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Abstract
As Abstract Meaning Representation (AMR)
implicitly involves compound semantic anno-
tations, we hypothesize auxiliary tasks which
are semantically or formally related can better
enhance AMR parsing. We find that 1) Seman-
tic role labeling (SRL) and dependency parsing
(DP), would bring more performance gain than
other tasks e.g. MT and summarization in the
text-to-AMR transition even with much less
data. 2) To make a better fit for AMR, data
from auxiliary tasks should be properly “AM-
Rized” to PseudoAMR before training. Knowl-
edge from shallow level parsing tasks can be
better transferred to AMR Parsing with struc-
ture transform. 3) Intermediate-task learning is
a better paradigm to introduce auxiliary tasks to
AMR parsing, compared to multitask learning.
From an empirical perspective, we propose a
principled method to involve auxiliary tasks to
boost AMR parsing. Extensive experiments
show that our method achieves new state-of-
the-art performance on different benchmarks
especially in topology-related scores. Code and
models are released at https://github.
com/PKUnlp-icler/ATP.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) parsing aims to translate a
sentence to a directed acyclic graph, which rep-
resents the relations among abstract concepts as
shown in Figure 1. AMR can be applied to many
downstream tasks, such as information extraction
(Rao et al., 2017; Wang et al., 2017; Zhang and
Ji, 2021), text summarization, (Liao et al., 2018;
Hardy and Vlachos, 2018) question answering (Mi-
tra and Baral, 2016; Sachan and Xing, 2016) and
dialogue modeling (Bonial et al., 2020).

Recently, AMR Parsing with the sequence-to-
sequence framework achieves most promising re-
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Figure 1: The Abstract Meaning Representation (AMR),
Semantic Role Labeling (SRL), and Dependency Pars-
ing (DP) structure of the sentence “The boy wants to
leave.”

sults (Xu et al., 2020; Bevilacqua et al., 2021).
Comparing with transition-based or graph-based
methods, sequence-to-sequence models do not
require tedious data processing and is naturally
compatible with auxiliary tasks (Xu et al., 2020)
and powerful pretrained encoder-decoder models
(Bevilacqua et al., 2021). Previous work (Xu et al.,
2020; Wu et al., 2021) has shown that the perfor-
mance of AMR parser can be effectively boosted
through co-training with certain auxiliary tasks, e.g.
Machine Translation or Dependency Parsing.

However, when introducing auxiliary tasks to en-
hance AMR parsing, we argue that three important
issues still remain under-explored in the previous
work. 1) How to choose auxiliary task? The
task selection is important since loosely related
tasks may even impede the AMR parsing accord-
ing to Damonte and Monti (2021). However, in
literature there are no principles or consensus on
how to choose the proper auxiliary tasks for AMR
parsing. Though previous work achieves notice-
able performance gain through multi-task learn-
ing, they do not provide explainable insights on
why certain task outperforms others or in which
aspects the auxiliary tasks benefit the AMR parser.
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Figure 2: Illustration of methodology in this paper. We
proposed a principled method to select, transform and
train the auxiliary tasks.

2) How to bridge the gap between tasks ? The
gaps between AMR parsing and auxiliary tasks are
non-negligible. For example, Machine Translation
generates text sequence while Dependency Pars-
ing (DP) and Semantic Role Labeling (SRL) pro-
duces dependency trees and semantic role forests
respectively as shown in Figure 1. Prior studies
(Xu et al., 2020; Wu et al., 2021; Damonte and
Monti, 2021) do not attach particular importance
to the gap, which might lead the auxiliary tasks
to outlier-task (Zhang and Yang, 2021; Cai et al.,
2017) in the Multitask Learning, deteriorating the
performance of AMR parsing. 3) How to intro-
duce auxiliary tasks more effectively? After in-
vestigating different training paradigms to combine
the auxiliary task training with the major objective
(AMR parsing), we figure out that, although all
baseline models (Xu et al., 2020; Wu et al., 2021;
Damonte and Monti, 2021) choose to jointly train
the auxiliary tasks and AMR parsing with Multi-
task Learning (MTL), Intermediate-task Learning
(ITL) is a more effective way to introduce the aux-
iliary tasks for pretrained models. Our observation
is also consistent with (Pruksachatkun et al., 2020;
Poth et al., 2021), which improve other NLP tasks
with enhanced pretrained models.

In response to the above three issues, we sum-
marize a principled method to select, transform
and train the auxiliary tasks (Figure 2) to enhance
AMR parsing from extensive experiments. 1) Aux-
iliary Task Selection. We choose auxiliary tasks
by estimating their similarities with AMR from
the semantics and formality perspectives. AMR is
recognized as a deep semantic parsing task which
encompasses multiple semantic annotations, e.g.
semantic roles, name entities and co-references. As
a direct semantic-level sub-task of AMR parsing,
we select SRL as one auxiliary task. Traditionally,

formal semantics views syntactic parsing a precur-
sor to semantic parsing, leading to the mapping
between syntactic and semantic relations. Hence
we introduce dependency parsing, a syntactic pars-
ing task as another auxiliary task. 2) AMRization.
Despite being highly related, the output formats of
SRL, DP and AMR are distinct from each other.
To this end, we introduce transformation rules to
“AMRize” SRL and DP to PseudoAMR, intimating
the feature of AMR. Specifically, through Reen-
trancy Restoration we transform the structure of
SRL to a graph and restore the reentrancy within
arguments, which mimics AMR structure. Through
Redundant Relation Removal we conduct transfor-
mation in dependency trees and remove relations
that are far from semantic relations in AMR graph.
3) Training Paradigm Selection. We find that
ITL makes a better fit for AMR parsing than MTL
since it allows model progressively transit to the
target task instead of learning all tasks simultane-
ously, which benefits knowledge transfer (Zhang
and Yang, 2021).

We summarize our contributions as follows:

1. Semantically or formally related tasks, e.g.,
SRL and DP, are better auxiliary tasks for
AMR parsing compared with distantly related
tasks, e.g. machine translation and machine
reading comprehension.

2. We propose task-specific rules to AMRize the
structured data to PseudoAMR. SRL and DP
with properly transformed output format fur-
ther improve AMR parsing.

3. ITL outperforms classic MTL methods when
introducing auxiliary tasks to AMR Parsing.
We show that ITL derives a steadier and better
converging process during training.

