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Abstract

Continual Machine Reading Comprehension
aims to incrementally learn from a continu-
ous data stream across time without access
the previous seen data, which is crucial for
the development of real-world MRC systems.
However, it is a great challenge to learn a
new domain incrementally without catastroph-
ically forgetting previous knowledge. In this
paper, MA-MRC, a continual MRC model
with uncertainty-aware fixed Memory and
Adversarial domain adaptation, is proposed.
In MA-MRC, a fixed size memory stores a
small number of samples in previous domain
data along with an uncertainty-aware updating
strategy when new domain data arrives. For in-
cremental learning, MA-MRC not only keeps
a stable understanding by learning both mem-
ory and new domain data, but also makes full
use of the domain adaptation relationship be-
tween them by adversarial learning strategy.
The experimental results show that MA-MRC
is superior to strong baselines and has a sub-
stantial incremental learning ability without
catastrophically forgetting under two different
continual MRC settings.

1 Introduction

Recently, Machine Reading Comprehension
(MRC) has attracted wide attention and achieved
remarkable success when solving specific tasks in
stationary environments, such as answering factual
questions with wikipedia articles or answering nar-
rative questions with web search logs (Seo et al.,
2017; Seonwoo et al., 2020; Zhang et al., 2021; Wu
and Xu, 2020). However, the answering scenario
changes over time in real-world applications. For
example, the dialog system should continuously
adapt to new user requirements (Abujabal et al.,
2018; Madotto et al., 2021). In this paper, we fo-
cus on one of the most typical scenario changes
for MRC tasks: the domain data shift. Existing
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Figure 1: Illustration of a continual MRC task.

stationary-trained MRC systems are usually trained
with in-domain data but are applied to new domain
data (Fisch et al., 2019). Therefore, it is neces-
sary to build a non-stationary MRC that continually
learns with incremental domain data.

We formulate such a challenging problem as
Continual MRC task, which is required to incre-
mentally learn over sequential domain data and
perform well on all seen domain data. Figure 1
illustrates the incremental learning and testing pro-
cessing. In this scenario, the MRC system can only
trained on the latest coming domain data without
access the previous seen data. To tackle this is-
sue, if we directly fine-tune the MRC model on
each new incoming domain, the performance on
earlier domains will significantly drop (Su et al.,
2020). Another naive approach is to retrain the
whole MRC model from scratch, but it is costly
and time-consuming. Hence it is a great challenge
for incrementally learning without largely forget-
ting previously acquired knowledge.

Existing studies for continual MRC can mainly
be divided into three categories. The first class is
model expansion techniques that design domain-
individual classifier for each in coming domain
(Su et al., 2020). However, it is expensive and
unpractical in real-world. The second class bor-
rows the regularization idea, which utilizes an ad-
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ditional loss term to aid knowledge consolidation
when learning new domains. For example, Su et al.
(2020) added a penalty that restricts the change of
important parameters to prevent forgetting previ-
ous knowledge. The third class is episodic memory
based methods. For example, de Masson d’Autume
et al. (2019) introduced a key-value memory mod-
ule that stored previously seen examples for sparse
experience replay and gradient-based local adap-
tation. Abujabal et al. (2018) proposed template-
based Never-Ending KB-QA that learned new tem-
plates by capturing new syntactic structures with
a semantic similarity function between questions
and user feedback.

However, the above methods still have limita-
tions, mainly including two aspects. On the one
hand, to prevent catastrophic forgetting, these meth-
ods only design consistent constraints of model
output or gradient for previous and new domains,
while ignoring the domain adaptation relationship
between them. However, transfer learning can help
the MRC model generalize to other domains. On
the other hand, the memory update strategy for
continual MRC is limited. Some previous work
stores fixed examples for each incoming domain.
It greatly grows the number of samples kept in
memory and leads to expensive costs. Other meth-
ods that limit the maximum number of memory
for all seen domains usually update the memory
by random sampling, ignoring the forgotten degree
of different samples. In fact, the continual model
should pay more attention to samples that are more
likely to be forgotten.

