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Abstract

Massive false rumors emerging along with
breaking news or trending topics severely hin-
der the truth. Existing rumor detection ap-
proaches achieve promising performance on
the yesterday’s news, since there is enough cor-
pus collected from the same domain for model
training. However, they are poor at detect-
ing rumors about unforeseen events especially
those propagated in different languages due
to the lack of training data and prior knowl-
edge (i.e., low-resource regimes). In this paper,
we propose an adversarial contrastive learning
framework to detect rumors by adapting the fea-
tures learned from well-resourced rumor data
to that of the low-resourced. Our model explic-
itly overcomes the restriction of domain and/or
language usage via language alignment and a
novel supervised contrastive training paradigm.
Moreover, we develop an adversarial augmen-
tation mechanism to further enhance the ro-
bustness of low-resource rumor representation.
Extensive experiments conducted on two low-
resource datasets collected from real-world mi-
croblog platforms demonstrate that our frame-
work achieves much better performance than
state-of-the-art methods and exhibits a superior
capacity for detecting rumors at early stages.

1 Introduction

With the proliferation of social media such as
Twitter and Weibo, the emergence of breaking
events provides opportunities for the spread of
rumors, which is difficult to be identified due to
limited domain expertise and relevant data. For
instance, along with the unprecedented COVID-
19 pandemic, a false rumor claimed that “every-
one who gets the vaccine will die or suffer from
auto-immune diseases"1 was translated into many
languages and spread at lightning speed on social

∗Corresponding authors.
1https://www.bbc.com/news/

uk-wales-58103604

media, which seriously confuses the public and de-
stroys the achievements of epidemic prevention in
related countries or regions of the world. Although
some recent works focus on collecting microblog
posts corresponding to COVID-19 (Chen et al.,
2020a; Zarei et al., 2020; Alqurashi et al., 2020),
existing rumor detection methods perform poorly
without a large-scale qualified training corpus, i.e.,
in a low-resource scenario (Hedderich et al., 2021).
Thus there is an urgent need to develop automatic
approaches to identify rumors in such low-resource
domains especially amid breaking events.

Social psychology literature defines a rumor as a
story or a statement whose truth value is unverified
or deliberately false (Allport and Postman, 1947).
Recently, techniques using deep neural networks
(DNNs) (Ma et al., 2018; Khoo et al., 2020; Bian
et al., 2020) have achieved promising results for
detecting rumors on microblogging websites by
learning rumor-indicative features from sizeable
rumor corpus with veracity annotation. However,
such DNN-based approaches are purely data-driven
and have a major limitation on detecting emerg-
ing events concerning about low-resource domains,
i.e., the distinctive topic coverage and word distri-
bution (Silva et al., 2021) required for detecting
low-resource rumors are often not covered by the
public benchmarks (Zubiaga et al., 2016; Ma et al.,
2016, 2017). On another hand, for rumors propa-
gated in different languages, existing monolingual
approaches are not applicable since there are even
no sufficient open domain data for model training
in the target language.

In this paper, we assume that the close correla-
tions between the well-resourced rumor data and
the low-resourced could break the barriers of do-
main and language, substantially boosting low-
resource rumor detection within a more general
framework. Taking the breaking event COVID-
19 as an example, we collect corresponding ru-
morous and non-rumorous claims with propaga-
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(a) TWITTER (Rumor) (b) Twitter-COVID19 (Rumor) (c) Weibo-COVID19 (Rumor)

(d) TWITTER (Non-rumor) (e) Twitter-COVID19 (Non-rumor) (f) Weibo-COVID19 (Non-rumor)
Figure 1: Word clouds of rumor and non-rumor data generated from TWITTER, Twitter-COVID19, and Weibo-
COVID19 datasets, where the size of terms corresponds to the word frequency. Both TWITTER and Twitter-
COVID19 are presented in English while Weibo-COVID19 in Chinese.

tion threads from Twitter and Sina Weibo which
are the most popular microblogging websites in
English and Chinese, respectively. Figure 1 illus-
trates the word clouds of rumor and non-rumor data
from an open domain benchmark (i.e., TWITTER
(Ma et al., 2017)) and two COVID-19 datasets
(i.e., Twitter-COVID19 and Weibo-COVID19). It
can be seen that both TWITTER and Twitter-
COVID19 contain denial opinions towards rumors,
e.g., “fake", “joke", “stupid" in Figure 1(a) and
“wrong symptom", “exactly sick", “health panic"
in Figure 1(b). In contrast, supportive opinions to-
wards non-rumors can be drawn from Figure 1(d)–
1(e). Moreover, considering that COVID-19 is a
global disease, massive misinformation could be
widely propagated in different languages such as
Arabic (Alam et al., 2020), Indic (Kar et al., 2020),
English (Cui and Lee, 2020) and Chinese (Hu et al.,
2020). Similar identical patterns can be observed in
Chinese on Weibo from Figure 1(c) and Figure 1(f).
Although the COVID-19 data tend to use exper-
tise words or language-related slang, we argue that
aligning the representation space of identical rumor-
indicative patterns of different domains and/or lan-
guages could adapt the features captured from well-
resourced data to that of the low-resourced.

