states of the four top-most layers
of the language model, where |S| is the sequence
length and d is the dimension of the hidden state.

Structure-aware Conversation Encoder (SC-
Encoder) Different from standard SRL(Carreras
and Màrquez, 2005), CSRL requires the models to
find arguments from not only the current turn, but
also previous turns, thus bringing more challenges
of dialogue modeling. To address this problem, we
propose a universal structure-aware conversation
encoder which comprises of two parts, i.e., word-
level encoder and utterance-level encoder. For-
mally, with the speaker role embedding r ∈ R|S|×d

and dialogue turn embedding t ∈ R|S|×d, the word-
level encoder computes a sequence of timestep en-

codings s ∈ R|S|×d as follows:

sj
(i,k) =

{
ei
k ⊕ tik ⊕ ri

k if j = 0
sj−1
(i,k) ⊕ MTRANSj(sj−1

(i,k)) otherwise (1)

where sj(i,k) is the timestep encoding of k-th to-
ken in i-th utterance from j-th word-level encoder
layer while j ∈ (0, . . . , N1), ⊕ represents vec-
tor concatenation, and MTRANS is the Modified
Transformer encoder layer. Concretely, we replace
the [Add] operation in the first residual connec-
tion layer with [Concat] because we argue that
concatenation is a superior approach to preserve
the information from previous layers1.

We obtain utterance representations u ∈ RN×d

by max-pooling over words in the same utterance.
Then we pass the resulting utterance representa-
tions u through a stack of Bi-LSTM (Hochreiter
and Schmidhuber, 1997) layers to obtain the se-
quentially encoded utterance representations u′ ∈
RN×d. Finally, we combine the utterance-level
feature u′ with the word-level feature s to obtain
structure-aware dialogue context representations
g ∈ R|S|×d as follows:

gi
k = Swish(Wg[sN1

(i,k) ⊕ u′
i] + bg) (2)

where Swish(x) = x · sigmoid(x) is a non-linear
activation function, sN1

i,k is the encoding of k-th
token in i-th utterance from the last layer of the
word-level encoder. Wg and bg are trainable pa-
rameters.

Predicate-Argument Encoder (PA-Encoder)
We introduce the third module (i.e., predicate-
argument encoder) whose goal is to capture the

1More details about MTRANS in Appendix B.
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Figure 3: Illustration of pre-training objectives for latent
space alignment.

Figure 4: Illustration of pre-training objectives for con-
versation structure encoding.

relations between each predicate-argument couple
that appears in the conversation. Similar with the
word-level encoder, we use a stack of MTRANS

layers to implement this encoder. Formally, with
the predicate embedding p ∈ R|S|×d, the model
calculates the predicate-specific argument encod-
ings a ∈ R|S|×d as follows:

aj
(i,k) =

{
gi
k ⊕ pi

k if j = 0
aj−1
(i,k) ⊕ MTRANSj(aj−1

(i,k)) otherwise (3)

where aj
(i,k) is the argument encoding of k-th to-

ken in i-th utterance from j-th encoder layer while
j ∈ (0, . . . , N2). Finally, we obtain the semantic
role encoding l using the resulting argument encod-
ings from the last layer of the predicate-argument
encoder:

lik = Swish(WlaN2

(i,k) + bl) (4)

In particular, our proposed model is mostly
language-agnostic since we do not explicitly in-
troduce any language-specific knowledge such as
word order, part-of-speech tags or dependent rela-
tions, and only introduce the predicate indicator
that might contain some language-specific infor-
mation in the semantic module, which would not
affect latent space alignment and dialogue model-
ing.

Figure 5: Illustration of pre-training objectives for se-
mantic argument identification.

3.2 Pre-training Objectives
Besides the universal model, we also elaborately
design five pre-training objectives to model task-
specific but language-agnostic features for better
cross-lingual performance. In this section, we di-
vide our pre-training objectives into three groups
according to the challenges to be solved.

