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Abstract

Goal-oriented dialogue systems face a trade-
off between fluent language generation and
task-specific control. While supervised learn-
ing with large language models is capable of
producing realistic text, how to steer such re-
sponses towards completing a specific task
without sacrificing language quality remains
an open question. In this work, we formulate
goal-oriented dialogue as a partially observed
Markov decision process, interpreting the lan-
guage model as a representation of both the
dynamics and the policy. This view allows
us to extend techniques from learning-based
control, such as task relabeling, to derive a sim-
ple and effective method to finetune language
models in a goal-aware way, leading to signif-
icantly improved task performance. We addi-
tionally introduce a number of training strate-
gies that serve to better focus the model on the
task at hand. We evaluate our method, Context-
Aware Language Models (CALM), on a practi-
cal flight-booking task using AirDialogue. Em-
pirically, CALM outperforms the state-of-the-
art method by 7% in terms of task success,
matching human-level task performance.

1 Introduction

Dialogue systems have typically approached the
problem of generating realistic dialogue from the
perspective of supervised learning (Dusek and Ju-
rcicek, 2016; Eric and Manning, 2017; Mei et al.,
2017; Chen et al., 2019; Wu et al., 2019a; Hosseini-
Asl et al., 2020; Peng et al., 2020; Adiwardana
et al., 2020). However, dialogue can also be viewed
as a sequential decision making process, which is
well-suited to planning and reinforcement learning
(RL) algorithms. A challenge with the classical RL
approach to dialogue is the requirement for active
interaction with humans (Gasic et al., 2011). Train-
ing such a system with active human-in-the-loop
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Figure 1: CALM is an end-to-end language model
for goal oriented dialogue. CALM’s training objective
teaches the model to better pay attention to the dialogue
task context, yielding a ~50% improvement in task
success over standard LM training on a flight booking
task.

interaction quickly becomes expensive and cum-
bersome, making it desirable to develop techniques
for goal-directed training of dialogue systems that
can effectively leverage offline data.

While many dialogue generation techniques
based on RL and learned control have been pro-
posed (Eckert et al.,, 1997; Levin et al., 2000;
Chung, 2004; Georgila et al., 2006; Schatzmann
et al., 2007; Heeman, 2009; Georgila and Traum,
2011), most such systems take a pipelined ap-
proach, where an abstract representation of states
and actions is designed by hand and then combined
with RL to train a “dialogue management” system,
rather than generating dialogue end-to-end. These
pipelined approaches rely on a manually designed
decomposition of the dialogue task, which may be
domain-specific and, more importantly, may not
enjoy all of the benefits of tightly integrating low-
level text generation with the overall goals of the
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task. In this work, we instead ask: how can we
scalably and effectively introduce the mechanisms
of goal-directed decision making into end-to-end
language models, to directly steer language gen-
eration toward completing specific dialogue tasks
rather than simply generating probable responses?

To this end, rather than utilizing a pipelined ap-
proach, we aim to directly finetune language mod-
els in a task-aware manner such that they can maxi-
mize a given utility function. We observe that large
language models can already be formulated within
a Markov decision processes (MDP) as capturing
both the dynamics and policy for a decision-making
task, where dialogue history serves as state, and
the agent’s utterances serve as actions. We could
utilize this observation by finetuning the models
directly with online RL, but the need for human-in-
the-loop training makes this difficult. Offline RL
methods (Levine et al., 2020; Fujimoto et al., 2019;
Wu et al., 2019b; Wang et al., 2020b) provide an
alternative approach, but typically require value
function estimation, which is not straightforward
to perform with a language model. Instead, we
propose a conditional imitation learning strategy
coupled with a novel task relabeling approach that
can finetune language models from offline data,
such that the model still represents the joint dis-
tribution over dialogues, but #ilts this distribution
toward dialogues with a high reward. This amounts
to a task-aware finetuning strategy that integrates
task information into the model. The main con-
tribution of our work is CALM (Context-Aware
Language Modeling), a framework for end-to-end
goal-directed dialogue generation. CALM unifies
the traditional language modeling objective with
task-specific supervision, where a language model
is interpreted as a joint representation of dynamics
and policies in an MDP, and the finetuning process
utilizes a conditional imitation learning objective
with a novel task relabeling strategy that teaches the
model how to generate high-utility dialogues (see
Figures 1 and 2). Because CALM interprets the
language model as both a dynamics model and a
policy, it can be used as either a model-free method,
where the dynamics are discarded and the policy
component is used to greedily generate responses,
or as a model-based method, where the dynamics
component can be used to plan at test-time. We
empirically evaluate CALM on AirDialogue (Wei
et al., 2018), the largest dataset for goal-oriented
dialogue based-on a flight-booking task. CALM

improves the task success by 10% over the pre-
vious state-of-the-art method (Chen et al., 2020)
following the evaluation protocol proposed by Wei
et al. (2018), achieving the first-ever human-level
performance on this dataset.

2 Related Work

Our goal is to enable end-to-end training of goal-
directed dialogue agents. In these settings, an
agent aims to complete a particular task with its ut-
terances (Smith and Hipp, 1994). Goal-directed
agents have been explored in contexts such as
personal assistants (McTear, 2002; Budzianowski
et al., 2018; Williams et al., 2014), recommenda-
tion systems (Liu et al., 2010; Kang et al., 2019),
education (Yuan et al., 2008), and negotiation (He
et al., 2018; Lewis et al., 2017). While there
are multiple approaches to constructing dialogue
agents, in this work we frame the problem of gen-
erating dialogue as a sequential decision making
problem within a (partially observed) Markov De-
cision Process (MDP) (Singh et al., 1999; Young
et al., 2013). Prior works that utilize such an MDP
formulation typically aim to train a dialogue man-
agement system (Singh et al., 2002), in which the
agent reasons about higher-level abstractions of the
state of the conversation, and language generation
is performed using a downstream procedure. Dia-
logue management systems have been trained using
techniques such as online reinforcement learning
via policy gradients (Gasi¢ et al., 2011; He et al.,
2018), off-policy reinforcement learning (Pietquin
et al., 2011; Yu et al., 2016) or actor-critic meth-
ods (Su et al., 2017). Our method differs from
dialogue management systems in that CALM is an
end-to-end system optimized for successful task
completion, and performs both high-level decision
making and language generation.

