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Abstract

Abstractive summarization can generate high
quality results with the development of
the neural network. However, generating
factual consistency summaries is a challenging
task for abstractive summarization. Recent
studies extract the additional information
with off-the-shelf tools from the source
document as a clue to guide the summary
generation, which shows effectiveness to
improve the faithfulness. Unlike these work,
we present a novel framework based on
conditional variational autoencoders, which
induces the guidance information and generates
the summary equipped with the guidance
synchronously. Experiments on XSUM and
CNNDM dataset show that our approach can
generate relevant and fluent summaries which
is more faithful than the existing state-of-the-
art approaches, according to multiple factual
consistency metrics.

1 Introduction

Document summarization aims to produce the
shorter version of a document while preserving
salient information, which helps people out of
the information explosion (Mihalcea and Tarau,
2004; Daumé III and Marcu, 2006; Allahyari et al.,
2017). Compared with extractive summarization
that retrieves essential sentences from the source
document, abstractive summarization has no
constraint on the words and phrases, which has
attracted more attention. With the development of
neural network and the large pre-trained language
models, systems can generate summarizes with a
high level fluency and coherence (Devlin et al.,
2019; Dong et al., 2019; Lewis et al., 2020; Zhang
et al., 2020a).

Generating faithful summaries is a challenging
task for abstractive summarization (Kryscinski
et al., 2020; Maynez et al., 2020; Gabriel
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Figure 1: Our framework trains guidance induction
and summary generation jointly. It avoids the domain
mismatch of the external tools and the guidance
extraction is refined during training.

et al., 2021; Zhou et al., 2021). Previous
studies have shown that the generated summaries
distort or fabricate the facts of the source
document, which also refers to the hallucination
phenomenon (Huang et al., 2021). It statistics
that most models produce 80% summaries with
factual errors in XSUM dataset (Narayan et al.,
2018) which limits the usage of summarization
system (Pagnoni et al., 2021).

Recent studies provide different guidance
information as input to enhance the factual
consistency of the summary (Cao et al., 2018; Zhu
et al., 2021). Generally, these models act a separate
two-stage processing, the guidance extracting
by off-the-shelf tools and summary generation
conditioned on source document and guidance.
Typically, Dou et al. (2021) propose an extensible
guided summarization framework GSum, which
has achieved impressive results. It uses an oracle
to select guidance during training and extracts the
keywords by out-of-box tools (Li et al., 2018) at
test time. Then two transformers (Vaswani et al.,
2017) are used to encode the source document and
guidance.

However, the performances of separate two-
stage processing models are limited by the external
tools which may suffer from domain mismatch. In
fact, the experiments of GSum have shown that the
performance would have a significant gain when
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the model uses an oracle to select guidance in
testing, rather than the external tools. Moreover,
the inaccuracy of the guidance extraction leads to
the unfaithfulness of the summary.

In this paper, we present a novel framework
which trains Guidance Induction and Summary
Generation (GISG) jointly via conditional varia-
tional autoencoder. Specifically, we use phrases
as the information granularity of our guidance and
we induce the keyphrases of the source document,
which appear in the summary semantically. First,
we extract all phrases from the source document
by part-of-speech tagger as candidates and we use
latent variables to indicate the keyphrases. Then
we learn to induce the latent variables and generate
the summary jointly. Our approach avoids the
domain mismatch of the external tools while the
guidance extraction is refined during training. Then
the faithful summaries are generated conditioned
on the accurate guidance information.

Experiments on XSUM (Narayan et al., 2018)
and CNNDM (Hermann et al., 2015) datasets show
that our approach can generate relevant and fluent
summaries which is more faithful to the source
document than existing state-of-the-art approaches,
according to multiple factual consistency metrics.

2 Related Work

2.1 Abstractive Summarization

Abstractive Summarization is prone to generate
factual inconsistency text with the source docu-
ment (Durmus et al., 2020; Gabriel et al., 2021).
Recent studies divide factual inconsistency error
into two categories, intrinsic error and extrinsic
error separately (Zhou et al., 2021). The intrinsic
error refers to the error which is contradicted to
the source document. And the extrinsic error
refers to the error which is neither supported nor
contradicted by the source document. Recent
efforts for improving factual consistency are
mainly categorized into factual guidance methods,
contrastive learning methods and post-edit-based
methods.