Extensive experiments show that our method
(PseudoAMR + ITL) achieves the new state-of-the-
art of single model on in-distribution (85.2 Smatch
score on AMR 2.0, 83.9 on AMR 3.0), out-of-
distribution benchmarks. Specifically we observe
that AMR parser gains larger improvement on the
SRL(+3.3), Reentrancy(+3.1) and NER(+2.0) met-
rics*, due to higher resemblance with the selected
auxiliary tasks.
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Figure 3: Illustration of AMRization methods and Graph Linearization. The source sentence is “The boy wants to
leave."

2 Methodology

As shown in Figure 2, in this paper, we propose
a principled method to select auxiliary tasks (Sec-
tion 2.1), AMRize them into PseudoAMR (Section
2.2) and train PseudoAMR and AMR effectively
(Section 2.3) to boost AMR parsing. We formu-
late both PseudoAMR and AMR parsing as the
sequence-to-sequence generation problem. Given
a sentence x = [xi]1≤i≤N , the model aims to
generate a linearized PseudoAMR or AMR graph
y = [yi]1≤i≤M (the right part of Figure 3) with a
product of conditional probability:

P (y|x) =
M∏

i=1

p(yi|(y1, y2, ..., yi−1), x)

2.1 Auxiliary Task Selection

When introducing auxiliary tasks for AMR parsing,
the selected tasks should be formally or seman-
tically related to AMR, thus the knowledge con-
tained in them can be transferred to AMR parsing.
Based on this principle of relevance, we choose se-
mantic role labeling (SRL) and dependency parsing
(DP) as our auxiliary tasks. We involve Translation
and Summarization tasks for comparison.

Semantic Role Labeling SRL aims to recover
the predicate-argument structure of a sentence,
which can enhance AMR parsing, because: (1) Re-
covering the predicate-argument structure is also a
sub-task of AMR parsing. As illustrated in Figure

*Computed on AMR 2.0 and 3.0 dataset.

3(a,b), both AMR and SRL locate the predicates
(“want”, “leave”) of the sentence and conduct word-
sense disambiguation. Then they both capture the
multiple arguments of center predicate. (2) SRL
and AMR are known as shallow and deep semantic
parsing, respectively. It is reasonable to think that
the shallow level of semantic knowledge in SRL is
useful for deep semantic parsing.

Dependency Parsing DP aims to parse a sen-
tence into a tree structure, which represents the
dependency relation among tokens. The knowl-
edge of DP is useful for AMR parsing, since: (1)
Linguistically, DP (syntax parsing task) can be the
precursor task of AMR (semantic parsing). (2)
The dependency relation of DP is also related to
semantic relation of AMR, e.g., as illustrated in
Figure 1(c), “NSUBJ” in DP usually represents
“:ARG0” in AMR. Actually, they both correspond
to the agent-patient relations in the sentence. (3)
DP is similar to AMR parsing from the perspective
of edge prediction, because both of them need to
capture the relation of nodes (tokens/concepts) in
the sentence.

2.2 AMRization

Although SRL and DP are highly related to AMR
parsing, there still exists gaps between them, e.g.,
SRL annotations may be disconnected, while AMR
is always a connected graph. To bridge these gaps,
we transform them into PseudoAMR, which we
call AMRization.
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2.2.1 Transform SRL to PseudoAMR
We summarize typical gaps between SRL and
AMR as: (1) Connectivity. AMR is a connected di-
rected graph while the structure of SRL is a forest.
(2) Span-Concept Gap. Nodes in AMR graph rep-
resent concepts (e.g., “boy”) while that of SRL are
token spans (e.g., “the boy”, “that boy”). Actually
all the mentioned token spans correspond to the
same concept. (3) Reentrancy. Reentrancy is an
important feature of AMR as shown in Figure 3(a),
the instance boy is referenced twice as ARG0. The
feature can be applied to conduct coreference reso-
lution. However, there is no reentrancy in SRL. To
bridge such gaps, we propose Connectivity For-
mation, Argument Reduction and Reentrancy
Restoration to transform SRL into PseudoAMR.

Connectivity Formation To address the connec-
tivity gap, we need to merge all SRL trees into a
connective graph. Note that the merging doesn’t
guarantee correctness in semantic level. As shown
in Figure 3(b-1), we first add a virtual root node,
then generating a directed edge from the virtual
root to each root of SRL trees, thus the SRL anno-
tation becomes a connected graph.

Argument Reduction To address the Span-
Concept Gap, as shown in Figure 3(b-2), if the
argument of current predicate is a span with more
than one token, we will replace this span with its
head token in its dependency structure. Thus token
spans “the boy”, “that boy” will be transformed to
“boy”, more similar to the corresponding concept.
Similar method has been to applied by (Zhang et al.,
2021) to find the head of token spans of argument.

Reentrancy Restoration For the reentrancy gap,
we design a heuristic algorithm based on DFS to
restore reentrancy in SRL. As shown in Figure 3(b-
3), the core idea of the restoration is that we create
a variable when the algorithm first sees a node. If
the DFS procedure meets node with the same name,
the destination of current edge will be redirected to
the variable we have created at first. Please refer to
Appendix A for the pseudo code of the reentrancy
restoration.

Dependency Guided Restoration The previous
restoration algorithm can not guarantee the merg-
ing of nodes agrees to the meaning of reentrancy
in AMR since it merges concept according to their
appearance order in the SRL structure. And it does
not handle the merging of predicates. As shown

Figure 4: Illustration of Dependency Guided Restora-
tion. In step 2, leaf-nodes “The boy” are merged. In step
3, none-leaf node “leave-01” is merged with leaf-node
“to leave” since “leave-01” appears in word span “to
leave” and word “leave” depends on word “want”.

in Figure 3(b-3), the node “leave” and “leave-01”
should be merged, however we can’t get this in-
formation directly from the SRL annotations. We
therefore propose another restoration method based
on the dependency structure of the corresponding
sentence of the SRL as illustrated in Figure 4

This restoration algorithm takes the result of
previous Connectivity Formation as input. It first
merges the leaf-nodes corresponding to the same
token. This step is accurate since leaf-nodes’ merg-
ing will not bring divergence. The second step is to
merge predicate nodes. For all sub-trees of the root
node, it first check whether one predicate appear in
others’ argument span and whether the predicate
directly depend on the span’s predicate. If both two
conditions are satisfied, the algorithm will merge
the predicate and the span to one node. Last, it
removes the root node and root-edges if the graph
remains connected after removing.