Recent advancements in language models, such
as recurrent neural networks (Sundermeyer et al.,
2012; Asri et al., 2016; Su et al., 2016; Zhao et al.,
2019; Wang et al., 2020a; Zhang et al., 2020) and
attention-based architectures (Vaswani et al., 2017;
Liu et al., 2019; Devlin et al., 2018; Brown et al.,
2020), have spurred increasing interest in such end-
to-end dialogue systems (Hosseini-Asl et al., 2020;
Peng et al., 2020; Adiwardana et al., 2020). Model-
based approaches, in which a learned agent is sub-
stituted for a human, allow learning to be done
entirely within simulation without human interven-
tion (Li et al., 2016; He et al., 2018; Kang et al.,
2019; Lewis et al., 2017; Liu et al., 2018). In con-
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Figure 2: A visual outline of CALM. We apply Task Relabeling to our static offline dataset, by swapping out the
task context — in this case a flight table — such that the attached dialogue becomes an optimal example of task
completion. When fine-tuning on this relabeled dataset, we then apply a Task Specific Auxiliary Loss on top of the
standard language modeling objective; this helps the model learn to use the task context. Once trained, CALM can

consistently solve goal-directed dialogue tasks.

trast to these approaches, CALM augments the
traditional language modeling objective with task-
specific rewards in order to finetune a model that is
more aware of task goals, which significantly im-
proves performance over a naive language model
without the need for simulating human responses
in an interactive training loop. Jaques et al. (2019)
recently proposed a model-free, offline approach to
undirected dialogue, or dialogue without a specific
task goal. Our method differs in that we aim to
solve goal-oriented dialogue which allows us to
optimize task-specific objectives, and that we take
a model-based RL approach which enables us to
leverage fine-tuned language models.

3 Preliminaries

In this section, we review our notation and prob-
lem formulation for casting dialogue within a se-
quential decision making framework.

POMDP formulation. We formulate dialogue
generation as a partially observable Markov de-
cision process (POMDP) (Kaelbling et al., 1998),
with a state that consists of known and unknown
context information about the task. Let ¢;, € C (r)
denote the hidden context for the task, and let
Co € C(© denote the observed context. For in-
stance, in a flight booking task, a table of available
flights might correspond to ¢,, while the particular
flight that the human wants to book, which is un-
known to the agent, corresponds to cj,. Note that
the reward, which requires booking the right flight,
depends on both hidden and observed contexts. We
can define such an environment as a POMDP M =
(S, A,0,T,Z, up,R,7). We denote a conversa-
tion 7 as 7 := {ao, €, ..., ar}, where T denotes
the number of turns in a conversation and a; and e;
represent utterances (strings of tokens) from the dia-
logue agent (a;) and the human (e;) at the ¢-th turn,
respectively. We additionally use 7«; to denote

conversation history up to the ¢-th turn. We can rep-
resent the underlying POMDP state s; € S as the
concatenation of both of the contexts and the pre-
vious conversation history s; := {cp, Co, T<t} =
{¢h, o, a0, €0, ...,a;—1, €11 }. However, we only
observe the last two elements of the state tuple,
such that our observation o; € O at the ¢-th conver-
sation turn is o; = {¢,, 7<¢}. An action a; € A is
the agent’s response to the current state s;. Given
our definition of the state, the full conversation in
a dialogue can be conveniently represented by the
last observation and action, {or,ar}. An agent
7 : O — P(A) maps observations to sets of proba-
bility measures over the action space P(-). A tran-
sition function 7 (-|s¢, at), represents a distribution
over the human’s utterances, returning s; 11 as the
state at turn ¢ + 1. We only consider the sparse
reward setting with rp = R(sp,ar) € {0,1} de-
noting task completion, and r; = 0, V¢t < T'. Our
final reward is therefore dependent on both the con-
text and the dialogue: R(sr,ar) = R(T,cp, o),
where the context {c,, ¢, } is randomly sampled for
each dialogue from some initial distribution p.

Goal-oriented dialogue. Goal-oriented dialogue
systems aim to maximize the expected reward of
the above POMDP

E{CO,C’L}~“07W7T[Z,§_‘:0 PVtR(Stv at)}v )]
where {cy,, ¢, } is sampled from distribution zi. On-
policy RL algorithms optimize this objective via
environment interaction, which is represented by a
real human. However, because human-in-the-loop
training is expensive, we pursue an offline learning
approach where we are given a fixed dataset and
there is no further interaction with the human in
the learning process. This dataset is composed of
n trajectories with D° = {cgf), D700, RORYIN
with each 7(9) = {aéz), eg), e agf)} and its corre-
sponding final reward for task completion (V). Our
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goal is to learn the policy 7(a|o) which improves
the dialog agent’s ability in achieving the highest
task reward defined in Equation 1.