To handle the above limitations, this paper
proposes MA-MRC, an incremental model that
solves continual MRC task via Uncertainty-aware
fixed Memory and Adversarial Domain Adaptation.
Concretely, MA-MRC 1) introduces a fixed-size
memory to store a small number of samples in pre-
vious domain, which are later periodically replayed
when learning new domain; and 2) updates the
memory with an uncertainty-aware strategy that
takes the forgotten degree of previous data into ac-
count; 3) leverages an adversarial learning strategy
to make full use of the domain adaptation rela-
tionship between different domains with a domain
discriminator, so as to help generalize and avoid
overfitting very small memorized examples. The
intuition behind this is to mimic the human learn-
ing process that replays the memory and adapts to
new domains.

The key contributions of this work are: (1)
This paper proposes a continual MRC model, MA-
MRC, which learns new domain data incremen-
tally. (2) Applying uncertainty-aware Memory
and Adversarial learning and to MRC model con-
tributes to strong incremental learning ability. (3)
The experimental results on two different con-
tinual MRC settings indicate that MA-MRC ob-
taines good incremental learning ability without
largely forgetting and significantly outperforms
strong baselines.

2 Related Work

2.1 Continual Learning

Continual Learning (CL) mainly aims to overcome
the catastrophic forgetting problem when learn-
ing on sequential new tasks incrementally (French,
1999). Existing work follows three directions:
architectural, regularization, and memory-based
approaches. The architectural methods change
the network’s architecture and add task-specific
parameters, e.g., Dynamically Expandable Net-
work (Yoon et al., 2018) and Reinforced Continual
Learning (Xu and Zhu, 2018). The regularization-
based techniques aid knowledge consolidation
when learning new tasks. For instance, EWC and
Online EWC (Kirkpatrick et al., 2017; Schwarz
et al., 2018) slow down the learning of parame-
ters important for previous tasks. The third class
is to save previous samples and learn a new task
with a forgetting loss defined on them, such as
GEM (Lopez-Paz and Ranzato, 2017), A-GEM
(Chaudhry et al., 2019), DER (Buzzega et al.,
2020), and MER (Riemer et al., 2019).

CL in MRC. Few previous studies apply con-
tinual learning to MRC. Su et al. (2020) adapted
EWC method and enlarged the MRC architecture
when a new domain arrives. Su et al. (2020) added
a penalty regularization that restricts the change of
important parameters to prevent forgetting. de Mas-
son d’Autume et al. (2019) and (Abujabal et al.,
2018) designed episodic memory based methods
that store training samples from previously seen
data, which are later rehearsed to learn new do-
mains. In this paper, we solve the continual MRC
problem of incrementally learning over sequential
domains, and build our continual model based on
the above memory-based and penalty regulariza-
tion paradigm.
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Figure 2: The overview of the proposed MA-MRC framework with sequential domain data.

2.2 Domain Adaptation

Domain adaptation aims to learn discriminative
feature features and generalize to other new do-
mains and is usually achieved by learning domain-
invariant features (Ben-David et al., 2010; Ganin
et al., 2016). For MRC under domain shift, previ-
ous methods (Wang et al., 2019; Cao et al., 2020;
Lee et al., 2019) reduce domain discrepancy by
a discriminator network that is trained to distin-
guish features of the target from source domains.
However, recent work usually transfers the model
from source to target. In this paper, we explore the
domain adaptation under continual setting.