To this end, inspired by contrastive learning (He
et al., 2020; Chen et al., 2020b,c), we propose an
Adversarial Contrastive Learning approach for low-
resource rumor detection (ACLR), to encourage
effective alignment of rumor-indicative features in
the well-resourced and low-resource data. More
specifically, we first transform each microblog post
into a language-independent vector by semantically

aligning the source and target language in a shared
vector space. As the diffusion of rumors gener-
ally follows a propagation tree that provides valu-
able clues on how a claim is transmitted (Ma et al.,
2018), we thus resort to a structure-based neural
network (Bian et al., 2020) to catch informative
patterns. Then, we propose a novel supervised con-
trastive learning paradigm to minimize the intra-
class variance of source and target instances with
same veracity, and maximize inter-class variance
of instances with different veracity. To further en-
hance the feature adaption of contrastive learning,
we exploit adversarial attacks (Kurakin et al., 2016)
to plenish noise to the original event-level repre-
sentation by computing adversarial worst-case per-
turbations, forcing the model to learn non-trivial
but effective features. Extensive experiments con-
ducted on two real-world low-resource datasets
confirm that (1) our model yields outstanding per-
formances for detecting low-resource rumors over
the state-of-the-art baselines with a large margin;
and (2) our method performs particularly well on
early rumor detection which is crucial for timely
intervention and debunking especially for breaking
events. The main contributions of this paper are of
three-fold:

• To our best knowledge, we are the first to
present a radically novel adversarial con-
trastive learning framework to study the low-
resource rumor detection on social media2.

• We propose supervised contrastive learning
2Our resources will be available at https://github.

com/DanielLin97/ACLR4RUMOR-NAACL2022.
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for structural feature adaption between differ-
ent domains and languages, with adversarial
attacks employed to enhance the diversity of
low-resource data for contrastive paradigm.

• We constructed two low-resource microblog
datasets corresponding to COVID-19 with
propagation tree structure, respectively gath-
ered from English tweets and Chinese mi-
croblog posts. Experimental results show that
our model achieves superior performance for
both rumor classification and early detection
tasks under low-resource settings.

2 Related Work

Pioneer studies for automatic rumor detection focus
on learning a supervised classifier utilizing features
crafted from post contents, user profiles, and prop-
agation patterns (Castillo et al., 2011; Yang et al.,
2012; Liu et al., 2015). Subsequent studies then
propose new features such as those representing
rumor diffusion and cascades (Kwon et al., 2013;
Friggeri et al., 2014; Hannak et al., 2014). Zhao
et al. (2015) alleviate the engineering effort by us-
ing a set of regular expressions to find questing
and denying tweets. DNN-based models such as
recurrent neural networks (Ma et al., 2016), con-
volutional neural networks (Yu et al., 2017), and
attention mechanism (Guo et al., 2018) are then
employed to learn the features from the stream of
social media posts. However, these approaches sim-
ply model the post structure as a sequence while
ignoring the complex propagation structure.

To extract useful clues jointly from content
semantics and propagation structures, some ap-
proaches propose kernel-learning models (Wu et al.,
2015; Ma et al., 2017) to make a comparison be-
tween propagation trees. Tree-structured recursive
neural networks (RvNN) (Ma et al., 2018) and
transformer-based models (Khoo et al., 2020; Ma
and Gao, 2020) are proposed to generate the rep-
resentation of each post along a propagation tree
guided by the tree structure. More recently, graph
neural networks (Bian et al., 2020; Lin et al., 2021a)
have been exploited to encode the conversation
thread for higher-level representations. However,
such data-driven approaches fail to detect rumors in
low-resource regimes (Janicka et al., 2019) because
they often require sizeable training data which is
not available for low-resource domains and/or lan-
guages. In this paper, we propose a novel frame-
work to adapt existing models with the effective

propagation structure for detecting rumors from
different domains and/or languages.

To facilitate related fact-checking tasks in low-
resource settings, domain adaption techniques are
utilized to detect fake news (Wang et al., 2018;
Yuan et al., 2021; Zhang et al., 2020; Silva et al.,
2021) by learning features from multi-modal data
such as texts and images. Lee et al. (2021) pro-
posed a simple way of leveraging the perplexity
score obtained from pre-trained language models
(LMs) for the few-shot fact-checking task. Differ-
ent from these works of adaption on multi-modal
data and transfer learning of LMs, we focus on
language and domain adaptation to detect rumors
from low-resource microblog posts corresponding
to breaking events.

Contrastive learning (CL) aims to enhance rep-
resentation learning by maximizing the agreement
among the same types of instances and distinguish-
ing from the others with different types (Wang and
Isola, 2020). In recent years, CL has achieved great
success in unsupervised visual representation learn-
ing (Chen et al., 2020b; He et al., 2020; Chen et al.,
2020c). Besides computer vision, recent studies
suggest that CL is promising in the semantic tex-
tual similarity (Gao et al., 2021; Yan et al., 2021),
stance detection (Mohtarami et al., 2019), short
text clustering (Zhang et al., 2021), unknown intent
detection (Lin et al., 2021b), and abstractive sum-
marization (Liu and Liu, 2021), etc. However, the
above CL frameworks are specifically proposed to
augment unstructured textual data such as sentence
and document, which are not suitable for the low-
resource rumor detection task considering claims
together with more complex propagation structures
of community response.