Language models. While conventionally a lan-
guage model is seen simply as a sequence model
over tokens of the form []/_, p(z¢+1|21.+), when
the sequence x;.7 corresponds to a dialogue tra-
jectory 7, we can also interpret a language model
as learning the distribution over 7. This distribu-
tion can be factored into the product of the policy
m(a¢|7<¢) and the dynamics T (T<ty1|7<¢, ar), and
so we can say that a language model also repre-
sents the policy and the dynamics. Therefore, the
maximum likelihood objective for training or fine-
tuning a language model on a dialogue dataset D°
consisting of dialogue trajectories 7 can be written

as
T

L (0) = max ]23) EZ <log7r9(at]7<t)
T~D 1

+log To(T<t41|7<t, at)>, ()

where 7y (at|o;) represents a policy that generates
new dialogue based on the observed context and
dialogue history, and Ty(T<t+1|7<¢, a;) represents
the observed dynamics characterizing human re-
sponses, and 6 denotes parameters in 7 and 7.
Note that 7, consists only of the conversation his-
tory, and does not contain any task-specific context.
A naive approach to train dialogue systems is to
jointly parameterize both 7 and 7 as one language
model, and optimize Equation 2 on pre-collected
conversations D°f. This method corresponds to
behavioral cloning (BC) (Pomerleau, 1989).

Context conditioning. While an agent trained us-
ing Equation 2 can learn policies and dynamics
that imitate human conversations, this objective
does not incorporate the task goal, and may not
produce a policy that is more performant than the
dataset D°ff. While it is possible to input ¢, into
the language model to maximize the conditional
probability of P(7]|c,) using a conditional version
of the language modeling objective, Lopx (6),

T
Lorx (6’) —=max E Z (10g o (Clt ’T<ta Co)

0 (T7CO)NDOH t=1

+ log %(0t+1|7<taataco))> (3)
contexts with particular task structures (e.g., a set
of entries in a table) may not be simply processed

as a sequence similarly to 7. Additionally, the lan-
guage model is not pretrained to read structured

context, and oftentimes the recent dialogue history
is much more predictive of the next utterance than
the task context is. As a result, language models
can ignore the task context and only learn P(7) de-
spite being conditioned on ¢,. Our approach builds
on this conditional modeling approach, but makes
a number of improvements that allow it to be more
aware of the context information, which attains
significantly better results in our experiments.

4 Context-Aware Language Modeling

In this section, we present our method for goal-
oriented dialogue systems, Context-Aware Lan-
guage Modeling (CALM). CALM interprets a lan-
guage model as a combination of a policy and a
dynamics model in the POMDP formulation of a
dialogue task, as described in Section 3. Under
this interpretation, naive supervised finetuning on
the dialogue dataset can be viewed as behavioral
cloning (BC) (Pomerleau, 1989). However, BC
only imitates data and does not necessarily produce
a good policy in terms of completing tasks. We
propose to improve the policy by utilizing a task re-
labeling strategy (described in Section 4.1), analo-
gous to prior task relabeling approaches (Kaelbling,
1993; Andrychowicz et al., 2017; Pong et al., 2018;
Savinov et al., 2018; Ghosh et al., 2019; Lynch
et al., 2020; Eysenbach et al., 2020). This relabel-
ing procedure augments the data with examples
of near-optimal utterances, making the language
model more task-aware. However, we find several
shortcomings with this approach alone and propose
the following improvements. First, an expressive
language model is liable to ignore the task context,
which we address by proposing an auxiliary loss
(Section 4.2) that forces the model to utilize this
information. Second, learning from structured task
information is difficult and can result in models
that fail to capture complex task structure, so we
propose a task pre-training procedure to improve
the learnability (Section 4.3). Finally, to further
improve performance we use a model-based plan-
ning procedure (Section 4.4) on top of the proposed
method that samples multiple dialogues in parallel
and selects the most promising candidates.

4.1 Dialogue Task Relabeling

Lerx(0) defines a context-conditional maxi-
mum likelihood objective for training an expert
imitation policy in conjunction with a dynamics
model. However, simply imitating all the dialogue
data does not necessarily produce the best possible
policy. We would like to learn a policy that pro-

2354



duces dialogue that is more optimal, in the sense of
better maximizing the task utility, than the average
dialogue in the dataset. Task relabeling enables
us to learn from optimal trajectories without sim-
ply filtering the dataset for high-reward trajectories,
which would unnecessarily discard potentially in-
formative data. In the case of dialogue, we can
perform task relabeling by considering the con-
text {c,, ¢} as defining the task. While a given
dialogue may be unsuccessful for the context for
which it was collected, it could be considered suc-
cessful under a different context. In this case, we
can simply swap out {c,, ¢, } to create optimal task
examples from the many sub-optimal examples pro-
vided by D°%. Since our reward R(cy,, c,, ) is a
function of the dialogue and context, we can mod-
ify the reward for a given dialogue just by changing
the given observed context c,. Using this observa-
tion, we can relabel unsuccessful dialogues with
successful ones, and even for already successful
dialogues there may be multiple ¢, corresponding
to task success, allowing us to augment the number
of successful (¢, ¢,, T) tuples.

Formally, since our POMDP includes a prior
distribution over contexts {cy, ¢, } ~ p, there ex-
ists a posterior g(c,|T, ¢p,) over observed contexts
that correspond to optimal task completion under a
given 7. We can then re-label 7 to be optimal under
its context by sampling a new ¢, from q(c, |, cp).
In practice, this sampling is performed by rejection
sampling from either 1 or some P(c,|cp,); the lat-
ter, lower entropy distribution, can be preferred if
there is a low probability of sampling valid, high-
reward contexts under pg. Now, given any 7 from
an offline dataset of dialogues, we can learn from
the full distribution of contexts corresponding to
optimal task completion under this dialogue.