3 Proposed Method

3.1 Problem Statement

For the task of continual MRC, we assume that the
learning framework has access to streams of MRC
data from T different domains, denoted byData =
{D1, D2, ..., DT }. Each domain data, e.g. Dt =

{Pn, Qn, An}|Dt|
n=1, consists of a series of<passage,

question, answer> triples, where |Dt| is the sample
number of Dt. The MRC model is required to
continually learn over each incoming domain data.
More specifically, at each step t, the MRC model
only observes Dt domain data, and is required to
perform well on both the t-th domain data and

previous t− 1 domain data. Hence, after training
on Dt, the model will be evaluated on all seen t
domains. To make the MRC model perform well
on previous tasks, during the continual learning
process, a memory M is to set to store a small
number of samples in previous domain data in a
fixed-size memoryM� |Dold|.

This paper focuses on the span extractive MRC.
Inspired by Su et al. (2020), we perform two differ-
ent continual domain settings: CDA-C and CDA-Q,
which define different domains according to para-
graph type and question type, respectively.

3.2 Method overview

Figure 2 shows the overview of MA-MRC. As
shown in Figure 2(a), we first train a backbone
MRC model (Transformer Encoder and Answer
Prediction modules) on the initial domain data and
randomly selectM training samples as the initial
memoryM . Figure 2(b) shows the process of learn-
ing new domain data. When the t-th domain data is
arising, MA-MRC synchronously 1) fine-tunes the
backbone MRC model with both the t-th domain
and memory data; 2) adversarially learns domain-
invariant and transfer representations via a domain
discriminator that distinguishes memory from cur-
rent data, so as to generalize well on new domain
and avoid overfitting very small memory samples;
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Algorithm 1 Incremental Training for MA-MRC

Input:
T Training domain data Data =
{D1, D2, ..., DT }
A memory M of sizeM

Output:
The Continual MRC model θT
// Initial Training

1: Train the backbone MRC model θ1 with D1

2: M ← RandomSampling(D1,M)
// Incrementally Learning for New Domain

3: for t = 2, ..., T do
4: Define the domain discriminator θD
5: Incrementally learning θt ← update θt−1

and θD with5Lfinal on Dt,Mt−1
6: Calculate need importance based on uncer-

tainty for each sample in Mt−1
7: Mt ←WeightSampling(Mt−1,

M(t−1)
t )+

RandomSampling(Dt,
M
t )

8: end for
9: return the final MA-MRC model θT ;

3) utilizes knowledge distillation to encourage the
model to mimic its original responses for past do-
main samples. After finishing training at t-th step,
we update the memory with an uncertainty-aware
sampling strategy that focuses on remembering
what the model most needs. More details about
the training process are shown in Algorithm 1.

3.3 Initial Training

Note that there is only one domain data at the begin-
ning, so the initial training withD1 can be seen as a
special case of formal extractive MRC tasks. There-
fore, we build a normal backbone MRC model θ1
(a standard BERT-MRC model with Transformer
Encoder and Answer Prediction Modules) on the
first domain data D1. We initialize a fixed-size
memory M1 to keep previous training samples that
are periodically replayed while learning the new
domain.

3.3.1 Prepare Backbone model
Transformer Encoder Module: First, a
pre-trained L Transformer encoder blocks
is used to convert the input sequence
S = [〈CLS〉, Q, 〈SEQ〉, P, 〈SEQ〉] into
contextual representations. Then, the last block
output HL = BERT(S) ∈ R(l)×h is taken as the
contextual representation, where h is the hidden
dimension of BERT, l is the sequence length.

Answer Prediction Module: A linear layer is ap-
plied on the contextual representation HL to cal-
culate the probability distribution of start and end
positions of candidate answer:

pstart = Softmax(HLW
s), (1)

pend = Softmax(HLW
e), (2)

where W s,W e ∈ Rh are learnable parameters.
Objective Function: The loss function of the
backbone MRC is the cross-entropy:

min
θT,AP

Lspan = − log pstartys − log pendye , (3)

where ys and ye are the ground-truth start and end
indices of the corresponding sample, respectively.

3.3.2 Memory Initialization
For the first domain, to preserve the data distribu-
tion of the current domain as much as possible, we
randomly selectM training samples from D1 as
the initial memory M1.