3 Problem Statement

In this work, we define the low-resource rumor
detection task as: Given a well-resourced dataset
as source, classify each event in the target low-
resource dataset as a rumor or not, where the
source and target data are from different do-
mains and/or languages. Specifically, we define
a well-resourced source dataset for training as a
set of events Ds = {Cs

1 , C
s
2 , · · · , Cs

M}, where
M is the number of source events. Each event
Cs = (y, c, T (c)) is a tuple representing a given
claim c which is associated with a veracity la-
bel y ∈ {rumor, non-rumor}, and ideally all its
relevant responsive microblog post in chronolog-
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Figure 2: The overall architecture of our proposed method. For source and small target training data, we first obtain
post-level representations after cross-lingual sentence encoding, then train the structure-based network with the
adversarial contrastive objective. For target test data, we extract the event-level representations to detect rumors.

ical order, i.e., T (c) = {c, xs1, xs2, · · · , xs|C|}3,
where |C| is the number of responsive tweets in
the conversation thread. For the target dataset
with low-resource domains and/or languages, we
consider a much smaller dataset for training
Dt = {Ct

1, C
t
2, · · · , Ct

N}, where N(N ≪ M)
is the number of target events and each Ct =
(y, c′, T (c′)) has the similar composition structure
of the source dataset.

We formulate the task of low-resource rumor de-
tection as a supervised classification problem that
trains a domain/language-agnostic classifier f(·)
adapting the features learned from source datasets
to that of the target events, that is, f(Ct|Ds) → y.
Note that although the tweets are notated sequen-
tially, there are connections among them based on
their responsive relationships. So most previous
works represent the conversation thread as a tree
structure (Ma et al., 2018; Bian et al., 2020).

4 Our Approach

In this section, we introduce our adversarial con-
trastive learning framework to adapt the features
captured from the well-resourced data to detect
rumors from low-resource events, which consid-
ers cross-lingual and cross-domain alignment. Fig-
ure 2 illustrates an overview of our proposed model,
which will be depicted in the following subsections.

4.1 Cross-lingual Sentence Encoder

Given a post in an event that could be either from
source or target data, to map it into a shared se-
mantic space where the source and target lan-

3c is equivalent to xs
0.

guages are semantically aligned, we utilize XLM-
RoBERTa (Conneau et al., 2019) (XLM-R) to
model the context interactions among tokens in
the sequence for the sentence-level representation:

x̄ = XLM-R(x) (1)

where x is the original post, and we obtain the post-
level representation x̄ using the output state of the
<s> token in XLM-R. We thus denote the repre-
sentation of posts in the source event Cs and the
target event Ct as a matrix Xs and Xt respectively:
X∗ = [x̄∗0, x̄

∗
1, x̄

∗
2, ..., x̄

∗
|X∗|−1]

⊤; ∗ ∈ {s, t}, where
Xs ∈ Rm×d and Xt ∈ Rn×d, d is the dimension
of the output state of the sentence encoder.

4.2 Propagation Structure Representation

On top of the sentence encoder, we represent the
propagation of each claim with the graph convo-
lutional network (GCN) (Kipf and Welling, 2016),
which achieves state-of-the-art performance on cap-
turing both structural and semantic information for
rumor classification (Bian et al., 2020). It is worth
noting that the choice of propagation structure rep-
resentation is orthogonal to our proposed frame-
work that can be easily replaced with any existing
structure-based models without any other change
to our supervised contrastive learning architecture.

Given an event and its initialized embedding ma-
trix C∗, X∗; ∗ ∈ {s, t}, We model the conversation
thread of the event as a tree structure T = ⟨V,E⟩,
where V consists of the event claim and all its rele-
vant responsive posts as nodes and E refers to a set
of directed edges corresponding to the response re-
lation among the nodes in V . Inspired by Ma et al.
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(2018), here we consider two different propagation
trees with distinct edge directions: (1) Top-Down
tree where the edge follows the direction of infor-
mation diffusion. (2) Bottom-Up tree where the
responsive nodes point to their responded nodes,
similar to a citation network.

Top-Down GCN. We treat the Top-Down tree
structure as a graph and transform the edge E
into an adjacency matrix A ∈ {0, 1}|V |×|V |, where
Ai,j = 1 if xi has a response to xj or i = j, else
Ai,j = 0. Then we utilize a layer-wise propagation
rule to update the node vector at the l-th layer:

H(l+1) = ReLU(Â ·H(l) ·W (l)) (2)
where Â = D−1/2AD−1/2 is the symmetric nor-

malized adjacency matrix, D denotes the degree
matrix of A. W (l) ∈ Rd(l)×d(l+1)

is a layer-specific
trainable transformation matrix. H(0) is initialized
as X∗. For a GCN model with L-layers, we obtain
the final node representation HTD w.r.t H(L).