In order for this relabeling procedure not to
bias our policy towards behavior that is overly-
optimistic about the user’s responses, it is neces-
sary that the distribution of these responses in our
dataset does not depend on the portion of the con-
text that is relabeled. For example, relabeling the
table of available flights for a flight booking task
should generally be reasonable, because the user
is usually unaware of the flight table. On the other
hand, relabeling the desired flight would not make
sense, since the user’s utterances are strongly de-
pend on this. To provide another example, in a bar-
gaining task (Lewis et al., 2017), the agent might
fail to obtain the desired item and instead get an

item of lesser value. But relabeling with a con-
text that assigns a higher value to the item received
would not lead to a reasonable example, since the
agent mainly received this item as a result of the
user’s responses rather than as a result of their own
bargaining skill.

Methods based on similar principles have pre-
viously been proposed in the deep RL community
for simple parametric tasks, such as goal-reaching
or linearly-parameterized reward functions (Kael-
bling, 1993; Andrychowicz et al., 2017; Eysenbach
et al., 2020). However, the dialogue task relabel-
ing that we employ is particularly effective in our
setting, since there may be exponentially many
contexts that are optimal for a given dialogue (e.g.,
many different flight tables for a flight booking
task), in contrast to the simpler task parameteriza-
tions used in prior work, where for example only
one goal might be optimal for a given trajectory
(the one that is reached). As a result, this technique
not only allows us to turn sub-optimal task data
into optimal data, but it also allows us to greatly
increase the number of optimal task examples from
which we can learn, which we will show leads to a
large performance improvement.

4.2 Task-Specific Auxiliary Loss

Goal-oriented dialogue generation can be viewed
as learning the conditional distribution P(7]|c,),
where 7 represents the generated dialogue given a
specific context c,. However when trained naively,
language models are liable to ignore this condition-
ing context, instead focusing purely on the previous
utterances in the dialogue. In this case, the model
is effectively only learning P(7) despite having
both the capacity and the context to learn the lower-
entropy conditional distribution P(7|c,).

While dialogue tasks are by definition carried
out through natural language, there is often an ab-
stract high-level action «;, € A that essentially
determines the success of the task. In the case of
the information retrieval task that we consider in
this paper, these high-level actions correspond to
deciding which database entity to retrieve for the
user (e.g., suggesting a flight to the customer that
meets all of their needs). While these high-level ac-
tions are theoretically learnable from correlations
between the dialogue and the given context, in gen-
eral, we find that learning these correlations corre-
sponds to a relatively small decrease in dialogue
entropy under the model. As a result, the model
is less incentivized to learn these correlations rele-
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vant to the task than the form of the dialogue. To
address this issue, we incorporate an auxiliary ob-
jective into our training, which trains the model
directly to predict the abstract high-level actions
taken in the present dialogue. This objective effec-
tively up-weights gradients relevant for learning the
high-level actions, which further helps the model
to utilize the context to solve the high-level task
through dialogue.

For a given dialogue-context pair (7, {cp, ¢o})
and high-level action, oy, our auxiliary objective
is then simply to maximize the likelihood of the
high-level actions taken in the dialogue:

C(¢) = max E log Py (o |T, ¢o).
@ (ch,co,map )~DofE
“4)
Just like the language modeling objective, this
classification objective is averaged over each to-
ken in the dialogue sequence. Our full training

objective then becomes:
max Lorx(0) + 8 *C(9), &)

)

where (3 is a hyper-parameter and Loy (6) is the
standard context-conditional language modeling
objective as defined in Section 3.

4.3 Task Pretraining

As observed by Liu et al. (2021), for some struc-
tured tasks, such as table question answering, pre-
training on a simplified version of the given task
with a synthetic context can help the model to focus
learning on the “skills” that are most relevant to
utilize the task context, which leads to improved
downstream task performance. We instantiate this
idea in our method by pre-training our model on a
simplified (dialogue-free) version of the task. In-
stead of simultaneously modeling all the details of
the raw dialogue, as is required to learn P(7|c,),
the key observation here is that in our case the
task reward only depends on the tuple {cp,, ¢, ar}.
This enables us to effectively learn to execute the
task by only modeling P(cy, ar|c,), without any
dialogue at all. By pre-training our model to first
learn this simplified distribution, we effectively fo-
cus on learning the necessary skills for completing
the task. It is expected that the skills learned dur-
ing this pre-training phase should also generalize
and transfer when we later perform training on the
real dialogue. The particular instantiation of this
principle in the case of AirDialogue is described in
Section D.

4.4 Model-Based Dialogue Rollouts

While the methodology discussed so far can pro-
duce effective policies, language models also rep-
resent task dynamics, as discussed in Section 3.
We can leverage this fact to further improve the
performance of our fine-tuned models by perform-
ing model-based planning at test-time, using both
the policy and dynamics components in concert
to further maximize task reward. A full dialogue
trajectory can then be formed by concatenating this
sampled future trajectory 7>; with the current state
of the dialogue 7« i.e., 7 = {7<¢, 7>1}. We per-
form the model-based planning by sampling & such
future trajectories from the final fine-tuned model,
and ranking them according to an estimated reward
function }?(7, ¢o) (see Appendix E.1). Then, we
improve upon the policy 7 from which we took
the samples by taking the action (i.e., the next ut-
terance) a; which receives the highest estimated
reward among the sampled trajectories. This roll-
out sampling procedure is identical to the one used
by Lewis et al. (2017).

5 CALM for AirDialogue

In this section, we instantiate our proposed
method, CALM, for the AirDialogue flight booking
task (Wei et al., 2018). We first give an overview
of the task, and then describe how to do relabeling
and context conditioning on this specific task.

5.1 AirDialogue Dataset

Dataset overview. The AirDialogue dataset (Wei
et al., 2018) is a recently published large-scale
airline reservation dataset based on the aforemen-
tioned task. The dataset includes 402,038 conver-
sations. The dataset involves three distinct tasks:
booking, canceling, and changing flights. We de-
scribe the booking task in detail below.