3.4 Learning for New Domain

When the t-th domain data is coming, we can ac-
cess the current data Dt and the memory Mt−1. If
we just finetune the backbone model, the model is
hard to have good transfer ability and may overfit
on the few memorized samples. Hence the MA-
MRC utilizes the adversarial learning strategy to
fully make use of the domain adaptation relation-
ship between the previous and the current domain.
After the t-th training step, we dynamically up-
date memoryM with an uncertainty-aware strategy
to store the training samples that the model most
needs to replay.

3.4.1 Memory-based Adversarial Training
To fully use the domain adaption relationship, we
adversarially learn the domain-invariant and trans-
fer representations of the memory and current do-
main data. Inspired by domain adaptation theory,
MA-MRC introduces a domain discriminator and
build a two-player min-max game. The first player,
a domain discriminator D, distinguishes memory
data from the current new domain data. Here D is
a basic binary discriminator that has a three linear
layer followed by a sigmoid activation function.
The second player, the Transformer Encoder T ,
aims to learn features that confuse D. We utilize
empirical Maximum Mean Discrepancy as distance
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measure to reduce the difference between marginal
representation distributions and make them similar:

d =MMD(T (Mt−1), T (Dt)). (4)

Finally, this learning procedure can be described
by the following minimax game:

min
θT

max
θD
Ladv = −

1

M
∑M

i=1
logD(T (Pi, Qi))

− 1

|Dt|
∑|Dt|

j=1
log(1−D(T (Pj , Qj))) + d, (5)

whereM and |Dt| are the number of training sam-
ples from memory and the current domain.

3.4.2 Knowledge Distillation
It is obvious that a good continual model can learn
a new domain data well while approximating the
behavior observed in the old ones. Then, we lever-
age knowledge distillation constraints to encourage
MA-MRC to mimic its original responses for past
samples. Specifically, we seek to minimize the
distance between the corresponding pre-softmax
responses to preserve the knowledge about previ-
ous memory data:

LKL = KL(logitsstartθt−1
||logitsstartθt )

+KL(logitsendθt−1
||logitsendθt ), (6)

where logits are the probability distribution before
softmax and KL is the KL divergence.

3.4.3 Uncertainty-aware Memory Updating
Unlike other approaches that store fixed examples
for each domain, we use a fixed memory for all do-
mains to avoid memory growing. Therefore, when
a domain arises, it is necessary to remove some old
samples in memory to store new data. We design a
dynamic sampling strategy that focuses on samples
what the model most needs to replay. Based on
existing trained MRC model θt, we first compute
the uncertainty for each sample in memory by a
unsupervised Entropy-based stragety:

uentropy = log pstartys + log pendye . (7)

Then we calculate the gap between the above un-
certainty and 1) the respective previous best un-
certainty 2) the average uncertainty of all memory
data, and normalize these metric differentials to
create a probability distribution. For ease of ex-
position, we define these two normalization calcu-
lations as norm1 and norm2. Note that we will

Domains #train #test |p| |q| |a|
CDA-Q setting

what 37593 4749 118 9.9 3.5
which 4159 454 123.7 10.3 2.7
where 3291 433 120.4 8.2 3.1
when 5459 696 123.3 8.6 2.3
how 8124 1090 120.6 9.9 3
why 1201 151 123.9 9.6 8
other 19622 1938 118 11.6 2.7
who 8150 1059 126.1 9 2.8

CDA-C setting
SQuAD 10000 10570 119.8 10.1 3.2
NaturalQA 10000 12836 152.4 9.2 4.3
HotpotQA 10000 5901 154.1 19.5 2.3
NewsQA 10000 4212 495.1 6.6 4
TriviaQA 10000 7785 674.2 13.2 1.6

Table 1: Dataset statistic of CDA-Q and CDA-C.

sample Mt data for each previously seen domain
in memory with the above distribution separately.
Finally, we get M(t−1)

t data from memory and ram-
donly sample Mt data from current domain. In this
way, the more forgotten a memory sample is, the
more it will be retained.