Bottom-Up GCN. We also leverage the struc-
ture of Bottom-Up tree to encode the informative
posts. Similar to Top-Down GCN, we update the
hidden representation of nodes in the same manner
as Eq. 2 and finally get the output node states HBU

at the L-th graph convolutional layer.
The Overall Model. Finally, we concatenate

HTD and HBU via mean-pooling to jointly cap-
ture the opinions expressed in both Top-Down and
Bottom-Up trees:

o = mean-pooling([HTD;HBU ]) (3)

where o ∈ R2d(L)
is the event-level representation

of the entire propagation thread, d(L) is the output
dimension of GCN and [·; ·] means concatenation.

4.3 Contrastive Training

To align the representation space of rumor-
indicative signals from different domains and lan-
guages, we present a novel training paradigm to
exploit the labeled data including rich sourced data
and small-scaled target data to adapt our model on
target domains and languages. The core idea is
to make the representations of source and target
events from the same class closer while keeping
representations from different classes far away.

Given an event Cs
i from the source data, we

firstly obtain the language-agnostic encoding for
all the involved posts (see Eq. 1) as well as the
propagation structure representation osi (see Eq. 3)
which is then fed into a softmax function to make
rumor predictions. Then, we learn to minimize the

cross-entropy loss between the prediction and the
ground-truth label ysi :

Ls
CE = − 1

N s

Ns∑

i=1

log(pi) (4)

where N s is the total number of source examples in
the batch, pi is the probability of correct prediction.
To make rumor representation in the source events
be more dicriminative, we propose a supervised
contrastive learning objective to cluster the same
class and separate different classes of samples:

Ls
SCL = − 1

N s

Ns∑

i=1

1

Nysi
− 1

Ns∑

j=1

1[i ̸=j]1[ysi=ysj ]

log
exp(sim(osi , o

s
j)/τ)

Ns∑
k=1

1[i ̸=k]exp(sim(osi , o
s
k)/τ)

(5)
where Nysi

is the number of source examples with
the same label ysi in the event Cs

i , and 1 is the indi-
cator. sim(·) denotes the cosine similarity function
and τ controls the temperature.

For an event Ct
i from the target data, we also

compute the classification loss Lt
CE in the same

manner as Eq. 4. Although we projected the source
and target languages into the same semantic space
after sentence encoding, rumor detection not only
relies on post-level features, but also on event-
level contextual features. Without constraints, the
structure-based network can only extract event-
level features for all samples based on their fi-
nal classification signals while these features may
not be critical to the target domain and language.
We make full use of the minor labels in the low-
resource rumor data by parameterizing our model
according to the contrastive objective between the
source and target instances in the event-level repre-
sentation space:

Lt
SCL = − 1

N t

Nt∑

i=1

1

Nyti

Ns∑

j=1

1[yti=ysj ]

log
exp(sim(oti, o

s
j)/τ)

Ns∑
k=1

exp(sim(oti, o
s
k)/τ)

(6)

where N t is the total number of target examples
in the batch and Nyti

is the number of source ex-
amples with the same label yti in the event Ct

i . As
a result, we project the source and target samples
belonging to the same class closer than that of dif-
ferent categories, for feature alignment with minor
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Algorithm 1 Adversarial Contrastive Learning
Input: A small set of events Ct

i in the target domain and
language; A set of events Cs

i in the source domain and
language.

Output: Assign rumor labels y to given unlabeled target data.
1: for each mini-batch N t of the target events Ct

i do:
2: for each mini-batch Ns of the source events Cs

i do:
3: Pass C∗

i to the sentence encoder and then structure-
based network to obtain its event-level feature o∗i , where
∗ ∈ {s, t}.

4: Compute the classification loss L∗
CE for source and

target data, respectively.
5: Adversarial augmentation for target data and update

Lt
CE .

6: Compute the supervised contrastive loss L∗
SCL.

7: Compute the joint loss L∗ as Eq. 8.
8: Jointly optimize all parameters of the model using

the average loss L = mean(Ls + Lt).

annotation at the target domain and language.

4.4 Adversarial Data Augmentation
Data augmentation techniques were successfully
utilized to enhance contrastive learning mod-
els (Chen et al., 2020b). Some simple augmen-
tation strategies are designed based on handcrafted
features or rules, but they are not efficient and suit-
able for the propagation tree structures in rumor
detection task. In this section, we introduce adver-
sarial attacks to generate pseudo target samples at
the event-level latent space to increase the diversity
of views for model robustness in the contrastive
learning manner. Specifically, we apply Fast Gradi-
ent Value (Miyato et al., 2016; Vedula et al., 2020)
to approximate a worst-case perturbation as a noise
vector of the event-level representation:

õt
noise = ϵ

g

||g|| ;where g = ∇otLt
CE (7)

where the gradient is the first-order differential of
the classification loss Lt

CE for a target sample, i.e.,
the direction that rapidly increases the classification
loss. We perform normalization and use a small ϵ to
ensure the approximate is reasonable. Finally, we
can obtain the pseudo augmented sample otadv =
ot+õt

noise in the latent space to enhance our model.