Factual guidance methods provide the models
with additional information for the encoder,
including the relation triples, keywords and
important sentences, which guide summarization
systems to pay attention to the facts and to reduce
consistent error (Cao et al., 2018; Xu et al., 2021b,a;
Dou et al., 2021). Zhu et al. (2021) explore using
knowledge graphs to model the facts to the source

document. Dou et al. (2021) design a unified
framework to introduce different information by
an additional transformer encoder.

Contrastive learning methods encourage models
to distinguish between positive and negative
examples (Nan et al., 2021; Cao and Wang, 2021;
Liu et al., 2021; Xu et al., 2022). Nan et al.
(2021) generate multiple summaries candidates by
sampling from the pre-trained models and selecting
positive and negative examples according to the
question answer based metric. Cao and Wang
(2021) construct positive and negative examples by
the heuristic rules, for example, replacing the entity
in the references or paraphrasing the references.

Post-edit based method aims to apply a
correction over the generated results to obtain
more factual-consistent summarization (Dong et al.,
2020; Cao et al., 2020; Chen et al., 2021a). Dong
et al. (2020) leverages the question answering
models to correct the factual error iteratively via
span selection over the generated summaries. Cao
et al. (2020) propose a corrector model to identify
and correct factual errors in generated summaries.
The model is trained on the synthesis data which is
transformed from the reference summaries.

2.2 Conditional Variational Autoencoder

The variational auto-encoder (VAE) is a directed
graphical model with certain types of latent vari-
ables, such as Gaussian latent variables (Kingma
and Welling, 2014; Sohn et al., 2015; Rezende et al.,
2014). A generative process of the VAE contains
two stages; a set of latent variables are generated
from the prior distribution and the data is generated
by the generative distribution conditioned on latent
variables.

Conditional VAE (CVAE) (Sohn et al., 2015;
Zhao et al., 2017; Chen et al., 2021b) is a recent
modification of VAE to generate diverse example
conditioned on additional constrained information.
Instead of providing additional information in the
output, CVAE models introduce latent variables to
represent the information. Inspired by CVAE, we
view the keyphrases as the conditional attributes
and adapt CVAE to train keyphrases induction and
faithful summarization generation jointly.

3 Background

Given the source input document X =
{X1, X2 · · ·XN}, of length N . The task of
abstractive summarization is to generate a short
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Figure 2: General framework of our model. There are mainly three parts, keyphrases prediction network, induction
network and condition generation network.

version of the source document, i.e. Y =
{Y1, Y2 · · · , YM}, where M is the length of
summary. Each token Xn, Ym takes one value from
a vocabulary V .

Abstractive summarization is generally formu-
lated as P (Y |X) =

∑M
t=1 P (Yt | Y<t, X),

which is a typical sequence to sequence generation
problem. We use BART (Lewis et al., 2020)
which is based on Transformer-based encoder and
decoder architectures (Vaswani et al., 2017) as
our backbone. Transformer layers use multi-heads
self-attention to capture the dependency between
the input (Vaswani et al., 2017). Concretely,
the input X is converted into a vector sequence
X = {x1, ...,xN} by the encoder, where
xn ∈ Rh and h is the size of hidden
representation. In decoding step t, the decoder
generates the t word representation yt by attending
to the input contextual representation X and the
prefix words {Y1, · · · , Yt−1} through the encoder-
decoder attention. The probability of predicting the
next token Yt from the vocabulary V is

P (Yt|Y<t, X) = softmax(Eyt) (1)

where E ∈ R|V|×h is the embedding matrix of the
vocabulary.

4 Methodology

4.1 Summarization with Conditional
Variational Autoencoders

Previous work uses external tools to extract the
guidance (e.g. keyphrases, important sentences

or relation triplets) and generate the summaries
conditioned on the source document and the
guidance. Our idea is to induce the guidance
and generate the summary jointly. Phrases are
the meaning semantic information unit of the
document, which is important to express the facts
of the document. Compared with a single word
or a sentence of the document, a phrase contains
more abundant and accurate information and is
refined without lots of useless information. We
will use the phrases as the information granularity
of our guidance and our framework can easily be
generalized to the sentence or the relation triplets.