Latent space alignment In cross-lingual lan-
guage module, we use mBERT or XLM-R to align
the latent space of different languages. Although
mBERT and XLM-R have exhibited good align-
ment ability, even both of them are trained with
unpaired data, we may further improve it when we
have access to parallel data.

We first use translation language model (TLM)
(Conneau and Lample, 2019) to learn word-level
alignment ability. Concretely, we concatenate par-
allel sentences as a single consecutive token se-
quence with special tokens separating them and
then perform masked language modeling (MLM)
(Devlin et al., 2019) on the concatenated sequence.
Besides, we also attempt to improve sentence-level
alignment ability using hard parallel sentence iden-
tification (HPSI). Specifically, we select a pair of
parallel or non-parallel sentences from the train-
ing set with equal probability. Then the model is
required to predict whether the sampled sentence
pair is parallel or not. Different from the stan-
dard PSI (Dou and Neubig, 2021), we sample the
non-parallel sentence upon the n-gram similarity
or construct it by text perturbation (details in Ap-
pendix A) instead of in a random manner. Figure
3 illustrates the workflows of TLM and HPSI. We
pre-train the CLM using the combination of TLM
and HPSI, finally achieving latent space alignment.

Conversation structure encoding Although
there are a number of pre-training objectives pro-
posed to learn dialogue context representations
(Mehri et al., 2019) and structural representations
(Zhang and Zhao, 2021), we tend to explicitly
model speaker dependency and temporal depen-
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Dataset language #dialogue #utterance #predicate #tokens per utterance cross ratio
DuConv ZH 3,000 27,198 33,673 10.56 21.89%
Persona-Chat EN 50 2,669 477 17.96 17.74%
CMU-DoG EN 50 3,217 450 12.57 7.41%

Table 1: Statistics of the annotations on DuConv, NewsDialog and PersonalDialog.

dency in the conversation, both of which have been
proven to be critical to CSRL task (Xu et al., 2021).

We first propose speaker role identification (SPI)
to learn speaker dependency in the conversation.
Specifically, we randomly sample K1% utterances
and replace their speaker indicators with special
mask tags. To make the task harder and effec-
tive, we split the utterances into clauses if only
two interlocutors utter in turn in a conversation.
The goal of SPI is to predict the masked speaker
roles according to the corrupted speaker indicators
and context. Secondly, we borrow utterance order
permutation (UOR) to encourage the model to be
aware of temporal connections among utterances
in the context. Concretely, given a set of utterances,
we randomly shuffle the last K2% utterances and
require the model to organize them into a coherent
context. Figure 4 illustrates the workflows of SPI
and UOR. We pre-train the SC-Encoder using the
combination of SPI and UOR.

Semantic arguments identification The core of
all SRL-related tasks is to recognize the predicate-
argument pairs from the input. Therefore, we pro-
pose semantic arguments identification (SAI) objec-
tive to strengthen the correlations between the pred-
icate and its arguments with the help of external
standard SRL corpus, i.e., CoNLL-2012. Specifi-
cally, for each SRL sample, we only focus on those
arguments, including ARG0-4, ARG-LOC, ARG-
TMP and ARG-PRP, all of which are defined in
both SRL and CSRL tasks. The model is encour-
aged to find the textual spans of these arguments
with the given predicate. We believe this objec-
tive would benefit to boundary detection, especially
for location and temporal arguments. Figure 5 il-
lustrates the workflow of SAI. We drop the SC-
Encoder to fit in standard SRL samples which do
not have any conversational characteristics.

3.3 Training

Hierarchical Pre-training The pre-training is hi-
erarchically conducted according to different mod-
ules, and the pre-training of the upper module is
based on the pre-trained lower modules. Specifi-

cally, we first train CLM module with TLM and
HPSI; then we train SC-Encoder with SPI and UOR
while keeping the weights of pre-trained CLM mod-
ule unchanged; finally we train PA-Encoder with
SAI while freezing the weights of pre-trained CLM
and SC-Encoder modules. Hopefully, we expect
that each module could acquire different knowl-
edge with specific pre-training objectives.