4.5 Model Training
We jointly train the model with the cross-entropy
and supervised contrastive objectives:

L∗ = (1− α)L∗
CE + αL∗

SCL; ∗ ∈ {s, t} (8)
where α is a trade-off parameter, which is set

to 0.5 in our experiments. Algorithm 1 presents
the training process of our approach. We set the
number L of the graph convolutional layer as 2,
the temperature τ as 0.1, and the adversarial per-

turbation norm ϵ as 1.5. Parameters are updated
through back-propagation (Collobert et al., 2011)
with the Adam optimizer (Loshchilov and Hutter,
2018). The learning rate is initialized as 0.0001,
and the dropout rate is 0.2. Early stopping (Yao
et al., 2007) is applied to avoid overfitting.

5 Experiments

5.1 Datasets

To our knowledge, there are no public benchmarks
available for detecting low-resource rumors with
propagation tree structure in tweets. In this paper,
we consider a breaking event COVID-19 as a low-
resource domain and collect relevant rumors and
non-rumors respectively from Twitter in English
and Sina Weibo in Chinese. For Twitter-COVID19,
we resort to a COVID-19 rumor dataset (Kar et al.,
2020) which only contains textual claims without
propagation thread. We extend each claim by col-
lecting its propagation threads via Twitter academic
API with a twarc2 package4. For Weibo-COVID19,
similar to Ma et al. (2016), a set of related rumor-
ous claims are gathered from the Sina community
management center5 and non-rumorous claims by
randomly filtering out the posts that are not re-
ported as rumors. Then Weibo API is utilized to
collect all the repost/reply messages towards each
claim (see Appendix for the dataset statistics).

5.2 Experimental Setup

We compare our model and several state-of-the-
art baseline methods described below. 1) CNN: A
CNN-based model for misinformation identifica-
tion (Yu et al., 2017) by framing the relevant posts
as a fixed-length sequence; 2) RNN: A RNN-based
rumor detection model (Ma et al., 2016) with GRU
for feature learning of relevant posts over time;
3) RvNN: A rumor detection approach based on
tree-structured recursive neural networks (Ma et al.,
2018) that learn rumor representations guided by
the propagation structure; 4) PLAN: A transformer-
based model (Khoo et al., 2020) for rumor detec-
tion to capture long-distance interactions between
any pair of involved tweets; 5) BiGCN: A GCN-
based model (Bian et al., 2020) based on directed
conversation trees to learn higher-level representa-
tions (see Section 4.2); 6) DANN-*: We employ
and extend an existing few-shot learning technique,

4https://twarc-project.readthedocs.io/
en/latest/twarc2_en_us/

5https://service.account.weibo.com/
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Target (Source) Weibo-COVID19 (TWITTER) Twitter-COVID19 (WEIBO)

Model Acc. Mac-F1
Rumor Non-rumor Acc. Mac-F1

Rumor Non-rumor
F1 F1 F1 F1

CNN 0.445 0.402 0.476 0.328 0.498 0.389 0.528 0.249
RNN 0.463 0.414 0.498 0.329 0.510 0.388 0.533 0.243
RvNN 0.514 0.482 0.538 0.426 0.540 0.391 0.534 0.247
PLAN 0.532 0.496 0.578 0.414 0.573 0.423 0.549 0.298
BiGCN 0.569 0.508 0.586 0.429 0.616 0.415 0.577 0.252
DANN-RvNN 0.583 0.498 0.591 0.405 0.577 0.482 0.648 0.317
DANN-PLAN 0.601 0.507 0.606 0.409 0.593 0.471 0.574 0.369
DANN-BiGCN 0.629 0.561 0.616 0.506 0.618 0.510 0.676 0.344
ACLR-RvNN 0.778 0.716 0.843 0.589 0.653 0.616 0.710 0.521
ACLR-PLAN 0.824 0.769 0.842 0.696 0.709 0.648 0.752 0.544
ACLR-BiGCN 0.873 0.861 0.896 0.827 0.765 0.686 0.766 0.605

Table 1: Rumor detection results on the target test datasets.

domain-adversarial neural network (Ganin et al.,
2016), based on the structure-based model where
* could be RvNN, PLAN, and BiGCN; 7) ACLR-
*: our proposed adversarial contrastive learning
framework on top of RvNN, PLAN, or BiGCN.

In this work, we consider the most challeng-
ing setting: to detect events (i.e., target) from a
low-resource domain meanwhile in a cross-lingual
regime. Note that although English and Chinese
in our datasets are not minority languages, the
target domain and/or languages can be easily re-
placed without any change to our ACLR frame-
work. Specifically, we use the well-resourced
TWITTER (Ma et al., 2017) (or WEIBO (Ma et al.,
2016)) datasets as the source data, and Weibo-
COVID19 (or Twitter-COVID19) datasets as the
target. We use accuracy and macro-averaged F1,
as well as class-specific F1 scores as the evaluation
metrics. We conduct 5-fold cross-validation on the
target datasets (see more details in Appendix).