3.4.4 Objective Function
When incrementally learning for a new domain, the
span loss in answer prediction module L′span con-
siders all current domain data Dt and the memory
data M , while the KL loss only takes memory data
M into account. Finally, the overall loss function
at the t-th step is formulated as:

min
θT,AP

max
θD
Lfinal = L

′
span + Ladv + LKL. (8)

4 Experiment

4.1 Continual MRC Datasets

Inspired by Su et al. (2020), this paper deals
with two continual MRC under domain adaptation:
CDA-C and CDA-Q. For CDA-C setting, we re-
gard MRC datasets with different passage corpora
(e.g., Wikipedia, News, and Web snippets) as dif-
ferent domains and choose five datasets: SQuAD
1.1 (Rajpurkar et al., 2016), HotpotQA (Yang et al.,
2018), Natural Questions (Trischler et al., 2017),
NewsQA (Trischler et al., 2017), and TriviaQA
(Joshi et al., 2017). Due to computational limits,
we use the curated version provided by Fisch et al.
(2019). For each dataset, we randomly sample
10,000 <question, context, answer> triples from
the original training datasets for continual training,
and the original dev sets for testing. For CDA-
Q setting, we make use of the original SQuAD
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Methods SQuAD NaturalQA HotpotQA NewsQA TriviaQA F1avg F1all
UpperBound 78.23 67.41 68 58.63 57.59 65.97 67.52
LowerBound 44.67 44.46 54.24 38.29 58.35 48 47.9
EWC 59.28 51.25 57.6 41.56 59.54 53.85 54.79
OnlineEWC 67.64 55.81 59.61 46.68 59.28 57.8 59.1
AGEM* 64.25 55.34 58.72 45.05 58.92 56.45 57.73
DER* 41.53 63.9 63.21 56.48 58.75 56.77 56.35
DER++* 46.96 63.05 63.5 56.62 57.94 57.61 53.37
MA-MRC(norm1)* 68.13 60.33 61.25 52.2 60.03 60.39 61.57
MA-MRC(norm2)* 70.11 59.35 61.92 52.18 59.51 60.61 61.77

Table 2: The overall results under CDA-C setting. “*” indicates that theM memory data is used.

Methods what which where when how why other who F1avg F1all
UpperBound 76.91 80.64 72.02 87.51 73.09 54.49 77.18 84.58 75.8 77.67
LowerBound 63.8 72.42 55.98 63.62 65.79 23.7 69.27 82.89 62.18 66.39
EWC 63.27 74.4 53.17 60.7 63.77 34.62 66.92 82.19 62.38 65.37
OnlineEWC 65.72 72.3 59.48 60.75 60.91 34.21 69.09 83.74 63.28 66.89
AGEM* 66.88 74.88 66.95 76.52 66.72 49.78 70.36 85.28 69.67 70.08
DER* 55.95 75.91 71.47 85.58 72.94 54.45 76.69 84.17 72.15 67.75
DER++* 56.06 78.25 70.42 85.97 72.36 54.69 77.29 84.66 72.46 67.99
MA-MRC(norm1)* 72.31 75.815 69.2 85.59 72 56.76 75.65 85.86 74.15 74.92
MA-MRC(norm2)* 72.23 77.39 68.74 85.12 70.6 53.1 76.28 85.11 73.57 74.75

Table 3: The overall results under CDA-Q setting. “*” indicates that theM memory data is used.

1.1 (Rajpurkar et al., 2016) and split it into eight
domains according to the question type such as
what, why, and how. The detailed statistics of these
datasets are shown in Table 1.