CSRL training We initialize the specific mod-
ules, including CLM, SC-Encoder and PA-Encoder,
from the pre-trained checkpoints. The CSRL model
is trained only using Chinese CSRL annotations
and no additional data is introduced during the
CSRL training stage. We train our model to mini-
mize the cross-entropy error for a training sample
with label y based on the semantic role encoding l,

p = softmax(lt) LCSRL = −
L∑

l=1

y log p (5)

4 Experiments

4.1 Datasets
CSRL data We use the same split as Xu et al.
(2021) where DuConv annotations are splitted into
80%/10%/10% as train/dev/in-domain test set. Fur-
thermore, we manually collect two CSRL test
sets for cross-lingual evaluation based on Persona-
Chat(Zhang et al., 2018) and CMU-DoG(Zhou
et al., 2018), both of which are English conver-
sation datasets. The CSRL data annotation is dif-
ficult because it needs great expertise in SRL and
dialogue. So we only explore cross-lingual CSRL
on Chinese→English (Zh→En) here, and we leave
other languages for future work.

Following the instructions in Xu et al. (2021), we
manually collect two out-of-domain CSRL test sets
based on English dialogue datasets Persona-Chat
and CMU-DoG. Specifically, we also annotate the
arguments ARG0-4, ARG-TMP, ARG-LOC and
ARG-PRP and require that the labeled arguments
can only appear in the current turn or the previous
turns. We employ three annotators who have stud-
ied Chinese CSRL annotations for a period time
before this annotation. The first two annotators are
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Method
Trainable DuConv Persona-Chat CMU-DoG

parameters F1all F1cross F1intra F1all F1cross F1intra F1all F1cross F1intra

SimpleBERT 117 M 86.54 81.62 87.02 - - - - - -
CSRL-BERT 147 M 88.46 81.94 89.46 - - - - - -
CSAGN 163 M 89.47 84.57 90.15 - - - - - -
SimpleXLMR 292 M 84.75 63.44 85.12 62.96 14.29 63.03 50.54 14.29 58.50
CSRL-XLMR 320 M 88.03 78.12 89.33 63.18 18.71 65.05 53.84 34.20 59.78
CSAGN-XLMR 338 M 88.52 82.45 89.98 63.02 17.82 64.97 52.73 30.11 58.91
Translation-test - - - - 63.49 13.90 66.67 47.91 27.44 50.92
Translation-train - - - - 60.12 9.67 62.50 44.27 25.40 47.87
Fine-tune all parameters
OursmBERT 272 M 87.20 81.14 88.11 58.38 9.39 61.77 48.13 20.92 52.91
OursXLM-R 372 M 88.35 83.39 89.21 67.29 24.29 70.61 61.74 60.32 62.67
OursXLM-R + pre-train 372 M 88.60 84.10 89.24 67.23 25.43 69.89 59.24 58.94 60.89
Freeze parameters of the language model
OursmBERT 180 M 87.08 81.46 87.98 59.04 11.23 62.13 48.87 21.78 53.54
OursXLM-R 180 M 88.30 83.38 89.17 65.57 24.11 68.51 59.60 56.16 60.78
OursXLM-R + pre-train 180 M 88.60 83.72 89.27 66.75 24.13 69.44 58.45 58.92 58.82

Table 2: Evaluation results on the DuConv, Persona-Chat and CMU-DoG datasets.

required to label all cases and any disagreements
between them are solved by the third annotator.
The statistics of the datasets are listed in Table 1.