5.3 Rumor Detection Performance

Table 1 shows the performance of our proposed
method versus all the compared methods on the
Weibo-COVID19 and Twitter-COVID19 test sets
with pre-determined training datasets. It is ob-
served that the performances of the baselines in
the first group are obviously poor due to ignoring
intrinsic structural patterns. To make fair compar-
isons, all baselines are employed with the same
cross-lingual sentence encoder of our framework
as inputs. Other state-of-the-art baselines exploit
the structural property of community wisdom on
social media, which confirms the necessity of prop-
agation structure representations in our framework.

Among the structure-based baselines in the sec-
ond group, due to the representation power of

message-passing architectures and tree structures,
PLAN and BiGCN outperform RvNN with only
limited labeled target data for training. The third
group shows the results for DANN-based meth-
ods. It improves the performance of structure-
based baselines in general since it extracts cross-
domain features between source and target datasets
via generative adversarial nets (Goodfellow et al.,
2014). Different from that, we use the adversarial
attacks to improve the robustness of our proposed
contrastive training paradigm, which explicitly en-
courages effective alignment of rumor-indicative
features from different domains and languages.

In contrast, our proposed ACLR-based ap-
proaches achieve superior performances among
all their counterparts ranging from 21.8% (13.4%)
to 30.0% (17.7%) in terms of Macro F1 score
on Weibo-COVID19 (Twitter-COVID19) datasets,
which suggests their strong judgment on low-
resource rumors from different domains/languages.
ACLR-BiGCN performs the best among the three
ACLR-based methods by making full use of the
structural property via graph modeling for conver-
sation threads. This also justifies the good perfor-
mance of DANN-BiGCN and BiGCN. The results
also indicate that the adversarial contrastive learn-
ing framework can effectively transfer knowledge
from the source to target data at the event level,
and substantiate our method is model-agnostic for
different structure-based networks.

5.4 Ablation Study

We perform ablation studies based on our best-
performed approach ACLR-BiGCN. As demon-
strated in Table 2, the first group shows the results
for the backbone baseline BiGCN. We observe that
the model performs best if pre-trained on source
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Model
Weibo-COVID19 Twitter-COVID19
Acc. Mac-F1 Acc. Mac-F1

BiGCN(T ) 0.569 0.508 0.616 0.415
BiGCN(S) 0.578 0.463 0.611 0.425
BiGCN(S, T ) 0.693 0.472 0.617 0.471
DANN-BiGCN 0.629 0.561 0.618 0.510
CLR-BiGCN 0.844 0.804 0.719 0.618
ACLR-BiGCN 0.873 0.861 0.765 0.686

Table 2: Ablation studies on our proposed model.

data and then fine-tuned on target training data
(i.e., BiGCN(S,T)), compared with the poor per-
formance when trained on either minor labeled
target data only (i.e., BiGCN(T)) or well-resourced
source data (i.e., BiGCN(S)). This suggests that
our hypothesis of leveraging well-resourced source
data to improve the low-resource rumor detection
on target data is feasible. In the second group,
the DANN-based model makes better use of the
source data to extract domain-agnostic features,
which further leads to performance improvement.
Our proposed contrastive learning approach CLR
without adversarial augmentation mechanism, has
already achieved outstanding performance com-
pared with other baselines, which illustrates its
effectiveness on domain and language adaptation.
We further notice that our ACLR-BiGCN consis-
tently outperforms all baselines and improves the
prediction performance of CLR-BiGCN, suggest-
ing that training model together with adversarial
augmentation on target data provide positive guid-
ance for more accurate rumor predictions, espe-
cially in low-resource regimes. More qualitative
analyses of hyper-parameters, training data size and
alternative source datasets are shown in Appendix.

5.5 Early Detection

Early alerts of rumors is essential to minimize its
social harm. By setting detection checkpoints of
“delays" that can be either the count of reply posts
or the time elapsed since the first posting, only
contents posted no later than the checkpoints is
available for model evaluation. The performance is
evaluated by Macro F1 obtained at each checkpoint.
To satisfy each checkpoint, we incrementally scan
test data in order of time until the target time delay
or post volume is reached.

Figure 3 shows the performances of our ap-
proach versus DANN-BiGCN, BiGCN, PLAN, and
RvNN at various deadlines. Firstly, we observe
that our proposed ACLR-based approach outper-
forms other counterparts and baselines throughout

0 20 40 60 80 100
Posts count

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 6 12 18 24
Elapsed time (hours)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ACL4Rumor-BiGCN
DANN-BiGCN
BiGCN
PLAN
RvNN

Figure 3: Early detection performance at different
checkpoints of posts count (or elapsed time) on Weibo-
COVID19 (left) and Twitter-COVID19 (right) datasets.
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Figure 4: Visualization of target event-level representa-
tion distribution.

the whole lifecycle, and reaches a relatively high
Macro F1 score at a very early period after the ini-
tial broadcast. One interesting phenomenon is that
the early performance of some methods may fluctu-
ate more or less. It is because with the propagation
of the claim there is more semantic and structural
information but the noisy information is increased
simultaneously. Our method only needs about 50
posts on Weibo-COVID19 and around 4 hours on
Twitter-COVID19, to achieve the saturated perfor-
mance, indicating the remarkably superior early
detection performance of our method.