We extract all phrases from the source document
as the candidates, since the keyphrases are the
subset of the phrases of the document. Then
we assume a latent variable Z to indicate the
keyphrases set.

Based on CVAE, we introduce an induction
network Q(Z|X,Y ) to approximate the true
posterior distribution P (Z|X,Y ). Sohn et al.
(2015) have shown that the variational lower bound
can be written as:

LCVAE = KL(Q(Z|X,Y )||P (Z|X))

−EQ(logP (Y |X,Z)) ≥ − logP (Y |X)
(2)

Thus, we jointly learn the keyphrases prediction
P (Z|X) and summary generation P (Y |X,Z).
Intuitively, the term EQ(logP (Y |X,Z)) ensures
the model generates the summary conditioned on
X and Z, while the KL diversity term tries to guide
the keyphrases prediction P (Z|X) approximate
the induction Q(Z|X,Y ).
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When the model is evaluated, a latent variable Z
is first predicted from P (Z|X). Then the decoder
P (Y |X,Z) generates the summaries conditioned
on X and Z.

We will describe our approach in detail in the
following sections. The overview of our framework
is in Figure 2. First, we describe candidate phrases
extraction in Section 4.2. In Section 4.3, we
present the prediction network and keyphrases
induction network. Section 4.4 further presents
the conditional summary generation network.

4.2 Candidate Phrases Extraction
We extract the phrases from the source document
including the noun and verb phrases. Following
Wu et al. (2021)’s work, we use the rule-based
matchers to extract noun and verb phrases by
the part-of-speech1 (POS). Concretely, we use
SpaCy (Montani et al., 2020) to obtain the POS
tag of each word. The noun phrases are extracted
by the built-in function of Spacy. And a phrase will
be treated as the verb phrase if any of the cases are
satisfied. 1). [AUX] VERB. The words with the
verb POS tag are extracted besides the auxiliary
verb. 2). VERB [RP]. A verb phrase may be
followed by the particle including prepositions or
adverbs (e.g., walk down). 3). AUX not VERB
[RP]. “not" is considered to handle negation (e.g.,
would not find). And we filter out the phrases
that contain less than three words. The extracted
context phrases of the source document are treated
as the phrases candidates.

Although, we also use the external tools
POS tagger to extract the phrases of the source
document, we do not directly use the phrases to
guide the summary generation. Generally, the
keyphrases are only a small subset of the candidates
extracted by the POS tagger. We believe that our
approach is robust even with an inaccurate POS
tagger.

4.3 Keyphrases Prediction and Induction
We use the output of the encoder to obtain the
phrase representation by averaging the represen-
tation of the corresponding words. Specially,
suppose a phrase is Xs:t. The representation
of the phrase is q = 1

t−s

∑t
k=s xk. Thus, we

get the representation of the candidates Q =
{q1, q2, · · · , qI}, where Q ∈ RI×h and I is the
number of the phrases candidates.

1https://spacy.io/usage/
linguistic-features

Generally, every phrase candidate is assigned
a latent variable to indicate whether the phrase is
the keyphrase and the selection of each phrase is
a binary classification problem. However, we find
that the models tend to select redundancy phrases
or even all the candidates. We argue that it is
because the candidates contain similar phrases and
the binary classification would lead to repetition
without being constrained with the number of the
phrases.

To solve the problem, we use the latent variable
to select the keyphrases from the candidates.
Formally, we assume the maximum of keyphrases
in a document is B. We define Z =
{z1, z2, · · · , zB} as a latent indicator variable,
where Z ∈ RB×I and zi is one-hot vector. zji = 1
means the phrase j is the ith keyphrase. The model
can select less than B keyphrases by having the
repetition latent value in Z.

Then we have the prediction network and
keyphrases induction network as follows:

Q(zi|X,Y ) = softmax(MLPi
1(Q)yT

doc)

P (zi|X) = softmax(MLPi
2(Q))

(3)

where ydoc is the representation of the summary.
ydoc is obtained by averaging {y1 · · ·yM}.

4.4 KeyPhrases Guide Summary Generation

We calculate the distribution of the word by at-
tending to the source contextual representation and
the keyphrases representation for the generation
network P (Y |X,Z). Similar to Aralikatte et al.
(2021)’s work, we introduce a bias in Eqn. (1) to
help the model focus on the keyphrases.