Pre-training data For TLM and HPSI objectives
which requires parallel data to enhance alignment
ability, we choose IWSLT’14 English↔Chinese
(En↔Zh) translations2. For SPI and UOR objec-
tives whose goal is to model high-level conversa-
tional features, we select samples from Chinese
conversation dataset (i.e., DuConv) and English
conversation datasets (i.e., Persona-Chat and CMU-
DoG) with equal probability. For SAI, we borrow
the Chinese and English SRL annotations from
CoNLL-2012(Pradhan et al., 2012).

We stress that by keeping the sampling balance
of Chinese and English data for every pre-training
objective and sharing all parameters across the
languages, our model would capture task-specific
but language-agnostic features.

4.2 Experimental Setup

Following previous work(Xu et al., 2021), we eval-
uate our system on micro-average F1all, F1cross
and F1intra over the (predicate, argument, label)
tuples, wherein we calculate F1cross and F1intra
over the arguments in the different, or same turn
as the predicate. We refer these two types of ar-
guments as cross-arguments and intra-arguments.
For language in-domain evaluation, we compare
to SimpleBERT (Shi and Lin, 2019), CSRL-BERT
(Xu et al., 2021) and CSAGN (Wu et al., 2021b), all

2https://wit3.fbk.eu/

of which employ the Chinese pre-trained language
model as the backbone. For cross-lingual evalua-
tion, we compare to SimpleXLMR, CSRL-XLMR
and CSAGN-XLMR by simply replacing the BERT
backbones of those models with XLM-R. Addi-
tionally, we also compare to the back-translation
baselines, i.e., Translate-test and Translate-train.
Specifically, Translate-test means that the English
test data is translated and projected to Chinese an-
notations using Google Translate (Wu et al., 2016)
and the state-of-the-art word alignment toolkit
Awesome-align(Dou and Neubig, 2021). Simi-
larly, Translate-train means the Chinese training
data is translated and projected to English annota-
tions for training. We feed the translated samples
into CSAGN/CSAGN-XLMR to obtain the back-
translation results.

4.3 Main Results

Table 2 summarized the results of all compared
methods on DuConv, Persona-Chat and CMU-DoG
datasets. Firstly, we can see that our method
achieves competitive performance over all datasets,
especially in cross-lingual scenario where our
method outperforms the baselines by large mar-
gins no matter fine-tuning or freezing the language
model during the CSRL training stage. Although
CSAGN exceeds our method on DuConv test set,
it fails to work well in cross-lingual scenario. We
think this is because it heavily relies on the rich fea-
tures from the Chinese pre-trained language model
and it is overfitting on the predicate-aware infor-
mation. Superior to CSAGN, our model with the
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Method
DuConv Persona-Chat CMU-DoG

F1all F1cross F1intra F1all F1cross F1intra F1all F1cross F1intra

All objectives 88.60 83.72 89.27 66.75 24.13 69.44 58.45 58.92 58.82
w/o TLM & HPSI 88.07 81.90 89.06 65.07 23.91 68.34 58.23 53.15 59.24
w/o SPI & UOR 87.75 81.56 88.81 68.35 22.86 71.29 58.08 47.93 60.22
w/o SAI 88.00 83.16 89.06 64.74 23.33 67.99 59.94 54.68 61.87
only w/ TLM & HPSI 87.82 83.21 88.95 65.56 24.12 68.60 57.32 52.74 59.11
only w/ SPI & UOR 88.45 83.70 89.10 64.09 24.09 67.50 59.71 57.23 60.80
only w/ SAI 88.49 82.97 89.24 65.82 23.30 69.18 57.20 50.54 57.63
w/ end2end pre-training 87.28 81.02 88.73 64.37 21.17 67.77 57.86 50.40 58.20

OursXLM-R 88.30 83.38 89.17 65.57 24.11 68.51 59.60 56.16 60.78
w/o SC-Encoder 88.02 79.11 89.05 63.12 17.55 66.70 57.72 50.42 58.03
w/o PA-Encoder 88.10 81.32 88.78 64.05 22.38 64.82 58.24 54.00 59.23
w/o SC-Encoder and PA-Encoder 86.14 73.63 87.12 62.87 12.38 63.02 52.44 41.02 56.23
w/o MTRANS 88.25 83.01 89.08 65.27 23.10 68.38 58.58 55.41 59.98