Flight booking task. The (human) customer is
given a set of 12 trip requirements, and the flight
agent (bot) is provided with a table of 30 flights.
The goal of the flight agent is to book a flight from
the table for the customer which meets all their
requirements, or to correctly inform them that no
such flight is available. To determine task success,
the flight agent must predict an explicit action at the
end of the dialogue indicating the flight that was
booked or inform no flight available. See Figure 7
for an example conversation from the dataset.

5.2 Processing Tables

The AirDialogue booking tasks require effi-
ciently querying a flight table containing flight in-
formation (e.g., departing location, ticket price)
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given to the agent prior to the conversation. In
order to successfully complete the booking task,
the agent needs to be able to filter, select, and inte-
grate information from the flight table based on the
customer’s preferences inferred from the dialogue.

Instead of treating the tables as unstructured se-
quences (Wei et al., 2018; Jiang et al., 2021) or as
SQL databases (Chen et al., 2020), CALM models
tables as an observable context consisting of a set
co = {f1, f2, f3, ..., fn } of table rows. These rows
are then input to our model as a set of embeddings
(see appendix C and G for more details).

5.3 Relabeling AirDialogue with CALM

While the AirDialogue dataset only includes one
flight table for each dialogue, there are potentially
many flight tables compatible with each dialogue
as each flight can appear in many tables. We hence
implement our relabeling procedure as described in
Section 4.1 as follows. We perform rejection sam-
pling on the observable context (i.e., the table of
flights) ¢, ~ q(co|T, ¢p,), sampling until we obtain
a new context (cp, ¢o, 7), Which gives maximum
reward possible R(T, ¢y, ¢,) = max., R(T, cp, ).
The prior distributions p(c,) and p(c,|cp), from
which the tables in the AirDialogue dataset were
sampled, are provided with the dataset. By rejec-
tion sampling from p(c,|c), we can effectively
sample from the posterior g(c,|T, ¢,) within a cer-
tain computational budget. In this setting, ¢, de-
notes tables and there are exponentially many ta-
bles which correspond to a task success under a
given dialogue. Therefore, with our relabeling ap-
proach, we increase the number of near-optimal
task examples exponentially, which makes it much
easier for the language model to learn to query the
flight table.

Our relabeling is approximately valid according
to the condition specified in Section 4.1. While
the customer does not have access to the flight ta-
ble and therefore is not directly affected by our
relabeling, there are still some minor edge-cases
in which over-optimism about the dynamics could
be learned by our policy. If for example, in the
dataset the customer were to occasionally reject the
first flight that we suggest, our policy may learn to
assign a small probability to the action of initially
offering the wrong flight, relying on them subse-
quently rejecting it such that we can later recover
and offer the correct one. However, in practice we
observe that these cases are rare in AirDialogue.

success rate
CALM (greedy) 0.88 + 4e-3
LM(GPT2-small) (greedy) 0.38 + le-3
AirConcierge (greedy) 0.81 £ 7e-3
CALM (planning) 0.90 £ 2e-3
LM(GPT2-small) (planning) | 0.74 4 7e-3
Human 0.88

Table 1: Comparison of our method and baselines
across all tasks. Using greedy decoding, our method
matches human performance, greatly improving over
baselines. Adding roll-outs (32 samples) further im-
proves task completion.

5.4 Table Selection as Auxiliary Loss

The primary high-level action involved in Air-
Dialogue is the decision of which flight table entry,
if any, to recommend to the user. We therefore im-
plement our auxiliary objective as a classification
head on top of the language model, trained to pre-
dict the flight table entry that meets the customer’s
requests. Specifically, our set of high-level actions
A is the set of flight table rows { f1, fo, f3, ..., fn}
plus an additional item fy, corresponding to the
case in which no flights meet the customer’s re-
quirements. If f* is the flight recommended in the
dialogue, then our auxiliary objective is:

C(¢p) =max E

log Py(f*|7,¢c0). (6)
ox B o g Py(f|mc0).  (

6 Experiments

In this section, we empirically evaluate the per-
formance of CALM on AirDialogue (Wei et al.,
2018). We first show that CALM outperforms the
SOTA on the AirDialogue dataset by around 7%
in the standard simulated evaluation protocol pro-
posed by Chen et al. (2020), which prior work
denotes as “self-play" (see Appendix E), and this
matches human-level performance as reported by
Wei et al. (2018). Beyond this, we also perform a
comprehensive set of ablation studies to validate
the necessity of each component of CALM.

Experiment Setup and Baselines. We compare
CALM on AirDialogue with two baselines. The
first is AirConcierge, the previous SOTA on Air-
Dialogue, which explicitly parses and executes
SQL queries from the dialogue (Chen et al., 2020).
The other is a standard language model (denoted
as LM(GPT2-small)) trained on a dataset filtered
for successful task examples, without any of our
context-aware language modeling techniques (see
Appendix Section A for more details on dataset
filtering). CALM uses the fine-tuned GPT2-small
model (Radford et al., 2018) as the backbone of
the policy and dynamics model. After learning the
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Book Book No Flight Found

Customer: Ok, proceed with the booking. Custor

Submit: no_flight , Ryan Wilson , 0

Customer: Thanks for your help.

Submit: book , Melissa Clark , 1010

OK, Thank you

Submit: book , Betty Lee , 1008

No Flight Found

Cancel No Reservation Found

ner: Thank you. | am Linda Smith

Customer: Thank you for your help.

Submit: no_reservation , Mary Perez , 0

Submit: cancel , Linda Smith , 0

Submit: no_flight , Angela Perez , 0

Figure 3: Example dialogues generated by CALM (in green) in the simulated evaluation. Despite being
end-to-end, CALM produces highly coherent and sensible outputs.