Formally, the generation probability of Yt is
formulated as:

P (Yt|Y<t, X, Z) = softmax(ytE + ftE) (4)

where ft = SAMLP3(Q) and S ∈ R1×I is
the selection vector. Si = 1 means the ith
candidate is selected as the keyphrases. A is the
attention score over the selected keyphrases and
A = softmax(MLP3(Q)yT

t ).
Basically, S is obtained from the Q(Z|X,Y )

during training. As Eqn. (2) indicated, we
need to calculate the expectation of P (Y |X,Z)
over the distribution Q(Z|X,Y ). We use the
Gumbel-Softmax trick (Jang et al., 2017) to
sample from Q(Z|X,Y ) and obtain low-variance
gradients. Concretely, the sample probability Q̂i is
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Dataset
Pairs Tokens

Train Valid Test Doc Sum
XSUM 203028 11273 11332 430.2 23.3

CNNDM 287084 13367 11489 766.1 58.2

Table 1: Statistics of the dataset with respect to
corpus size of training, validation and test set, average
document (source) and summary (reference) length (in
terms of tokens).

as following:

Q̂i = softmax(
MLPi

1(Q)yT
doc + ϵ

τ
) (5)

where ϵ is Gumbel noise and τ is temperature.
Thus S =

∑B
i=1 Q̂i. To avoid repetition selection

among latent variables, we normalize the Ŝ =
S

max(S) . In this way, the model is encouraged to
extract different keyphrases, otherwise only one
keyphrase is selected.

During testing, we obtain S from P (zi|X).
S =

∑B
i=1 one_hot(argmax(P (zi|X))). The

upper value of S is clipped into 1 to avoid repetition
selection.

The vanishing latent variable problem (Bowman
et al., 2016; Lucas et al., 2019) exists when training
with VAE. There are multiple techniques to address
the problem (Zhao et al., 2017; Zhu et al., 2020).
Following Zhao et al. (2017)’s work, we introduce
an auxiliary loss encouraging the keyphrases to
predict the words of the summary. The auxiliary
loss would guide the selected phrase representation
to better represent the content of the summary.
Then additional loss is following:

Lw =
1

|V|

|V|∑

i=1

{|vi ∈ Ŷ | log(σ efkeyEi

∑
efkeyEi

)

+|vi /∈ Ŷ | log(1− σ
efkeyEi

∑
efkeyEi

)}
(6)

where fkey = SMLP3(Q). Ŷ is the target
summary and σ is Sigmoid function. Then our
final loss function is:

L = LCVAE + λLw (7)

5 Experiments

5.1 Setup
Datasets. We evaluate our models on extreme
document summarization (XSUM) (Narayan et al.,
2018) and CNN/Daily Mail (CNNDM) (Hermann

et al., 2015). Both of the datasets are extracted
from the news and the detailed statistics of the
datasets are listed in Table 1. In XSUM dataset, the
documents are summarized into single-sentence
summaries. These summaries demonstrate a high
level of abstraction which requires document-level
inference, abstraction, and paraphrasing. CNNDM
is a high quality summarization dataset consisting
of news articles and human annotation summaries.

Implementation Details. We introduce our
framework into BART (Lewis et al., 2020) which
is a strong abstractive summarization model
pretrained with a denoising autoencoding objective.
We use the FairSeq2 as the implementation
of our baseline and model. We inherit
their provided hyper-parameters of XSUM and
CNNDM. Concretely, the total number of the
updates is 1.5w in XSUM and 2w in CNNDM. The
maximum number of tokens in a batch is 4096 with
gradient accumulation steps of 4. We use Adam
optimizer and the learning rate is set to 3e-5. The ϵ
is 1e-8 and β is (0.9, 0.999). The maximum of the
keyphrases B is set to 8. And the temperature τ is
set to 0.1 for Gumbel-Softmax during training. We
use mixed-precision to speed up model training
and the warm-up is set to 500 steps. All the
experiments are done on 2 and 4 NVIDIA 3090
in XSUM and CNNDM. For the beam search,
the minimum summary length is 11 and 56 for
XSUM and CNNDM, respectively. The number
of beams is 4 for XSUM and 6 for CNNDM. And
the ROUGE-L score on the validation set is used
to pick the best model.