2.2.2 Transform Dependency Structure to
PseudoAMR

We summarize the gaps between Dependency Tree
and AMR as: (1) Redundant Relation. Some rela-
tions in dependency parsing focus on syntax, e.g.,
“:PUNCT” and “:DET”, which are far from seman-
tic relations in AMR. (2) Token-Concept Gap. The
basic element of dependency structure is token
while that of AMR is the concept, which captures
deeper syntax-independent semantics. We use Re-
dundant Relation Removal and Token Lemma-
tization to transform the dependency structure to
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PseudoAMR to handle the gaps.

Redundant Relation Removal For the Redun-
dant Relation Gap, we remove some relations
which are far from the sentence’s semantics most
of the time, such as “PUNCT” and “DET”. As illus-
trated in Figure 3(c-1), by removing some relations
of the dependence, the parsing result become more
compact compared with original DP tree, forcing
the model to ignore some semantics-unrelated to-
kens during seq2seq training.

Token Lemmatization As shown in Figure 3(c-
2), for Token-Concept Gap, we conduct lemmati-
zation on the node of dependency tree based on the
observation that the affixes of single word do not
affect the concept it corresponds to. Together with
the smart-initialization (Bevilacqua et al., 2021)
by setting the concept token’s embedding as the
average of the subword constituents, the embed-
ding vector of lemmatized token (‘want’) becomes
closer to the vector concept (‘want-01’) in the em-
bedding matrix, therefore requiring the model to
capture deeper semantic when conducting DP task.

2.2.3 Linearization
After all AMRization steps, the graph structure of
SRL/DP also should be linearized before doing
seq2seq training. As depicted in the right part of
Figure 3, we linearize the graph by the DFS-based
travel, and use special tokens <R0>, ..., <Rk> to in-
dicate variables, and parentheses to mark the depth,
which is the best AMR linearization method of
Bevilacqua et al. (2021).

2.3 Training Paradigm Selection
After task selection and AMRization, we still need
to choose an appropriate training paradigm to train
PseudoAMR and AMR effectively. We explore
three training paradigms as follows:

Multitask training Following Xu et al. (2020);
Damonte and Monti (2021), we use classic schema
in sequence-to-sequence multitask training by
adding special task tag at the beginning of input
sentence and training all tasks simultaneously. The
validation of best model is conducted only on the
AMR parsing sub-task.

Intermediate training Similar to Pruksachatkun
et al. (2020), we first fine-tune the pretrained model
on the intermediate task (PseudoAMR parsing),
followed by fine-tuning on the target AMR parsing
task under same training setting.

Multitask & Intermediate training We apply
a joint paradigm to further explore how differ-
ent paradigms affect AMR parsing. We first con-
duct multitask training, followed by fine-tuning on
AMR parsing. Under this circumstance, Multitask
training plays the role as the intermediate task.

3 Experiments

3.1 Datasets
AMR Datasets We conducted out experiment
on two AMR benchmark datasets, AMR 2.0 and
AMR 3.0. AMR2.0 contains 36521, 1368 and 1371
sentence-AMR pairs in training, validation and test-
ing sets, respectively. AMR 3.0 has 55635, 1722
and 1898 sentence-AMR pairs for training vali-
dation and testing set, respectively. We also con-
ducted experiments in out-of-distribution datasets
(BIO,TLP,News3) and low-resources setting.

Auxiliary Task Datasets Apart from DP/SRL,
we choose NLG tasks including summarization and
translation to evaluate the contributions of auxiliary
tasks. Description of datasets is listed Appendix C.

3.2 Evaluation Metrics
We use the Smatch scores (Cai and Knight, 2013)
and further the break down scores (Damonte et al.,
2017) to evaluate the performance.

To fully understand the aspects where auxil-
iary tasks improve AMR parsing, we divide the
fine-grained scores to two categories: 1) Concept-
Related including Concept, NER and Negation
scores, which care more about concept centered
prediction. 2) Topology-Related including Unla-
beled, Reentrancy and SRL scores, which focus on
edge and relation prediction. NoWSD and Wikifi-
cation are listed as isolated scores because NoWSD
is highly correlated with Smatch score and wikifi-
cation relies on external entity linker system.

3.3 Experiment Setups
Model Setting We use current state-of-the-art
Seq2Seq AMR Paring model SPRING (Bevilacqua
et al., 2021) as our main baseline model and apply
BART-Large (Lewis et al., 2020) as our pretrained
model. Blink (Li et al., 2020) is used to add wiki
tags to the predicted AMR graphs. We do not ap-
ply re-category methods and other post-processing
methods are the same with Bevilacqua et al. (2021)
to restore AMR from token sequence. Please re-
fer to Section E from appendix for more training
details.
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Model Extra Data SMATCH NoWSD Wiki
Concept-related Topology-related

Conc. NER Neg. Unll. Reen. SRL
A

M
R

2.
0

Cai and Lam (2020) N 78.7 79.2 81.3 88.1 87.1 66.1 81.5 63.8 74.5
Fernandez Astudillo et al. (2020) N 80.2 80.7 78.8 88.1 87.5 64.5 84.2 70.3 78.2
Zhou et al. (2021a) 70k 81.8 82.3 78.8 88.7 88.5 69.7 85.5 71.1 80.8
SPRING (Bevilacqua et al., 2021) N 83.8 84.4 84.3 90.2 90.6 74.4 86.1 70.8 79.6
SPRING (w/ silver) (Bevilacqua et al., 2021) 200k 84.3 84.8 83.1 90.8 90.5 73.6 86.7 72.4 80.5
SPRING (Ours) N 84.0 84.3 83.5 89.9 91.8 75.1 87.1 71.3 81.3
ATP (w/ DP) 40k 85.0 85.4 84.1 90.4 92.5 74.7 88.2 74.7 83.1
ATP (w/ SRL) 40k 85.1 85.6 83.6 90.4 91.4 75.7 88.2 75.0 83.5
ATP (w/ SRLD) 40k 85.2 85.6 84.2 90.7 93.1 74.9 88.3 74.7 83.3

Graphene 4SE (Lam et al., 2021) 200k 84.8 85.3 83.9 90.6 92.2 75.2 88.0 71.4 83.5
Structure-awareE (Zhou et al., 2021b) 47k 84.9 - - - - - - - -
ATP (w/ SRL) E 40k 85.3 85.7 83.9 90.7 92.2 75.0 88.4 75.0 83.6
ATP (w/ SRLD) E 40k 85.3 85.7 84.0 90.8 92.7 74.7 88.4 75.1 83.6

A
M

R
3.