4.2 Methods Compared

• Bounds. We design a standard BERT-MRC (the
same as the backbone MRC model in Sec 3.3) as
the basic model and then define two bounds on it:
1) Lower Bound continually fine-tunes the BERT-
MRC model for each new domain without memo-
rizing any historical examples. 2) Upper Bound
remembers all examples in history and continually
re-train the BERT-MRC model with all data.
• EWC (Kirkpatrick et al., 2017) restricts the

change of model parameters for previous domains
via elastic weight consolidation and a special L2

regularization. Hence it can slow down the learning
of parameters important for all previous domains.
•Online EWC (Schwarz et al., 2018), the exten-

sion of EWC, which only consider the restriction
for the latest model parameters.
• DER (Buzzega et al., 2020), memory-based

approaches, leverages knowledge dsistillation for
retaining past experience.
• DER++ (Buzzega et al., 2020), the extension

of DER, uses an additional term on memory.
• AGEM (Chaudhry et al., 2019), memory-

based approaches, uses a constraint that enables
the projected gradient to decerease the average loss
on previous seen domains.

4.3 Evaluation Metrics

Exact Match (EM) and word-level F1 score are
used to evaluate the performance of MRC model
in a single domain data. As for the continual do-
main adaptation setting, two common evaluation
settings in continual learning theory are adopted:
the average and the whole performance:

F1avg =
1

T

T∑

i=1

F1(Di
test), (9)

F1all = F1(D1:T
test). (10)

The former is the average F1 score on test sets of
all seen domain, and the latter is the whole F1 score
on the test sets.

4.4 Implementation Details

We initialize the transformer encoder layer with the
pre-trained BERTBASE model officially released by
Google1. The maximum sequence length is 384,
and the batch size is 30. We set memory sizeM
400 default that means the memory stores up to 400
training samples for previous seen domain. When
incrementally learn the new incoming domain data
at t-th step, we first reinitialize the parameters of
the domain discriminator θD. Then use Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 3e-5 and training MA-MRC model for 3 epochs.

1https://github.com/google-research/bert
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Methods SQuAD NaturalQA HotpotQA NewsQA TriviaQA F1avg F1all
Full Model 68.13 60.33 61.25 52.2 60.03 60.39 61.57
w/o Adv 65.68 56.99 59.81 52.47 59.93 58.97 59.71
w/o KL 62.65 57.57 60.34 51.48 60.11 58.43 59.12
w/o Adv+KL 53.10 49.28 55.12 47.06 58.53 52.62 52.61

Table 4: The ablation study results under CDA-C setting.

Methods what which where when how why other who F1avg F1all
Full Model 72.31 75.815 69.2 85.59 72 56.76 75.65 85.86 74.15 74.92
w/o Adv 66.87 75.55 67.09 81.08 68.76 47.98 72.41 84.02 70.47 70.85
w/o KL 70.93 78.83 70.16 84.58 72.09 55.23 75.92 85.57 74.16 74.42
w/o Adv+KL 67.60 73.10 60.10 80.62 65.13 44.75 70.65 84.25 68.28 70.03

Table 5: The ablation study results under CDA-Q setting.
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Figure 3: The average F1 changes with increasing do-
mains through the continual learning process.

4.5 Results and Discussion
4.5.1 Main Results
For the task of continual MRC, the overall results
under CDA-C and CDA-Q setting and are shown
in Table 2 and Table 3. Taking F1avg and F1all as
two overall performance evaluations, we have the
following findings: (1) The proposed MA-MRC
methods outperform other baselines by a signifi-
cant margin on both two continual settings. (2)
The performance trend of different methods are not
consistent across two continual settings. For exam-

Data D1 D2 D3 D4 D5

MA-MRC:
step 1: 80.13 - - - -
step 2: 74.92 69.16 - - -
step 3: 64.94 59.53 69.25 - -
step 4: 74.13 62.87 65.12 60.36 -
step 5: 70.11 59.35 61.92 52.18 59.51
UpperBound:
step 1: 80.13 - - - -
step 2: 79.51 68.66 - - -
step 3: 78.42 67.64 70.03 - -
step 4: 76.91 66.60 67.51 59.36 -
step 5: 78.24 67.41 68.00 58.63 57.59
MA-MRC w/o Adv:
step 1: 80.13 - - - -
step 2: 76.58 68.82 - - -
step 3: 68.83 61.14 69.74 - -
step 4: 73.67 60.37 66.5 60.13 -
step 5: 65.68 56.99 59.81 52.47 59.93