Table 3: Ablation studies on pre-training objectives and different modules.

multilingual backbone achieves outstanding per-
formance on both language in-domain and cross-
lingual datasets. This observation is expected be-
cause (1) our model is language-agnostic which
makes the cross-lingual transfer easier; (2) our
model captures high-level conversational features
in SC-Encoder, thus enhancing the capacities of the
model to recognize cross-arguments; (3) rich se-
mantic features are modeled by PA-Encoder, which
would improve the capacities of the model to rec-
ognize intra-arguments.

Secondly, although our model has achieved good
performance over all datasets, further improve-
ments can be observed after incorporating the
proposed pre-training objectives, especially when
freezing the parameters of the language model. Ex-
ceptionally, we find that the performance on the
CMU-DoG dataset heavily drops after introducing
the pre-training objectives, especially in terms of
F1intra. We think this is because the semantic argu-
ment spans in CoNLL-2012 are relatively different
from those in CMU-DoG, thus leading to the vague
boundary detection and performance drop. To ver-
ify this assumption, we conduct an ablation study
by removing SAI from the pre-training stage. Inter-
estingly, we observe substantial improvements over
F1all and F1intra, suggesting that pre-training on
CoNLL-2012 does hurt the performance on CMU-
DoG. Furthermore, we also find that fine-tuning
all parameters leads to slightly better performance
than freezing the language model during the CSRL
training stage. This finding is consistent with the
previous work (Conia et al., 2021).

Table 3 presents the results of ablation studies
on pre-training objectives and different modules.

U1 how many games did the colts win?
U2 the ColtsARG0 finished with a 12-2 record.
Question who did they playpredicate in the playoffs?
Question′ who did the Colts play in the playoffs?

Table 4: An example of question-in-context rewriting.

For the pre-training objectives, we found that (1)
removing TLM & HPSI objective hurts the perfor-
mance consistently but slightly; (2) SPI & UOR
objectives help the model to better identify the
cross-arguments; (3) SAI objective helps to find
intra-arguments on DuConv and Persona-Chat, but
might hurt the F1intra score on CMU-DoG; (4)
hierarchical pre-training is superior to end-to-end
pre-training which simultaneously optimizes all
auxiliary objectives. We think this is because the
end2end pre-training is extremely unstable and con-
fuses the optimization process of the model.

For model components, we found that only re-
moving one of the SC-Encoder, PA-Encoder or
MTRANS slightly affect the performance. How-
ever, the performance heavily decreases when SC-
Encoder and PA-Encoder are both removed. We
think the reason is that at least one module is
needed to capture the high-level features on the
top of the language model. We preserve these two
modules in our model since they essentially learn
different abilities, i.e., the ability of dialogue mod-
eling and semantics modeling, which also makes
our model more explainable.

4.4 Applications

Xu et al. (2021) has confirmed the usefulness of
CSRL by applying CSRL parsing results to two
Chinese dialogue tasks, including dialogue context
rewriting and dialogue response generation. In the
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Method
Persona-Chat (en) BConTrast (de) BSD (ja)

B1/2 D1/2 Human [1-5] B1/2 D1/2 B1/2 D1/2
Seq2Seq 0.138/0.069 0.051/0.094 2.72 0.089/0.042 0.041/0.089 0.125/0.051 0.123/0.248
mUniLMwo/CSRL 0.188/0.113 0.114/0.217 3.02 0.107/0.061 0.079/0.187 0.162/0.080 0.175/0.320
mUniLMw/CSRL 0.195/0.122 0.116/0.223 3.16 0.112/0.065 0.082/0.191 0.178/0.088 0.177/0.326
mBARTwo/CSRL 0.198/0.125 0.120/0.228 3.20 0.115/0.072 0.086/0.206 0.193/0.097 0.182/0.340
mBARTw/CSRL 0.217/0.136 0.124/0.233 3.25 0.118/0.077 0.090/0.212 0.205/0.110 0.185/0.346

Table 5: Evaluations on response generation tasks in English, German and Japanese.