0

Bevilacqua et al. (2021) (w/ silver) 200k 83.0 83.5 82.7 89.8 87.2 73.0 85.4 70.4 78.9
ATP (w/ DP) 40k 83.9 84.3 81.6 89.7 89.2 73.0 87.0 73.7 82.3
ATP (w/ SRL) 40k 83.9 84.3 81.0 89.7 88.4 73.9 87.0 73.9 82.5

Graphene 4SE (Lam et al., 2021) 200k 83.8 84.2 81.9 90.1 88.3 74.6 86.9 70.2 82.5
Structure-awareE (Zhou et al., 2021b) 47k 83.1 - - - - - - - -
ATP (w/ SRL)E 40k 84.0 84.5 80.7 90.0 88.9 73.1 87.1 73.9 82.6

Table 1: SMATCH and fine-grained F1 scores on AMR 2.0 and 3.0. D denotes model using Dependency Guided
Restoration. E denotes result with model ensemble (the details of the ensembling models are described in Appendix
B). We conduct ensembling by averaging the models from three random seeds following Zhou et al. (2021b).

AMRization Setting For SRL, we explore four
AMRization settings. 1) Trivial. Concept :multi-
sentence and relation :snt are used to represent the
virtual root and its edges to each of the SRL trees.
2) With Argument Reduction. We use dependency
parser from Stanford CoreNLP Toolkit (Manning
et al., 2014) to do the argument reduction. 3) With
Reentrancy Restoration 4) All techniques.

For DP, we apply four AMRization settings 1)
Trivial. Extra relations in dependency tree are
added to the vocabulary of BART 2) With Lemma-
tization. We use NLTK (Bird, 2006) to conduct
token lemmatization 3) With Redundant Relation
Removal. We remove PUNCT, DET, MARK and
ROOT relations. 4) All techniques.

3.4 Main Results

We report the result (ITL + All AMRization Tech-
niques) on benchmark AMR 2.0 and 3.0 in Table 1.
On AMR 2.0, our models with DP or SRL as inter-
mediate task gains consistent improvement over the
SPRING model by a large margin (1.2 Smatch) and
reach new state-of-the-art for single model (85.2
Smatch). Compared with SPRING with 200k extra
data, our models achieve higher performance with
much less extra data (40k v.s. 200k), suggesting
the effectiveness of our intermediate tasks. We also
compare our models with contemporary work (Lam
et al., 2021; Zhou et al., 2021b). It turns out that
our ensemble model beats its counterpart with less
extra data, reaching a higher performance (85.3

Smatch). In fact, even without ensembling, our
model still performs better than those ensembling
models and the model using Dependency Guided
Restoration method achieves higher performance
than the trivial one, showing the effectiveness of
our methods.

On AMR 3.0, Our models consistently outper-
form other models under both single model (83.9
Smatch) and ensembling setting (84.0 Smatch).
Same as AMR 2.0, our single model reaches higher
Smatch score than those ensembling models, re-
vealing the effectiveness of our proposed methods.

Fine-grained Performance To better analyse
how the AMR parser benefits from the interme-
diate training and how different intermediate tasks
affect the overall performance. We report the fine-
grained score as shown in Table 1. We can tell
that by incorporating intermediate tasks, consider-
able increases on most sub-metrics, especially on
the Topology-related terms, are observed. On both
AMR 2.0 and 3.0 our single model with SRL as
intermediate task achieves the highest score in Un-
labeled, Reentrancy and SRL metrics, suggesting
that SRL intermediate task improves our parser’s
capability in Coreference and SRL.

DP leads to consistent improvement in topology-
related metrics, which also derives better result on
NER sub-task (92.5 on AMR 2.0, 89.2 on AMR
3.0). We suppose that the ":nn" relation which sig-
nifies multi-word name entities in dependency pars-
ing helps the AMR parser recognize multi-word
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Model Extra SMATCH Conc. Topo.

Ours (w/ NLG)
- w/ DialogSum 13k 84.5 85.5 81.5
- w/ CNNDM 40k 84.4 85.5 81.7
- w/ CNNDM 80k 84.2 85.1 81.4
- w/ EN-DE 40k 84.4 85.3 81.5
- w/ EN-DE 80k 84.4 85.4 81.4
- w/ EN-DE 200k 84.2 84.6 81.2
- w/ EN-DE 400k 83.6 84.9 80.6
Ours (w/ Parsing)
- w/ DP 40k 85.0 85.9 82.0
- w/ SRL 40k 85.1 85.8 82.2

Table 2: Result of Task Selection. We first train BART
on different auxiliary tasks for 10 epochs before AMR
Parsing. We also report the average scores of Concept-
related (Conc.) and Topology-related metrics (Topo.)

name entities. Generally speaking, AMR parser
gains large improvement in Topology-related sub-
tasks and NER by incorporating our intermediate
tasks in terms of the Smatch scores.

3.5 Exploration in Auxiliary Task Selection

We explore how different tasks affect AMR parsing
apart from DP and SRL. We involve two classic
conditional NLG tasks, Summarization and Trans-
lation for comparison as shown in Table 2.

The comparison implies that SRL and DP are
better auxiliary tasks for AMR Parsing even un-
der the circumstance where their counterparts ex-
ploit far more data (40k v.s. 400k). In fact, the
performance of MT drops while introducing more
data, which contradicts with Xu et al. (2020) ’s
findings that more MT data can lead to better re-
sult when pretraining the raw Transformer model.
However, this is not surprising under the back-
ground of Intermediate-task Learning where we
already have a pretrained model with large-scale
pretraining. Whether the intermediate tasks’ form
fits for the target task is far more important than
the amount of data in the intermediate-task as also
revealed by Poth et al. (2021). According to their
observation, tasks with the most data (QQP 363k,
MNLI 392k) perform far worse ( -97.4% relative
performance degradation at most) on some target
tasks compared with tasks having much smaller
datasets (CommonsenseQA 9k, SciTail 23k) which
on the contrary give a positive influence.