Task Success

Success Rate

CALM

Airconcierge
—— LM(GPT2-small)
—— Human

0 5 10 15 20 25 30
Number of Rollout Samples

Figure 4: Task success as a function of the number of
rollout samples. Note that successful task completion
improves with more rollout samples.

dynamics model, both CALM and the LM(GPT2-
small) can employ two different planning strate-
gies: (1) a simple greedy decoding of the next utter-
ance (equivalent to beam search with beam-width
one) and (2) the rollout planning as described in
Section 4.4. For AirConcierge, we only evaluate
greedy decoding, as this method cannot be easily
adapted for producing full rollouts. Rollout plan-
ning requires a method for predicting the reward
of a given dialogue, and we describe our specific
reward predictor for AirDialogue in Appendix Sec-
tion E.1.

Results for Task Success. In terms of task success,
CALM outperforms the prior SOTA (AirConcierge)
by approximately 7%, achieving 88% task success
when using greedy decoding from the language
model (see Table 1). Compared with AirConcierge,
where all reasoning about the task context is done
outside of the language model, CALM does all of
the filtering, selecting, and responding with rele-
vant flight table entries within the language model,
in a fully end-to-end manner. Meanwhile, CALM
also improves over LM(GPT2-small) by 50% in
terms of task success, indicating the necessity of
our context-aware approach for goal-oriented tasks.

CALM | LM(GPT2-small) | AirConcierge
Perplexity 1.63 1.59 -
BLEU 32.88 35.75 27.75

Table 2: BLEU score and perplexity results. CALM
improves on task success without sacrificing generation
quality.

We further evaluate the the performance of var-
ious methods, when utilizing the rollout planning
technique. As shown in Figure 4, as the number
of rollout samples increases, the performance im-
proves for all methods. Remarkably, applying the
rollout planning to CALM further increases total
task success by 2%, raising it to 90% and match-
ing human performance on the AirDialogue task.
The baseline LM(GPT2-small) benefits much more
from rollout planning than CALM, and we suspect
that at around 90% task completion, the perfor-
mance becomes bottlenecked by the customer bot’s
mistakes, therefore we only observe less gain from
rollout planning with CALM.

Results for Language Quality. To quantitatively
measure the generated language quality, we present
perplexity and BLEU for all methods in Table 2.
CALM performs similarly to LM(GPT2-small) and
outperforms AirConcierge significantly.

Ablation Study. To examine the effectiveness of
each single component in our method, we train and
evaluate four ablations of CALM. Each of these
ablations remove one of the components in our ap-
proach: task relabeling (Section 4.1), auxiliary loss
(Section 4.2), and table pre-training (Section 4.3).
Beyond this, we also examine CALM without both
task relabeling and pre-training. As shown in Ta-
ble 3, removing any one of these components drops
task success by at least 10%, and in most cases
much more than that. This shows that each piece of
our method plays a critical role in helping CALM
to effectively learn the goal-oriented task.
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Success Rate
CALM 0.88 + 4e-3
LM(GPT2-small) 0.38 + 1e-3
CALM w/o relabel, pre-train | 0.42 £ 4e-3
CALM w/o relabel 0.66 + le-2
CALM w/o pre-train 0.39 £ 3e-3
CALM w/o auxiliary loss 0.78 & 4e-3

Table 3: Task success rate for various ablations of
CALM on AirDialogue (all using greedy decoding).
Removing any single component from CALM drops
performance by at least 10%.

7 Conclusion

We proposed an end-to-end framework, CALM,
for goal-oriented dialogue systems. Formulating
end-to-end dialogue generation as a Markov de-
cision process, CALM employs task relabeling
and context-aware finetuning to steer supervised
learning of language models towards specific goals,
improving task performance drastically while pre-
serving language quality. We show that this im-
proves performance on AirDialogue over the previ-
ous state of the art, and matches previously reported
human performance under the standard simulated
evaluation protocol.

CALM optimizes for task-specific measures of
success, and while such measures might be com-
paratively simple for domains such as AirDialogue,
in general specifying the right success measure or
reward function may present challenges. Further-
more, as with all methods based on end-to-end
language models, CALM is susceptible to internal
biases and inconsistencies in the language model it-
self. There is for example no constraint that ensures
that CALM produces truthful answers, or that it
avoids harmful or socially unacceptable outputs. A
practical deployable dialogue system would likely
require additional measures to account for such is-
sues, analogously to how learning-based methods
for self-driving vehicles might require some addi-
tional safety mechanisms to ensure constraints, and
indeed further research on reward specification, en-
suring truthful outputs, and other constraint strate-
gies for dialogue systems that combine language
models and reward maximization is a promising
and important direction.

The context-conditioned supervised learning
strategy used by CALM provides for reward maxi-
mization, but is in general not optimal for arbitrary
reinforcement learning problems: in general RL
settings, learning a value function with dynamic
programming in general can attain significantly
better returns than imitating high-performing tra-
jectories, by recombining good parts of multiple

different trajectories (which might individually be
suboptimal) (Kostrikov et al., 2021; Kumar et al.,
2022). The simple supervised learning strategy
works well in the domain we tested, but extending
CALM to use value-based reinforcement learning
methods is a promising direction for future work.
Indeed, the improvement obtained from planning
on top of the CALM model likely indicates that the
supervised learning approach we employ has room
for improvement. Additionally, the auxiliary objec-
tives and relabeling strategies we employ require
some amount of domain-specific design, and more
general strategies could be developed in future.