Method B1 B2 B4
Seq2Seq - - 49.67
SARG(Huang et al., 2020) - - 54.80
RUN(Liu et al., 2020a) 70.50 61.20 49.10
Human evaluation - - 59.92
Ourswo/ CSRL 69.24 62.93 52.78
Oursw/ CSRL 70.26 64.19 54.23

Table 6: Evaluation results on the dataset of CANARD.

same vein, we also explore whether CSRL could
benefit to the same non-Chinese dialogue tasks.

Question-in-context Rewriting Question-in-
context rewriting (Elgohary et al., 2019) is a
challenging task which requires the model to
resolve the conversational dependencies between
the question and the context, and then rewrite the
original question into independent one. This is an
example in Table 4. The question “who did they
play in the playoffs?" cannot be independently
understood without knowing “they” refer to, but it
can be resolved with the given context.

Since the CSRL models can identify the
predicate-argument structures from the entire con-
versation, we believe that it can help this rewriting
task by searching the dropped or referred compo-
nents from the context. For example, in Table 4,
our CSRL parser can find that the ARG0 of the
predicate “play" is “the Colts". Motivated by this
observation, we attempt to borrow CSRL to help
the question rewriting with the context. We first
employ the pre-trained cross-lingual CSRL parser
(OursXLM-R + pre-train) to extract predicate-argument
pairs from conversations. We adopt the model pro-
posed in (Xu et al., 2020) to achieve the rewriting.
More details about the model are in Appendix E.

Since the rewriting datasets are only available
in Chinese and English, we hereby only evaluate
on CANARD (Elgohary et al., 2019) which is a
widely used English question rewriting dataset, and
report the BLEU scores. Table 6 lists the evaluation
results on CANARD. We can see that our imple-
mentation with CSRL achieves competitive perfor-
mance against the state-of-the-art rewriting models,

i.e., SARG (Huang et al., 2020) and RUN (Liu
et al., 2020a), and significantly outperforms the
baseline method (Bahdanau et al., 2014). Note that,
in this part, we are more focused on the improve-
ments after introducing CSRL information. We
find that the scores across all metrics are improved
with the aid of CSRL. To figure out the reasons
of these improvements, we investigate which type
of questions could benefit from CSRL informa-
tion most. By comparing the rewritten questions of
different methods, we find that the questions that re-
quire information completion, especially those con-
taining referred components (around 15% cases),
benefit from CSRL most. This observation is in line
with our expectation that our CSRL parser could
consistently offer essential guidance by recovering
the dropped or referred text components.

Multi-turn Dialogue Response Generation Be-
sides the rewriting task that is heavily affected by
omitted components, we also explore the useful-
ness of CSRL to multi-turn dialogue response gen-
eration, one of the main challenges in dialogue
community. In contrast to single-turn dialogue
response generation, multi-turn dialogues suffer
more frequently occurred ellipsis and anaphora,
which leads to vague context representations. To
this end, we attempt to employ CSRL to build better
context representations. In specific, we highlight
the words picked up by the CSRL parser, and then
teach the model to pay more attention on those
words which would hold more semantic features.

We evaluate on three dialogue datasets in dif-
ferent languages, including Persona-Chat (Zhang
et al., 2018) in English, BConTrast (Farajian et al.,
2020) in German and BSD (Rikters et al., 2019)
in Japanese. We report BLEU-1/2 and Distinct-
1/2 scores for the comparison. We employ the
pre-trained cross-lingual CSRL parser (OursXLM-R)
to analyze the latest utterance, and obtain the
predicate-argument pairs. Then the concatenated
sequence of the extracted pairs and the context is
fed into our model for response generation. We

276



adopt the UniLM (Dong et al., 2019) or mBART
(Liu et al., 2020b) as our generation model. More
implementation details are in Appendix E.