In conclusion, our findings suggest that the selec-
tion of intermediate task is important and should be
closely related to AMR parsing in form, otherwise
it would even lead to a performance drop for AMR
parsing.
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Figure 5: The distance distribution of sentences repre-
sentation. SRL and DP consistently provide more sim-
ilar sentence representation to AMR than Translation.
The computation is illustrated in Figure 7 in appendix.

4 Analysis

4.1 More Similar Sentence Representation

To examine how different auxiliary tasks affect
AMR parsing, we collect the sentences’ represen-
tation from different tasks’ trained encoders2. We
use the average hidden state of the encoder’s output
as the sentence representation. We compute the Co-
sine Similarity and L2 distance between auxiliary
tasks’ representation and AMR’s representation for
same sentence. The test split of AMR 2.0 is used
for evaluation. Finally, We apply Gaussian distribu-
tion to fit the distribution of distances and draw the
probability distribution function curves as shown
in Figure 5. It turns out that under both distance
metrics, SRL/DP consistently provide more similar
sentence representation to AMR than Translation
and SRL/DP are more similar to AMR parsing. It
empirically justifies our hypothesis that semanti-
cally or formally related tasks can lead to a better
initialization for AMR parsing.

4.2 Ablation Study on AMRization Methods

As shown in Table 3, we conduct ablation study
on how different AMRization methods affect the
performance AMR parsing. For both SRL and
DP, jointly adopting our AMRization techniques
can further improve the performance of AMR pars-
ing significantly, comparing to trivial linearization.
The imperfect reentrancy restoration method leads
to a significant improvement in terms of both the
Topology and Concept related scores. It reveals that
transformation of structure to mimic the feature of
AMR can better the knowledge transfer between
shallow and deep semantics.

As shown in Table 8, compared with jointly us-
ing the two techniques, it is worth noting that model

2The computing process of sentences representation dis-
tance is illustrated in Figure 7 in appendix
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Model SMATCH Conc. Topo.

Ours (w/ Semantic Role Labeling) 84.5 85.5 81.6
- w/ Arg. Reduction(AR) 84.8 85.6 81.9
- w/ Reen. Restoration(RR) 85.0 86.1 82.5
- w/ AR+RR 85.1 85.8 82.2
- w/ AR+RRD 85.2 86.2 82.1

Ours (w/ Dependency Parsing) 84.4 84.7 81.7
- w/ Redundant Relation Removal (RRR) 84.5 85.2 81.8
- w/ Lemmatization (Lemma) 84.7 85.5 81.7
- w/ RRR + Lemma 85.0 85.9 82.0

Table 3: We report the average scores of Concept-related
scores and Topology-related scores. The full scores are
listed in Table 8. The improvement of involving all
techniques against trivial linearization is significant with
p < 0.005 for both SRL and DP.

Model Extra SMATCH

Ours (w/ Intermediate)
- w/ DP 40k 85.0
- w/ SRL 40k 85.1
- w/ DP,SRL 80k 84.7
Ours (w/ Multitask)
- w/ DP 40k 83.7
- w/ SRL 40k 83.6
- w/ DP,SRL 80k 83.5
Ours (w/ Multi. + Inter.)
- w/ DP 40k 84.1
- w/ SRL 40k 84.1
- w/ DP,SRL 80k 83.9

Table 4: Analysis on Training Paradigms. Intermediate-
task training is more suitable for AMR parsing than
Multitask training

with solely Reentrancy Restoration reaches high-
est fine-grained scores in especially on Reentrancy
and SRL scores. To explore the reason why it sur-
passes adopting both techniques, we analyse the
number of restored reentrancy. The result shows
that about 10k more reentrancies are added when
Argument Reduction (AR) is previously executed.
It’s expected since AR replaces the token span to
the root token. Compared with token span, sin-
gle token is more likely to be recognized as the
correference variable according to the Reentrancy
Restoration (RR) algorithm, thus generating more
reentrancy, which might include bias to the model.
This explains why solely using RR can lead to bet-
ter results on SRL and Reen.

4.3 ITL Outweighs MTL

We report the result of different fine-tuning
paradigms in Table 4. It justifies our assumption
that classic multitask learning with task tag as pre-
viously applied in Xu et al. (2020); Damonte and
Monti (2021) does not compare with intermediate
training paradigm for AMR Parsing task.
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Figure 6: The loss curve on development set of AMR
2.0 for different training paradigms.

Model BIO TLP News3

SPRING 59.7 77.3 73.7
SPRING + silver 59.5 77.5 71.8
SPRINGE 60.5 77.9 74.7
Ours 61.2 78.9 75.4

Table 5: Analysis on OOD data. E denotes result given
by the ensembling of models. Our model exploits SRL
as the intermediate task.

As shown in Figure 6, Intermediate-task train-
ing provides a faster and better converging process
than MTL. We assume this is due to the huge gap
between AMR parsing and auxiliary tasks which
may harm the optimization process of MTL. The
process of optimizing all auxiliary tasks simultane-
ously may introduce noise to AMR Parsing.

We also find that under the setting of ITL, se-
quentially training SRL and DP tasks did not bring
further improvement to AMR parsing. We guess
this is due to the catastrophic forgetting problem.
Further regularization during training might help
the model progressively learn from different auxil-
iary tasks and relieve catastrophic forgetting.

4.4 Exploration in Out-of-Distribution
Generalization

Following Bevilacqua et al. (2021); Lam et al.
(2021), we assess the performance of our mod-
els when trained on out-of-distribution (OOD) data.
The models trained solely on AMR 2.0 training
data are used to evaluate out-of-distribution perfor-
mance on the BIO, the TLP and the News3 dataset.

Table 7 shows the result of our out-of-
distribution experiments. Our model surpass other
models even the ensembled one(Lam et al., 2021),
creating new state-of-the-art for single model.
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Model BOLT LORELEI DFA

Dev
SPRING 30.8 72.3 73.5
Ours 56.0 73.9 76.1

Test
SPRING 34.6 73.8 71.1
Ours 59.4 74.5 74.3

Table 6: Model Smatch scores in the low-resource set-
ting. There are 1061, 4441, 6455 examples in the train-
ing set of BOLT, LORELEI and DFA, respectively. The
model exploits SRL as the intermediate task.