Addressing these limitations in future work and
developing more advanced methods that combine
end-to-end language generation via large language
models with concepts from reinforcement learning
and planning is a promising research direction for
making dialogue systems more capable, while also
making language models more task aware. We
hope that CALM will serve as an indication for the
potential of such methods.
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A AirDialogue Dataset Filtering

When training the LM(GPT2-small) and Cus-
tomer Bot, we filter the dataset by only keeping the
successful task examples. This is be achieved by
simultaneously checking for successful task com-
pletion and whether a set of simple string matching
heuristics are satisfied in the dialogue. Our heuris-
tics aim to ensure that strings corresponding to
each of the customer’s flight requirements and the
customer’s goal are explicitly present in the dia-
logue. This combination of filtering steps reduces
the size of the training set by 26%. Despite this,
we find that this is still more than enough data for
the model to successfully learn the task.

A.1 Rollout Planning
In Figure 5, we show the rollout planning proce-
dure, which described in Section 4.4.

......
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Imagined Dialogue Rollouts

Figure 5: Our dialogue rollout planning procedure.
To generate our response, we sample entire dialogues
from the language model and then re-rank the predicted
dialogues with a reward function.

B Training Our Customer Bot

Our customer bot is fine-tuned from GPT2-small
(124M parameters), using the standard language
modeling objective. We used the Huggingface
Transformers library’s implementation of GPT2
(Wolf et al., 2020). The customer’s flight require-
ments are provided to the model as a prefix to the
dialogue, which formatted as a comma separated
list consisting of the customer’s goal and flight re-
quirements. We trained the customer bot for maxi-
mum 10 epochs with early stopping on the filtered
dataset. For training, it takes around 1 day on 4
GPUs. Specifically, we trained using Adam with
learning rate 1e-4 and batch size 8. Our customer
bot achieves a perplexity of 1.47 on the develop-
ment set and a BLEU score of 38.5.

C Fight Agent Bot Details

All our flight agent bots are fine-tuned from
GPT2-small (124M parameters) using the stan-
dard language modeling objective. We used the

Huggingface Transformers library’s implementa-
tion of GPT2 (Wolf et al., 2020). Similar as the
customer bot, we trained for maximum 10 epochs
with early stopping on the filtered dataset, which
takes roughly 1 day on 4 GPUs. Specifically, we
trained using Adam with learning rate le-4 and
batch size 8. We implement the final action predic-
tion as a sequence of tokens generated at the end
of each dialogue. The flight table is passed to the
model as a prefix of flight embeddings, where each
embedding is produced by summing embeddings
corresponding to each attribute of a given flight
(e.g., flight arrival/departure day/location, flight
price, etc.).

D AirDialogue Task Pretraining

Initialized using GPT2-small (124M parame-
ters), we further pre-train our flight-agent bots by
training on simplified task sequences. Specifically,
these sequences consist of our flight table followed
by a comma separated list of the customer’s flight
requirements and a string representing the final ac-
tion taken. We also apply our auxiliary loss and
task-relabeling techniques during this pre-training.

We pre-train on 4 million unique samples, using
batch size 64 and Adam with learning rate le-4,
which takes around 2 days on 4 GPUs. During
pre-training, we found that it took around 2 mil-
lion unique samples before the model suddenly
started to learn the task of querying the flight ta-
ble, and it took roughly 2 million more samples
before it became proficient at querying the table.
Both the unusual progression of learning during
this pre-training phase and the high sample com-
plexity needed to learn the task, indicates the dif-
ficulty in learning to query the flight table. This
calls for future work about further investigate the
challenges in learning complex logical functions
using neural networks.

E Self-Play Evaluation

Prior works primarily evaluate bots for the flight
agent through “self-play" (Chen et al., 2020; Wei
et al., 2018). We follow the same evaluation proto-
col in our work. Basically, we train a bot to play the
role of the customer during evaluation and compute
task success by simulating conversations against
this bot. We run all self-play evaluations on the
same subset of 1,000 dialogue scenarios, randomly
selected from the validation set.

All models are evaluated against the same cus-
tomer bot. including models for the baselines. We
find that when running against our self-play bot,

2363



~ Compare

Constraint Parser

opatus Ao~ | [(RoumApon= | QU

Dialogue Rollouts Lad Ladl

Figure 6: Our reward prediction method. We train
a model to parse the customer’s flight requirements
from the dialogue. We execute these flight requirements
against the table and compare the output to the flight
that was actually booked; this determines the reward
(i.e. if the correct flight was booked or not).

task completion success for prior methods is in-
creased, sometimes by more than 8% (from what
was reported by such prior works under the same
evaluation setting). The only difference is the spe-
cific model used for customer’s side of the con-
versation, and we conjecture that this difference
is likely due to the architecture difference and
the details of our dataset filtering. This signifi-
cant change in evaluation performance compared
with prior works, not only indicates the quality
of our customer bot, but also suggests the impor-
tance of accounting for these factors in evaluating
and comparing dialogue systems. We release the
code and model weights for our customer bot at
https://sea-snell.github.io/CALM_LM_site/.

E.1 AirDialogue Reward Predictor for
Rollout Planning

To execute rollout planning, we need a reward
predictor which can estimate whether a given dia-
logue is a successful example of task completion or
not. In the case of AirDialogue, we found that
the most robust way to estimate this reward is
the following: we first fine-tune a RoBERTa-base
model (123M parameters) to predict the customer’s
ground-truth goal and flight requirements from the
set of dialogues in the training set. We used the
Huggingface Transformers library’s implementa-
tion of ROBERTa (Wolf et al., 2020). We do not fil-
ter the training-set when training this model. Once
this model is trained, our procedure for predicting
dialogue success is the following:

1. Given a dialogue, use our RoOBERTa model to
predict the customer’s goal and flight require-
ments.

2. We then execute this predicted information
against the agent’s flight table and reservation

dep. city | ret. city | dep. month | ret. month
0.76 0.76 0.77 0.77

dep. day | ret. day | dep. time ret. time
0.76 0.76 0.94 0.94
class price | connections airline
0.92 0.37 0.95 0.97

Table 4: Our RoBERTa parser’s accuracy in pre-
dicting each of the customer’s flight requirements.
The parser predicts 5 out of 12 flight requirements with
>90% accuracy and 11 out of 12 with >70% accuracy.
The price requirement has the lowest accuracy because
it is often not explicitly mentioned in the dialogue; the
model has to rely on priors for prediction in these cases.

flag, to produce a set of valid final actions.