Table 5 summarizes the results on three datasets.
We can see that the models with different back-
bones can consistently benefit from the additional
introduced CSRL information. While substantial
gains from CSRL information are obtained on En-
glish and Japanese dialogues, smaller improve-
ments are observed on the German dialogue task.
We think this is because English is well-represented
in pre-trained multilingual models and Japanese is
more similar to Chinese while German accounts
for none of both. Apart from automatic evaluation
criteria, we also conduct human evaluation on the
English dataset. Specifically, we randomly select
200 generated responses for each method, and then
recruit three annotators to evaluate the coherence
and informativeness of the response against the con-
versation context by giving a score ranging from
1(worst) to 5(best). We find that the method with
CSRL wins in 35% cases, and ties with the vanilla
model in around 55% cases. With more careful
analysis, we find that the responses that contains
entities mentioned in histories benefit from CSRL
information most. We think this is because none-
phrases are more likely to be recognized as seman-
tic arguments by CSRL parser, and then receive
more attentions during encoding.

5 Conclusion

In this work, we propose a simple but effective
model with five pre-training objectives to perform
zero-shot cross-lingual CSRL, and also confirm the
usefulness of CSRL to non-Chinese dialogue tasks.
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A Hard Parallel Sentence Identification
Sampling

Following previous work (Robinson et al., 2020;
Wei et al., 2020) which suggests that contrastive
learning of representations benefits from hard neg-
ative samples, we also try to select hard negative
samples for PSI task based on n-gram similarity
and text perturbation. Specifically, for each sen-
tence, we calculate its n-gram similarity scores to
other sentences, where n = 1, 2, 3, 4, and then we
select the sentence with the highest score at each
gram as the candidate sentence; additionally, we
construct the corrupted sentence as the candidate
by token deletion, token replacement and token
order permutation. Finally, we sample from the
candidate set created by n-gram similarity at 40%
time and from the candidate set created by text
perturbation at 60% time.

B Modified Transformer Encoder Layer

To overcome the information forgetting of hierar-
chical models, we attempt to modify the standard
Transformer to better reserve the information from
the previous layers. In specific, we try following
variants:

• MTRANS. Replacing the [Add] operation
in the first residual connection layer with
[Concat].

• LATER-MTRANS. Replacing the [Add] op-
eration in the second residual connection layer
with [Concat].

• BOTH-MTRANS. Replacing the [Add] op-
erations in both the first and second residual
connection layers with [Concat].

Our intuition of substituting the summation
with concatenation is that the residual layer with
concatenation would introduce additional param-
eters, and we expect these additional parame-
ters to retain more history information. As
shown in Table 2, we obtain some gains while
using MTRANS. Additionally, we also report
the F1all scores on DuConv/Persona-Chat/CMU-
DoG datasets while using LATER-MTRANS and
BOTH-MTRANS here. LATER-MTRANS achieves
88.18/65.32/58.44 points, and BOTH-MTRANS

achieves 88.40/66.12/59.72 points against the stan-
dard Transformer achieving 88.25/65.27/58.58
points. Although BOTH-MTRANS achieves the

best performance, we finally choose MTRANS

since BOTH-MTRANS brings a large volume of
additional parameters which leads to a huge model
size while the increasing of model parameters
caused by MTRANS is acceptable.

C Experimental settings

We implement the model in PyTorch(Paszke et al.,
2019), and use the pre-trained language model of
multilingual BERT (mBERT) or XLM-RoBERTa
(XLM-R) made available by the Transformer li-
brary (Wolf et al., 2020) as the backbone. We train
the model using AdamW(Loshchilov and Hutter,
2018) with a linear learning rate schedule. For
each model, we run five different random seeds
and report the average score. More details and
hyper-parameters are listed in Table 7.