4.5 Exploration in Low Resources Setting

Since the annotation of AMR is both time and la-
bor consuming, it raises our interests if we can
improve the learning ability of AMR Parser under
low resources setting.

We set three low resources benchmarks BOLT,
LORELEI, DFA for AMR parsing based on the
different sufficient degree of training examples. De-
tail of the datasets is described in Appendix D .
Compared with the AMR2.0 dataset which has
36521 training samples, the number of training
samples in BOLT, LORELEI, DFA are 2.9%,
12.2% and 17.7% of the number of AMR2.0. Ta-
ble 6 reports the result. Our model surpasses the
SPRING model by a real large margin (about 25
Smatch) in the BOLT dataset which is the most
insufficient in data and gains a consistent improve-
ment on all datasets, suggesting that our pretraining
method is effective under low resources conditions.

5 Related Work

AMR Parsing AMR parsing is a challenging se-
mantic parsing task, since AMR is a deep semantic
representation and consists of many separate an-
notations (Banarescu et al., 2013) (e.g., semantic
relations, named entities, co-reference and so on).
There are four major methods to do AMR Parsing
currently, sequence-to-sequence approaches (Ge
et al., 2019; Xu et al., 2020; Bevilacqua et al., 2021;
Wang et al., 2022), tree-based approaches (Zhang
et al., 2019b,a), graph-based approaches (Lyu and
Titov, 2018; Cai and Lam, 2020) and transition-
based approaches (Naseem et al., 2019; Lee et al.,
2020; Zhou et al., 2021a).

There are two ways to incorporate other tasks to
AMR Parsing. Goodman et al. (2016) builds AMR
graph directly from dependency trees while (Ge
et al., 2019) parse directly from linearized syntactic
tree. Xu et al. (2020) introduces Machine Trans-
lation, Constituency Parsing as pretraining tasks

for Seq2Seq AMR parsing and Wu et al. (2021) in-
troduces Dependency Parsing for transition-based
AMR parsing. However all of them do not take
care of the semantic and formal gap between the
auxiliary tasks and AMR parsing.

Multitask & Intermediate-task Learning
Multi-task Learning (MTL) (Caruana, 1997) aims
to jointly train multiple related tasks to improve
the performance of all tasks. Different from MTL,
Intermediate-task Learning (ITL) is proposed
to enhance pretrained models e.g. BERT by
training on intermediate task before fine-tuning
on the target task. Recent studies(Pruksachatkun
et al., 2020; Poth et al., 2021) on ITL expose that
choosing right intermediate tasks is important.
Tasks that don’t match might even bring negative
effect to the target even if it has far more data.

Xu et al. (2020); Damonte and Monti (2021);
Procopio et al. (2021) utilize auxiliary tasks in a
MTL fashion with specific task tags. Bevilacqua
et al. (2021); Zhou et al. (2021b) adopt sliver train-
ing data in a ITL paradigm. However, there is no
work comparing ITL and MTL when introducing
auxiliary tasks to enhance PTM-based AMR parser.

6 Conclusion

In this paper, We find that semantically or formally
related tasks, e.g. SRL and DP are better auxiliary
tasks for AMR parsing and can further improve
the performance by proper AMRization methods
to bridge the gap between tasks. And Intermediate-
task Learning is more effective in introducing aux-
iliary tasks compared with Multitask Learning. Ex-
tensive experiments and analyses show the effec-
tiveness and priority of our proposed methods.

7 Acknowledgements

We thank all reviewers for their valuable advice.
This paper is supported by the National Key Re-
search and Development Program of China under
Grant No.2020AAA0106700, the National Science
Foundation of China under Grant No.61936012
and 61876004.

8 Ethics Consideration

We collect our data from public datasets that permit
academic use and buy the license for the datasets
that are not free. The open-source tools we use for
training and evaluation are freely accessible online
without copyright conflicts.

2490



References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse, pages 178–186.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One spring to rule them both: Sym-
metric amr semantic parsing and generation without a
complex pipeline. In Proceedings of the Thirty-Fifth
AAAI Conference on Artificial Intelligence.

Steven Bird. 2006. NLTK: The Natural Language
Toolkit. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions, pages 69–72, Syd-
ney, Australia. Association for Computational Lin-
guistics.

Claire Bonial, L. Donatelli, Mitchell Abrams,
Stephanie M. Lukin, Stephen Tratz, Matthew Marge,
Ron Artstein, David R. Traum, and Clare R. Voss.
2020. Dialogue-amr: Abstract meaning representa-
tion for dialogue. In LREC.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. Asso-
ciation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 748–752, Sofia, Bulgaria. Association
for Computational Linguistics.

Sirui Cai, Yuchun Fang, and Zhengyan Ma. 2017. Will
outlier tasks deteriorate multitask deep learning?
In Neural Information Processing, pages 246–255.
Springer International Publishing.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Yulong Chen, Yang Liu, Liang Chen, and Yue Zhang.
2021. DialogSum: A real-life scenario dialogue sum-
marization dataset. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 5062–5074, Online. Association for Computa-
tional Linguistics.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Meaning
Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Marco Damonte and Emilio Monti. 2021. One seman-
tic parser to parse them all: Sequence to sequence

multi-task learning on semantic parsing datasets. In
Proceedings of *SEM 2021: The Tenth Joint Confer-
ence on Lexical and Computational Semantics, pages
173–184, Online. Association for Computational Lin-
guistics.

Ramón Fernandez Astudillo, Miguel Ballesteros, Tahira
Naseem, Austin Blodgett, and Radu Florian. 2020.
Transition-based parsing with stack-transformers. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1001–1007, Online.
Association for Computational Linguistics.

DongLai Ge, Junhui Li, Muhua Zhu, and Shoushan Li.
2019. Modeling source syntax and semantics for
neural amr parsing. In IJCAI, pages 4975–4981.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Noise reduction and targeted explo-
ration in imitation learning for Abstract Meaning
Representation parsing. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1–11,
Berlin, Germany. Association for Computational Lin-
guistics.

Hardy Hardy and Andreas Vlachos. 2018. Guided neu-
ral language generation for abstractive summariza-
tion using abstract meaning representation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 768–773.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NIPS.

Hoang Thanh Lam, Gabriele Picco, Yufang Hou, Young-
Suk Lee, Lam M. Nguyen, Dzung T. Phan, Vanessa
López, and Ramon Fernandez Astudillo. 2021. En-
sembling graph predictions for amr parsing.