5.6 Feature Visualization
Figure 4 shows the PCA visualization of learned
target event-level features on BiGCN (left) and
ACLR-BiGCN (right) for analysis. The left figure
represents training with only classification loss, and
the right figure uses ACLR for training. We observe
that (1) due to the lack of sufficient training data,
the features extracted with the traditional training
paradigm are entangled, making it difficult to detect
rumors in low-resource regimes; and (2) our ACLR-
based approach learns more discriminative repre-
sentations to improve low-resource rumor classifi-
cation, reaffirming that our training paradigm can
effectively transfer knowledge to bridge the gap be-
tween source and target data distribution resulting
from different domains and languages.

6 Conclusion and Future Work

In this paper, we proposed a novel Adversarial
Contrastive Learning framework to bridge low-
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resource gaps for rumor detection by adapting fea-
tures learned from well-resourced data to that of
the low-resource breaking events. Results on two
real-world benchmarks confirm the advantages of
our model in low-resource rumor detection task. In
our future work, we plan to collect and apply our
model on other domains and minority languages.
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A Datasets

The focus of this work, as well as in many pre-
vious studies (Ma et al., 2017, 2018; Khoo et al.,
2020; Bian et al., 2020), is rumors on social me-
dia, not just the "fake news" strictly defined as
a news article published by a news outlet that is
verifiably false (Shu et al., 2017; Zubiaga et al.,
2018). To our knowledge, there is no public dataset
available for classifying propagation trees in tweets
about COVID-19, where we need the tree roots
together with the corresponding propagation struc-
ture, to be appropriately annotated with ground
truth. In this paper, we organize and construct two
datasets Weibo-COVID19 and Twitter-COVID19
for experiments. For Twitter-COVID19, the orig-
inal dataset (Kar et al., 2020) of tweets was re-
leased with just the source tweet without its prop-
agation thread. So we collected all the propaga-
tion threads using the Twitter academic API with
the twarc2 package6 in python. Finally, we anno-
tated the source tweets by referring to the labels
of the events they are from the raw COVID-19
rumor dataset (Kar et al., 2020), where rumors con-
tain fact or misinformation to be verified while
non-rumors do not. For Weibo-COVID19, data
annotation similar to Ma et al. (2016), a set of
rumorous claims is gathered from the Sina com-
munity management center7 and non-rumorous
claims by randomly filtering out the posts that are
not reported as rumors. Weibo API is utilized
to collect all the repost/reply messages towards
each claim. Both Weibo-COVID19 and Twitter-
COVID19 contain two binary labels: Rumor and
Non-rumor. For Weibo-COVID19 as the target
dataset, we use the TWITTER dataset (Ma et al.,
2017) as the source data in our low-resource (i.e.,
cross-domain and cross-lingual) settings; In terms
of Twitter-COVID19 as the target dataset, we use
WEIBO (Ma et al., 2016) as the source data. The
statistics of the four datasets are shown in Table 3.

B Implementation Details

We set the number L of the graph convolutional
layer as 2, the trade-off parameter α as 0.5, and
the adversarial perturbation norm ϵ as 1.5. The
temperature τ is set to 0.1. Parameters are updated
through back-propagation (Collobert et al., 2011)
with the Adam optimizer (Loshchilov and Hutter,

6https://twarc-project.readthedocs.io/
en/latest/twarc2_en_us/

7https://service.account.weibo.com/

2018). The learning rate is initialized as 0.0001,
and the dropout rate is 0.2. Early stopping (Yao
et al., 2007) is applied to avoid overfitting. We
run all of our experiments on one single NVIDIA
Tesla T4 GPU. We set the total batch size to 64,
where the batch size of source samples is set to
32, the same as target samples. The hidden and
output dimensions of each node in the structure-
based network are set to 512 and 128, respectively.
Since the focus in this paper is primarily on better
leveraging the contrastive learning for domain and
language adaptation on top of event-level represen-
tations, we choose the XLM-RBase (Layer number
= 12, Hidden dimension = 768, Attention head
= 12, 270M params) as our sentence encoder for
language-agnostic representations at the post level.
We use accuracy and macro-averaged F1 score,
as well as class-specific F1 score as the evalua-
tion metrics. Unusually, to conduct five-fold cross-
validation on the target dataset in our low-resource
settings, we use each fold (about 80 claim posts
with propagation threads in the target data) in turn
for training, and test on the rest of the dataset. The
average runtime for our approach on five-fold cross-
validation in one iteration is about 3 hours. The
number of total trainable parameters is 1,117,954
for our model. We implement our model with py-
torch8.