D Baselines

We compare to following baseline models,

1. SimpleBERT/SimpleXLMR (Shi and Lin,
2019). It uses the Chinese BERT or XLM-R
as the backbone and simply concatenates the
entire dialogue context with the predicate.

2. CSRL- BERT/XLMR (Xu et al., 2021). It
uses the Chinese BERT or XLM-R as the back-
bone but attempts to encode the conversation
structural information by integrating the di-
alogue turn and speaker embeddings in the
input embedding layer.

3. CSAGN/CSAGN-XLMR (Wu et al., 2021b).
It uses the Chinese BERT or XLM-R as the
backbone and employ the relational graph neu-
ral network to model predicate- and speaker-
aware dependencies. We implement this base-
line based on the code https://github.
com/hahahawu/CSAGN.

E Application Models

Rewriting Model. We adopt the model proposed
in (Xu et al., 2020) which directly concatenates
the predicate-argument structures, the conversation
context and the question as a sequence, and then
feeds them into the model with special attention
masks. During decoding, the model takes CSRL
pairs and the context to generate the rewritten ques-
tion word by word. The input representation, atten-
tion strategies and loss function of our model are
same as (Xu et al., 2020)’s. We initialize the model
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using the base BERT model and use AdamW with a
linear learning rate schedule to update parameters.

Note that we only attempt to introduce the CSRL
information as a condition into our generation-
based model. We did not include the CSRL infor-
mation into the state-of-the-art rewriting models,
i.e., SARG and RUN because these models rewrite
the sentence by learning a text editing matrix in-
stead of directly learning the distributions of the
target words. Unfortunately, there are no straight-
forward ways to include our CSRL information
into these models to help the matrix learning.

Response Generation Model. Our model for
response generation is directly borrowed from
UniLM (Dong et al., 2019) or mBART (Liu et al.,
2020b). For UniLM, the generation process is same
with the rewriting task, wherein the extracted se-
mantic pairs, the context and the response are con-
catenated into a sequence and encoded with the
special mask. For mBART, we just concatenate the
extracted predicate-argument pairs with the con-
text into a sequence, and then feed the sequence
into the encoder for training; during decoding, our
model takes semantic information and the context
as input to generate the response word by word.
The input representation, attention strategies for
CSRL structures and loss function are same as the
rewriter model’s. We initialize the model using
the base multilingual BERT or mBART and use
AdamW with a linear learning rate schedule to up-
date parameters.

F Hyper-parameters

We list the hyper-parameters of CSRL experiments
(Table 7), rewriting experiments (Table 8) and re-
sponse experiments (Table 9) below.

Name Value
Language model xlm-roberta-base
Hidden state size 512
Word-level encoder layers 2
Pred.-arg encoder layers 1
Batch size per GPU 24
Max learning rate 5e-5
Min learning rate 1e-5
Max lr for LM fine-tuning 1e-5
Min lr for Lm fine-tuning 1e-6
Max sequence length 512
Max training epochs 50
Max training steps 15000
Early-stop patience 10

Table 7: Hyper-parameters in CSRL experiments.

Name Value
Language model bert-base-cased
Hidden state size 768
Batch size per GPU 16
Max learning rate 3e-5
Min learning rate 1e-5
Max sequence length 512
Max decode length 32
Max training epochs 20
Early-stop patience 5

Table 8: Hyper-parameters in rewriting experiments.

Name Value
Language model mBERT and mBART
Hidden state size 768
Batch size per GPU 16
Max learning rate 5e-5
Min learning rate 3e-5
Max sequence length 512
Max decode length 64
Max training epochs 20
Early-stop patience 5

Table 9: Hyper-parameters in response generation ex-
periments.
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