Young-Suk Lee, Ramón Fernandez Astudillo, Tahira
Naseem, Revanth Gangi Reddy, Radu Florian, and
Salim Roukos. 2020. Pushing the limits of amr pars-
ing with self-learning. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing: Findings, pages 3208–3214.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-pass
end-to-end entity linking for questions. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6433–6441, Online. Association for Computational
Linguistics.

2491

https://doi.org/10.3115/1225403.1225421
https://doi.org/10.3115/1225403.1225421
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://aclanthology.org/P13-2131
https://aclanthology.org/P13-2131
https://doi.org/10.18653/v1/2021.findings-acl.449
https://doi.org/10.18653/v1/2021.findings-acl.449
https://aclanthology.org/E17-1051
https://aclanthology.org/E17-1051
https://doi.org/10.18653/v1/2021.starsem-1.16
https://doi.org/10.18653/v1/2021.starsem-1.16
https://doi.org/10.18653/v1/2021.starsem-1.16
https://doi.org/10.18653/v1/2020.findings-emnlp.89
https://doi.org/10.18653/v1/P16-1001
https://doi.org/10.18653/v1/P16-1001
https://doi.org/10.18653/v1/P16-1001
http://arxiv.org/abs/2110.09131
http://arxiv.org/abs/2110.09131
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.emnlp-main.522
https://doi.org/10.18653/v1/2020.emnlp-main.522


Kexin Liao, Logan Lebanoff, and Fei Liu. 2018. Ab-
stract meaning representation for multi-document
summarization. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1178–1190.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019. On the variance of the adaptive learning rate
and beyond. arXiv preprint arXiv:1908.03265.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 397–407, Melbourne, Australia. Association
for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In ACL.

Mitchell Marcus, Beatrice Santorini, Mary
Marcinkiewicz, and Ann Taylor. 1999. Penn
treebank 3.

Arindam Mitra and Chitta Baral. 2016. Addressing a
question answering challenge by combining statis-
tical methods with inductive rule learning and rea-
soning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30.

Tahira Naseem, Abhishek Shah, Hui Wan, Radu
Florian, Salim Roukos, and Miguel Ballesteros.
2019. Rewarding smatch: Transition-based amr
parsing with reinforcement learning. arXiv preprint
arXiv:1905.13370.

Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna
Gurevych. 2021. What to pre-train on? Efficient
intermediate task selection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 10585–10605, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Luigi Procopio, Rocco Tripodi, and Roberto Navigli.
2021. SGL: Speaking the graph languages of se-
mantic parsing via multilingual translation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
325–337, Online. Association for Computational Lin-
guistics.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe Pang,
Clara Vania, Katharina Kann, and Samuel Bowman.
2020. Intermediate-task transfer learning with pre-
trained language models: When and why does it
work? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
5231–5247.

Sudha Rao, Daniel Marcu, Kevin Knight, and Hal
Daumé III. 2017. Biomedical event extraction using
abstract meaning representation. In BioNLP 2017,
pages 126–135.

Mrinmaya Sachan and Eric Xing. 2016. Machine com-
prehension using rich semantic representations. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 486–492.

Peiyi Wang, Liang Chen, Tianyu Liu, Damai Dai, Yunbo
Cao, Baobao Chang, and Zhifang Sui. 2022. Hi-
erarchical curriculum learning for amr parsing. In
Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Yanshan Wang, Sijia Liu, Majid Rastegar-Mojarad, Li-
wei Wang, Feichen Shen, Fei Liu, and Hongfang Liu.
2017. Dependency and amr embeddings for drug-
drug interaction extraction from biomedical literature.
In Proceedings of the 8th acm international confer-
ence on bioinformatics, computational biology, and
health informatics, pages 36–43.

Ralph M. Weischedel, Eduard H. Hovy, Mitchell P. Mar-
cus, and Martha Palmer. 2017. Ontonotes : A large
training corpus for enhanced processing.

Taizhong Wu, Junsheng Zhou, Weiguang Qu, Yanhui
Gu, Bin Li, Huilin Zhong, and Yunfei Long. 2021.
Improving amr parsing by exploiting the dependency
parsing as an auxiliary task. Multim. Tools Appl.,
80:30827–30838.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020. Improving amr parsing with
sequence-to-sequence pre-training. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2501–
2511.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Association
for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Yu Zhang and Qiang Yang. 2021. A survey on multi-
task learning. IEEE Transactions on Knowledge and
Data Engineering, pages 1–1.

Zhisong Zhang, Emma Strubell, and Eduard Hovy. 2021.
Comparing span extraction methods for semantic role
labeling. In Proceedings of the 5th Workshop on
Structured Prediction for NLP (SPNLP 2021), pages

2492

https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://aclanthology.org/2021.emnlp-main.827
https://aclanthology.org/2021.emnlp-main.827
https://doi.org/10.18653/v1/2021.naacl-main.30
https://doi.org/10.18653/v1/2021.naacl-main.30
https://arxiv.org/abs/2110.07855
https://arxiv.org/abs/2110.07855
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.1109/TKDE.2021.3070203
https://doi.org/10.18653/v1/2021.spnlp-1.8
https://doi.org/10.18653/v1/2021.spnlp-1.8


67–77, Online. Association for Computational Lin-
guistics.

Zixuan Zhang and Heng Ji. 2021. Abstract meaning
representation guided graph encoding and decoding
for joint information extraction. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 39–49.

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-
tudillo, and Radu Florian. 2021a. AMR parsing with
action-pointer transformer. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5585–5598, On-
line. Association for Computational Linguistics.