3. If the final action taken in the dialogue is
within the set of predicted final actions, then
predict that the current dialogue is successful,
otherwise predict that it is unsuccessful.

See Figure 6 for a visual illustration of this proce-
dure. Our model obtains 94% accuracy in predict-
ing the reward of the dialogues in the validation set
(see Table 4 for a more extensive breakdown of the
model’s accuracy).

F Example Conversation in AirDialogue
In Figure 7, we showcase a specific example for
the conversation in AirDialogue.

Customer: Hello.
Agent: Hello, how can | help you today?
Customer: Could you help me in booking a flight ticket from AUS to EWR?
Agent: Sure, may | know your planned travel dates?
Customer: | want to fly on Aug 31, return on Sept 02.
Agent: May | know your connection limit?
Customer: | want direct flight.
Questioning | Agent: Is there any class preference for you?
Customer: No.
Agent: Do you have any other specifications?
Customer: No.
Agent: May | know your good name?
Customer: My name is Kimberly Roberts.
Agent: We found an airline: American Airlines, flight number: 1013 and price is
100 with one connection.
Customer: Ok, proceed to booking.
Agent: Your flight ticket has been reserved.
Customer: Thank you.
Goodbye |Agent: Thank you for reaching us.
Submit: book , Kimberly Roberts , 1013

Greeting

Suggest a Flight

Figure 7: An example conversation in AirDialogue.
Conversations generally begin with a greeting followed
by some questioning / information gathering, and then
finally the agent suggests a flight before ending the
conversation.

G Previous Approaches to Flight Table
Processing
Prior works (Wei et al., 2018; Jiang et al., 2021)
typically input the table directly into a language
model, expecting that the skill of querying the table
will be naturally learned via the standard language
modeling objective. We found this approach to
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under-perform in our experiments. These findings
are also consistent with recent works which show
that pre-training transformers for querying tables
can significantly improve the transformer’s perfor-
mance on downstream tasks which use tables (Liu
et al., 2021). AirConcierge (Chen et al., 2020)
takes a different approach, and explicitly predicts
and executes SQL queries based on the dialogue.
This approach obtains the SOTA task success on
AirDialogue, but it involves several complex com-
ponents, requires the ability to preform semantic
parsing on the dialogue, and of course requires ad-
ditional domain knowledge about the format and
structure of the flight table, which reprsents the
task context. In our work, we show that applying
CALM for AirDialogue can close this gap by in-
ducing task learning from language models and
achieve end-to-end learning from the flight table,
without sacrificing the generated language quality.

H Error Analysis

In Table 5 we present a detailed breakdown of
model errors. As expected, determining the flight to
book, if any, is consistently shown to be the most
challenging sub-task, as evidenced by the lower
“flight success rate" and the lower F1 scores for
“no flight", “book", and “change" on LM (GPT2-
small). In particular, “change" has a low recall, pre-
cision, and F1 score for all models because it makes
up a very small 0.4% of the training data. Lastly,
the “constraint success" row shows that even when
CALM books the wrong flight, the flight it does
books meets >80% of the customer’s flight require-
ments on average.
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CALM LM (GPT2-small) | AirConcierge

full success rate | 0.88+4e-3 0.38+1e-3 0.81+7e-3
status success rate | 0.92+3e-3 0.84+2e-3 0.90+1e-3
flight success rate | 0.88+t4e-3 0.39+1e-3 0.8245e-3
name accuracy rate | 0.99+2e-3 1.0+8e-4 0.99+1e-3
0.85+8e-3 0.06+3e-3 0.81t1e-2

book R/P/F1 | 0.86+8e-3 0.05+2e-3 0.70+9e-3
0.85+6e-3 0.05+3e-3 0.75+1e-2

0.82+t1e-2 0.3649e-3 0.5945e-3

no flight R/P/F1 | 0.80+1e-2 0.74+5e-3 0.93+6e-3
0.81+1e-3 0.4949e-3 0.72+5e-3
0.98+2e-2 1.0+0.0 1.0+0.0

cancel R/P/F1 | 0.95+3e-2 1.0+0.0 0.75+1e-2
0.97+2e-2 1.0+0.0 0.86+t7e-3
0.25+8e-2 0.0+0.0 0.0+0.0
change R/P/F1 | 0.33+1e-1 0.0£0.0 0.0£0.0
0.28+t1e-1 0.0+0.0 0.0+0.0

0.99+5¢e-3 0.99+2e-3 0.99+3e-3

no reservation R/P/F1 | 0.99+2¢-3 0.99+2e-3 0.99+3e-3
0.99+3e-3 0.99+2e-3 0.99+3e-3

constraint success | 0.81+9e-3 0.71£3e-3 0.89+t1e-3

Table 5: Detailed statistics for model errors. All models are evaluated with greedy decoding. In addition to the
full task success rate, we report success rate for each sub-component of the full task (status / flight / name). We also
report recall (R), precision (P), and F1 score for task success under each type of high-level action (book / no flight /
cancel / change / no reservation). Lastly, we report the average fraction of the customer’s flight requirements that

are met when the agent books the wrong flight (constraint success).
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