Evaluation Metrics. ROUGE3 (Lin and
Hovy, 2003) considers lexical overlap against the
reference summaries, which is widely used to
evaluate the informativeness and fluency of the
summary. We report on ROUGE-1, ROUGE-2 and
ROUGE-L to measure summary qualities.

We also use BERTScore4 (Zhang et al.,
2020b) to evaluate the semantic similarity between
a hypothesis and the reference summary by
contextual representation.

However ROUGE and BERTScore perform
poorly in capturing factual consistency with
the source document. Recent studies have
developed different categories to evaluate the
faithfulness of a generated summary given its

2https://github.com/pytorch/fairseq
3https://github.com/pltrdy/files2rouge
4https://github.com/Tiiiger/bert_score
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Models
Lexical Overlap Semantic Relation Triplet QA-based

R1 R2 RL BERTScore Close Open QAGS QuesEval
XSUM

EXTORA∗ (Narayan et al., 2018) 29.82 8.83 22.68 85.74 18.57 72.46 69.20 45.84
FASum∗ (Zhu et al., 2021) 30.28 10.03 23.76 88.03 1.63 0.36 11.13 31.18
GSum∗ (Dou et al., 2021) 44.93 21.19 35.96 90.41 1.92 1.75 13.58 36.90
BART∗ (Lewis et al., 2020) 45.49 21.82 36.69 90.83 1.89 2.02 13.76 36.91
BART† 44.65 21.28 36.09 90.62 2.03 2.11 13.76 37.07
GISG (ours) 45.54 21.99 36.82 92.11 2.14 2.18 14.31 37.09

CNNDM
MATCH∗ (Zhong et al., 2020) 44.47 20.92 40.05 87.32 50.92 89.21 77.70 59.93
FASum∗ (Zhu et al., 2021) 40.53 17.84 37.40 87.86 38.56 67.82 71.33 57.58
GSum∗ (Dou et al., 2021) 45.89 22.27 42.68 88.64 41.23 70.69 71.11 57.54
BART∗ (Lewis et al., 2020) 44.25 21.11 41.16 88.33 41.40 70.79 71.89 57.65
BART† 44.11 21.16 40.55 88.13 39.16 69.69 71.25 57.80
GISG (ours) 44.50 21.45 41.05 88.56 42.07 70.83 72.34 58.52

Table 2: Main results. MATCHSum (denoted by MATCH) and EXT-ORACLE (denoted by EXTORA) are extractive
summarization models. The results with ∗ are computed based on the output files in the EXPLAINABOARD. The
results with † are our reimplement of the baseline models. Bold indicates the best performance in the abstractive
summarization models groups.

source document (Zhang et al., 2020b; Dong et al.,
2020; Liu et al., 2021). Our approach is evaluated
with four factual consistency metrics, including
relation triplets based and question answering (QA)
based metrics.

Relation triplets based metrics evaluate factual
consistency by comparing structured data of
factual information extracted from the summary
and the source document. Close Scheme Fact
Triple (Dong et al., 2020) extract (Subject,
Relation, Object) by named entity recognition and
relation extraction models and then calculate the
precision between the triples extracted from the
summary and source document. Open Scheme
Fact Triple (Dong et al., 2020) extract the text
spans to indicate the relation and calculate the
precision similar to close scheme fact triple.

Question answering based metrics use the
pretrained QA model to evaluate the faithfulness.
QAGS (Wang et al., 2020) extracts text spans from
the predicted summary and generates questions
conditioned on the predicted summary by a trained
question generation model. A pretrained QA
model answers the questions from the document.
Then the matching score is calculated between
the answer from the document and the summary.
QuestEval (Rebuffel et al., 2021) not only generate
(question, answer) pairs from the summary, but
also from the source document, which considers to
measure the recall performance.

We use factsumm5 and OpenIE6 to calculate
close scheme fact triple and open scheme fact triple.
And we use the repository to calculate QAGS5 and
QuesEval7. We only calculate factual consistency
metrics of 1k (document, reference, summary) for
the computing efficiency.