C Qualitative Analysis

C.1 Effect of Adversarial Perturbation Norm

Figure 5 shows the effect of adversarial perturba-
tion norm on rumor detection performance. The
X-axis denotes the value of ϵ, where ϵ = 0.0 in the
line means no adversarial augmentation. In gen-
eral, the adversarial augmentation contributes to
the improvements and ϵ ∈ [1.0, 2.0) achieves bet-
ter performances. For the Weibo-COVID19 dataset,
our proposed approach ACLR with a smaller ad-
versarial perturbation can still obtain better results
but lower than the results with an optimal range
of perturbation, while large norms tend to damage
the effect of ACLR. In terms of Twitter-COVID19,
our method still performs well with a broad range
of adversarial perturbations and the performance
tends to stabilize as the norm value increases.

8pytorch.org
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Cross-Domain&Lingual Settings Source Target Source Target
Statistics TWITTER Weibo-COVID19 WEIBO Twitter-COVID19
# of events 1154 399 4649 400
# of tree nodes 60409 26687 1956449 406185
# of non-rumors 579 146 2336 148
# of rumors 575 253 2313 252
Avg. time length/tree 389 Hours 248 Hours 1007 Hours 2497 Hours
Avg. depth/tree 11.67 4.31 49.85 143.03
Avg. # of posts/tree 52 67 420 1015
Domain Open COVID-19 Open COVID-19
Language English Chinese Chinese English

Table 3: Statistics of Datasets in Cross-Domain and Cross-Lingual Settings.
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Figure 5: Effect of Adversarial Perturbation Norm ϵ.
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Figure 6: Effect of trade-off parameter α.

C.2 Effect of Trade-off Parameter between
Classification and Contrastive Objectives

To study the effects of the trade-off hyper-
parameter in our training paradigm, we conduct
ablation analysis under ACLR architecture (Fig-
ure 6). We can see that α = 0.5 achieves the best
performance while the point where α = 0.3 also
has good performance. Looking at the overall trend,
the performance fluctuates more or less as the value
of α grows. We conjecture that this is because the
supervised contrastive objective, while optimizing

the representation distribution, compromises the
mapping relationship with labels. Multitask means
optimizing two losses simultaneously. This setting
leads to mutual interference between two tasks,
which affects the convergence effect. This phe-
nomenon points out the direction for our further
research in the future.

C.3 Effect of Target Training Data Size.

Figure 7 shows the effect of target training data
size. We randomly choose training data with a cer-
tain proportion from target data and use the rest
set for evaluation. We use the cross-domain and
cross-lingual settings concurrently for model train-
ing, the same as the main experiments. Results
show that with the decrease of training data size,
the performance gradually decreases. Especially
for Weibo-COVID19, it will be greatly affected.
However, even when only 20 target data are used
for training, our model can still achieve more than
approximately 60% and 65% rumor detection per-
formance (Macro F1 score) on two target data sets
Weibo-COVID19 and Twitter-COVID19 respec-
tively, which further proves ACLR has strong ap-
plicability for improving low-resource rumor de-
tection on social media.

C.4 Discussion about Low-Resource Settings

In this section, we evaluate our proposed frame-
work with different source datasets to discuss the
low-resource settings in our experiments. Consid-
ering the cross-domain and cross-lingual settings
in the main experiments, we also conduct an ex-
periment in cross-domain settings. Specifically,
for the Weibo-COVID as the target data, we uti-
lize the WEIBO dataset as the source data with
rich annotation. In terms of Twitter-COVID19, we
set the TWITTER dataset as the source data. Ta-
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Figure 7: Effect of target training data size.

Target Weibo-COVID19 Twitter-COVID19
Settings Acc. Mac-F1 Acc. Mac-F1

Cross-D&L 0.873 0.861 0.765 0.686
Cross-D 0.884 0.855 0.737 0.623

Table 4: Rumor detection results of our proposed frame-
work in different low-resource settings. Cross-D&L
denotes the cross-domain and cross-lingual settings and
Cross-D denotes the cross-domain and monolingual set-
tings.

ble 4 depicted the results in different low-resource
settings. It can be seen from the results that our
model performs generally better in cross-domain
and cross-lingual settings concurrently than that
only in cross-domain settings, which demonstrates
the key insight to bridge the low-resource gap is to
relieve the limitation imposed by the specific lan-
guage resource dependency besides the specific do-
main. Our proposed adversarial contrastive learn-
ing framework could alleviate the low-resource is-
sue of rumor detection as well as reduce the heavy
reliance on datasets annotated with specific domain
and language knowledge.

D Future Work

We will explore the following directions in the fu-
ture:

1. We are going to explore the pre-training
method with contrastive learning and then
finetune the model with classification loss,
which may further improve the performance
and stability of the model.

2. Considering that our model has explicitly over-
come the restriction of both domain and lan-
guage usage in different datasets, we plan
to evaluate our model on the datasets about

more breaking events in low-resource do-
mains and/or languages by leveraging existing
datasets with rich annotation. We believe that
our work could provide new guidance for fu-
ture rumor detection about breaking events on
social media.
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