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-
tudillo, Young-Suk Lee, Radu Florian, and Salim
Roukos. 2021b. Structure-aware fine-tuning of
sequence-to-sequence transformers for transition-
based AMR parsing. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 6279–6290, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

2493

https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2021.naacl-main.443
https://aclanthology.org/2021.emnlp-main.507
https://aclanthology.org/2021.emnlp-main.507
https://aclanthology.org/2021.emnlp-main.507


A Algorithms

Algorithm 1 Reentrancy Restoration for SRL
Input: Treenode:T
Output: Graph:G
Description: T is root node of the original SRL

after node ROOT is added to form tree structure.
G is the output graph with possible reentrancy re-
stored.
Global Variables: Dict: V={}. Here Dict is the

official data structure of Python’s dictionary.
1: for predicate in T.sons do
2: for son in predicate.sons() do
3: if son.name in V.keys() then
4: son = V[son.name]
5: # restore reentrancy
6: else
7: V[son.name] = son
8: return T

B Ensemble Models’ Methods

Graphene-4SE Lam et al. (2021) make use of 4
SPRING models from different random seeds and
their proposed graph ensemble algorithm to do the
ensembling. They also include another ensemble
model named Graphene All which includes four
checkpoints from models of different architectures,
SPRING(Bevilacqua et al., 2021), APT(Zhou et al.,
2021a), T5, and Cai&Lam(Cai and Lam, 2020).
We do not report the score of Graphene All since
it aggregates models with different inductive bias
while our ensemble model only use models from
one structure. It is out of the scope for fair compar-
ison.

Structure-awareE Zhou et al. (2021b) use en-
semble results from 3 models’ combination to gen-
erate the ensemble model.

Ours (w/ SRL)E We use the setting the same as
Zhou et al. (2021b), we use the average of three
models’ parameters as the ensemble model.

C Auxiliary Datasets Description

C.1 Summarization

CNN/DM(Hermann et al., 2015) The CNN /
DailyMail Dataset is an English-language dataset
containing news articles as written by journalists
at CNN and the Daily Mail. The dataset is widely

accepted as benchmark to test models’ performance
of summarizing .

DIALOGSUM(Chen et al., 2021) The Real-Life
Scenario Dialogue Summarization (DIALOGSUM),
is a large-scale summarization dataset for dialogues.
Unlike CNN/DM which focuses on monologue
news summarization, DIALOGSUM covers a wide
range of daily-life topics in the form of spoken
dialogue. We use all the training data (13k) to
conduct the intermediate training.

C.2 Translation
WMT14 EN-DE We select the first
40k,80k,200k and 400k training examples
from WMT14 EN-DE training set to form EN-DE
translation intermediate tasks.

C.3 Dependency Parsing
PENN TREEBANK(Marcus et al., 1999) The
Penn Treebank (PTB) project selected 2,499 stories
from a three year Wall Street Journal (WSJ) collec-
tion of 98,732 stories for syntactic annotation. We
only utilize the dependency structure annotations
to form our intermediate dependency parsing task.
There are 39,832 (~40k) sentences.

C.4 Semantic Role Labeling
ONTONOTES(Weischedel et al., 2017) The
OntoNotes project is built on two resources, fol-
lowing the PENN TREEBANK(Marcus et al., 1999)
for syntax and the PENN PROPBANK for predicate-
argument structure. We select 40k sentences with
SRL annotations to form intermediate task.

D Low-resource Datasets Description

We set three Low-resource Learning benchmark for
AMR parsing:

1. BOLT Using only the BOLT split of AMR
data of AMR2.0 dataset. The training, valida-
tion and test data each has 1061, 133 and 133
amrs respectively.

2. LORELEI Using only the LORELEI split
of AMR data of AMR3.0 dataset. The train-
ing,validation and test data each has 4441, 354
and 527 amrs respectively.

3. DFA Using only the DFA split of AMR data
of AMR2.0 dataset. The training, validation
and test data each has 6455, 210 and 229 amrs
respectively.
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Compared with the AMR2.0 dataset which has
36521 training samples, the number of training
samples in BOLT, LORELEI, DFA are 2.9%,
12.2% and 17.7% of the number of AMR2.0.

E Training Details

We tune the hyper-parameters on the SPRING base-
line, and then adding the auxiliary data using just
those hyper-parameters without any changing.

We use RAdam (Liu et al., 2019) as our opti-
mizer, and the learning rate is 3e−5. Batch-size is
set to 2048 tokens with 10 steps accumulation. The
dropout rate is set to 0.3.

Parameter Searching Space

Learning rate 1e-5, 3e-5, 5e-5, 1e-4
Batch-size 256, 512, 1024, 2048, 4096
Grad. accu. 10
Dropout 0.1, 0.2, 0.3

Table 7: Hyper-parameters searching space
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Model Extra Data SMATCH NoWSD Wiki
Concept-related Topology-related

Conc. NER Neg. Unll. Reen. SRL

A
M

R
2.

0

SPRING (w/ silver) (Bevilacqua et al., 2021) 200k 84.3 84.8 83.1 90.8 90.5 73.6 86.7 72.4 80.5
Ours (w/ Semantic Role Labeling) 40k 84.5 84.9 84.0 90.2 91.8 74.6 87.7 74.2 82.8
- w/ Arg. Reduction(AR) 40k 84.8 85.2 83.9 90.4 92.2 74.2 88.1 74.5 83.0
- w/ Reen. Restoration(RR) 40k 85.0 85.4 83.5 90.6 92.1 75.6 88.2 75.5 83.7
- w/ AR+RR 40k 85.1 85.6 83.6 90.4 91.4 75.7 88.2 75.0 83.5
Ours (w/ Dependency Parsing) 40k 84.4 84.9 82.9 90.1 90.5 73.5 87.8 74.3 82.9
- w/ Redundant Relation Removal (RRR) 40k 84.5 85.0 83.5 90.2 91.2 74.3 88.0 74.5 82.9
- w/ Lemmatization (Lemma) 40k 84.7 85.2 83.8 90.2 91.2 75.0 88.0 74.1 83.0
- w/ RRR + Lemma 40k 85.0 85.4 84.1 90.4 92.5 74.7 88.2 74.7 83.1

Table 8: Full scores of ablation on AMRization methods.

The boy wants to leave .

Encoders

Auxiliary
Tasks

AMR 
Parsing

SRL

DP

MT

Sentence
(unseen in all training) Representations L2 Distance

[0.1,0.1,0.2,…,-1.3]1x1024

[2.1,0.1,0.2,…,-1.8]1x1024

[0.5,0.7,-0.8,…,3.3]1x1024

[1.5,0.2,-0.5,…,2.3]1x1024

0.3

0.45

0.7

Figure 7: Illustration of how to compute sentence representation distance of different tasks. The sentences used for
evaluate are never seen in the training of AMR Parsing and other auxiliary tasks. Cosine Similarity is computed the
same way. We collect all sentences’ distance of one encoder to draw the Gaussian distribution curve.
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