Competing Methods. We compare our
model with some competing methods, including
extractive and abstractive summarization models.
EXT-ORACLE (Narayan et al., 2018) and
MATCHSUM (Zhong et al., 2020) are extractive
models. EXT-ORACLE selects a single best
sentence of the document by referring to the target.
MATCHSUM reranks the candidate summaries
produced by BertExt (Liu and Lapata, 2019)
and achieves state-of-the-art extractive results on
various summarization datasets. For abstractive
summarization models, FASum (Zhu et al., 2021)
and GSum (Dou et al., 2021) are models designed
for faithful summarization. FASum extracts the
relation triplets and uses a knowledge graph
to synthesize information. Then the graph
information is fed into the Transformer architecture.
GSum is a general framework for guided neural
summarization, which investigates four types of
guidance signals and achieves state-of-the-art
performance on various popular datasets.

5https://github.com/Huffon/factsumm
6https://nlp.stanford.edu/software/

openie.html
7https://github.com/ThomasScialom/

QuestEval
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We use the prediction files of the competing
models provided in EXPLAINABOARD 8 other
than running the models. It is noted that
the difference between the performance of
EXPLAINABOARD and the results in the original
paper is below 1 point in terms of ROUGE.

5.2 Main Results and Analysis

Main results. Table 2 presents the detailed results
on the test set of the datasets including traditional
metrics and factual consistency metrics. Compared
with the results published in EXPLAINABOARD,
our reimplement of BART is inferior by about 0.6
points in terms of ROUGE-L. It is noted that the
performance of BART on XSUM dataset has been
discussed in fairseq repository9. The results on
base models implicate that our implementation is
fair for our study.

We apply GISG on XSUM and CNNDM with
BART as the backbone. As seen, GISG achieves
higher performance for lexical overlay on both
datasets compared to BART. It achieves 0.8 and
0.5 points improvement in terms of ROUGE-L
on XSUM and CNNDM datasets, which is a
considerable improvement over strong baselines
for summarization. It is noted that GSum in Table 2
use the key sentences as the guidance. Although
there is the version that GSum uses keywords as
the guidance in (Dou et al., 2021), which is more
relevant to our work. EXPLAINABOARD does
not provide the output files and we report the results
using key sentences as the guidance.

For the factual consistency metrics, GISG
outperforms BART on all factual consistency
metrics which indicates that jointly training
keyphrases induction and summary generation
benefit the faithful consistency. Compared with
a strong factual guidance baseline FASum and
GSum, our approach consistently outperforms
FASum and GSum.

Compared with extractive summarization base-
line MATCHSUM and EXT-ORACLE, the
abstractive summarization models have a large
margin in terms of factual consistency, even if
these models achieve much higher performance
on the lexical overlap. It indicates that extractive
summarization models can get better factual
consistency at the cost of being relevant and fluent.

8http://explainaboard.nlpedia.ai/
leaderboard/task-summ/index.php

9https://github.com/pytorch/fairseq/
issues/1971
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For the results between XSUM and CNNDM,
all factual consistency metrics on XSUM are much
lower than CNNDM. This is consistent with the
conclusion that summaries in XSUM are much
more abstractive. It is more difficult for the model
to generate consistent results on XSUM.

Due to the extreme abstractive nature of XSUM
dataset, it is ideal to evaluate the models’ ability
to capture the facts of the document. In the rest of
this section, we present in-depth analyses to better
understand our model with XSUM as the testbed.

Distribution of the number of keyphrases. We
assume the maximum number of the keyphrases
is B in Section 4.3 and the model selects fewer
keyphrases by selecting one candidate repeatedly.
In this section, We investigate the distribution of
the number of keyphrases for the test set and the
model prediction in Table 3.

As seen, most of the reference summaries have
about 4 keyphrases while most of the reference
summaries have less than eight keyphrases. Thus
B is set to eight according to the ground truth
distribution.

Moreover, the number of keyphrases in the
model prediction is larger than the ground truth.
We argue that it is because the model tends to take
advantage of all the latent variables and selects
redundancy and similar candidates.

Fine tuning on hyper-parameter λ. In Eqn. (7),
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Source Document:

Officer Michael Slager has received a visit from his mother and pregnant wife in prison for the first time since he

was charged with fatally shooting Walter Scott. Slager, 33, is being kept in isolation and can not walk down a

hall in Charleston County Jail without the entire cell block being cleared first, according to his lawyer. But on

Friday, his wife Jamie, who is eight-and-a-half months pregnant, and his mother Karen Sharpe were allowed to
speak to him. On Tuesday, Slager was charged with murder after opening fire on 50-year-old Walter Scott last

weekend. Visit: Michael Slager received a visit at Charleston County Jail on Friday from his pregnant wife and

mom. Jamie Slager (right) is eight-and-a-half months pregnant. His mom Karen (left) is 'anxious' Shock: Karen

told CBS she is still in shock as her son is in isolation for fear prisoners will try to kill him . Dash cam footage
reveals he stopped the father-of-four U.S. Army veteran over a broken tail light in North Charleston, South

Carolina, on Saturday. When Scott fled - allegedly fearing reprimand for not paying child support - Slager

followed, and shot him in the back. …

Baseline Summary:

Officer Michael Slager, 33, will be refused the right to hold the baby. He is only granted video access to his

eight and a half month 's pregnant wife and an officer stands outside the booth whenever he talks to his family.

They are not allowed to spend any time together and contact is via video screens with headphones at the

Charleston County Jail. …

Our Summary:

Officer Michael Slager, 33, is being kept in isolation and can not walk down a hall in Charleston County Jail
without the entire cell block being cleared first. On Friday, his wife Jamie, who is eight-and-a-half months

pregnant, and his mother Karen Sharpe were allowed to speak to him. Slager was charged with murder after

opening fire on 50-year-old Walter Scott last weekend. …

Keyphrase Induction

Officer Michael Slager

is being kept

Charleston County Jail

were allowed to

was charged with

50-year-old Walter Scott

…

…

Figure 5: Case study.

we use λ to keep a trade-off between LCVAE and
Lw. We analyze the effect of λ in Figure 4.

As seen, ROUGE-L is boosted with the
increment of λ until 0.2, showing that predicting
the words of the summary by the keyphrases
contributes to the performance.

Subsequently, a larger value of λ reduces the
ROUGE-L and the performance is even lower
than without Lw. We argue that it is because
fkey is constrained to predict the words of the
summary. A larger value of λ would disturb
the word prediction item yt, which would hurt
the performance. Therefore, we set the hyper-
parameter λ to 0.2 to control the effect.

Ablation on the keyphrases prediction
network. We first predict the keyphrases and
generate the summaries conditioned on the source
document and the keyphrases. We investigate the
influence of the keyphrases prediction network and
replace the module with a random selection of B
keyphrases. The results are shown in Table 3.

The results show that both ROUGE, BERTScore
and factual consistency metrics have a descend
without the keyphrases prediction module, which
indicates the effectiveness of the guidance
prediction module.

Ablation on the number of keyphrases in
testing. To investigate the effectiveness of the
keyphrases prediction network, we make ablation
of the keyphrases in testing in Figure 6, where we
increase the number of the attending keyphrases
gradually.

As shown in the figure, the performance
increases as more keyphrases are used to

Models Prediction Rand
R-L 36.82 36.25
BERTScore 92.11 91.07
Close 2.14 1.96
Open 2.18 2.07
QAGS 14.31 13.94
QuesEval 37.09 37.02

Table 3: Ablation on the keyphrases prediction.
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Figure 6: Ablation on the number of keyphrases in
testing.

generate the summaries. Without attending
to any keyphrases of the module prediction,
the performance drops about 1 point in terms
of ROUGE-L. It indicates that the keyphrase
prediction filters the information and helps the
decoder to generate a more accurate summarization.

Case Study To further demonstrate the
effectiveness of our method, we give a case study
in Figure 5. We compare the summary generated
based on our approach and baseline which is based

2347



on BART. As shown in Figure 5, the baseline
model generated hallucination, “They are not
allowed to spend any time together", which is
inconsistent with the source document, “They visit
at Charleston County Jail". Our model first predicts
the keyphrases from the source document and
generates the summary conditioned on the source
document. As shown in the figure, our result is
more faithful, which confirms the effectiveness of
our approach.

6 Conclusion

In this paper, we propose to learn guidance
induction and summary generation jointly via
conditional variational autoencoders. We use
phrases as the information granularity of our
guidance and we induce the keyphrases of the
source document. These summaries are generated
conditioned on the source document and the
keyphrases, ensuring the important information
is consistent with the source document. The
experiments show that our approach can generate
more faithful summaries than the existing state-of-
the-art approaches, according to multiple factual
consistency metrics.
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