Table 6: Catastrophic forgetting phenomenon of pro-
posed MA-MRC(w/o Adv) and UpperBound mehtods
under CDA-C setting.

ple, OnlineEWC performs well under CDA-C but
performs poorly CDA-Q, and all memory-based
methods outperform consolidation-based methods
under CDA-Q but not CDA-C. The reason is that
the characteristics of the domains and the continual
learning difficulty are different. Concretely, it is
obvious that the domain data in CDA-C is more
different and more difficult than that in CDA-Q. (3)
There is a big gap between all the models and the
upper bound. We further demonstrate the evalua-
tion results of the proposed MA-MRC and Upper-
Bound methods on each domain at each continual
learning step t in Table 6. The results indicate that
MA-MRC indeed forgets knowledge learned on
previously seen domain data, and there remain lots
of things to be explored for continual MRC.

Besides, we plot the average F1 performance of
models during the whole continual learning pro-
cess in Figure 3 to investigate how performance
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Sampling SQuAD NaturalQA HotpotQA NewsQA TriviaQA F1avg F1all
uentropy, norm1 68.13 60.33 61.25 52.2 60.03 60.39 61.57
uentropy, norm2 70.11 59.35 61.92 52.18 59.51 60.61 61.77
uprob, norm1 68.71 59.30 62.00 52.79 59.94 60.55 61.55
uprob, norm2 63.78 60.42 59.88 52.72 59.54 59.27 60.25
Random 65.68 56.99 59.81 52.47 59.93 58.97 59.71

Table 7: The results of different sampling straties under CDA-C setting.

M methods F1avg F1all
MA-MRC(norm1) 53.76 53.91

200 MA-MRC(norm2) 56.13 56.66
MA-MRC(norm1) 58.39 59.08

300 MA-MRC(norm2) 58.14 58.88
MA-MRC(norm1) 60.39 61.57

400 MA-MRC(norm2) 60.62 61.77

Table 8: Results with differentM under CDA-C.

F1avg F1all
DER++ 70.21 64.35
AGEM 57.57 30.18
MA-MRC(norm1) 71.83 71.41order 1

MA-MRC(norm2) 72.77 72.48
DER++ 69.9 76.2
AGEM 74.97 77.02
MA-MRC(norm1) 75.41 77.5order 2

MA-MRC(norm2) 75.27 78.01
AGEM 66.82 68.82
MA-MRC(norm1) 72.64 74.27order 3
MA-MRC(norm2) 72.21 73.73

Table 9: The results of different domain order under
CDA-Q setting.

changes. We observe that the performance of all
models decreases in some degree with increasing
numbers of domains under both CDA-C and CDA-
Q settings. However, the proposed MA-MRC meth-
ods outperform other baselines and achieve better
performance on the whole domain data.

4.5.2 Ablation Study
To better understand our proposed model, we con-
duct ablation studies to see the effectiveness of
each model component. The results in Table 4 and
Table 5 demonstrate that both knowledge distilla-
tion and adversarial training contribute to avoiding
largely forgetting. For incremental domain learn-
ing, knowledge distillation is a naive way to enforce
the model to remember its original responses for
previous domains. What is more, the adversarial
domain adaptation, can make MRC model learn
domain-invariant and transfer representations bet-
ter. Table 6 shows the evaluation results of w/o
Adv at each continual step. Though w/o Adv ob-
tains a slightly higher performance on the last two
domains than MA-MRC model, it has a more harm-

Training Time / 1 epochPara CDA-C CDA-Q
AGEM θT,AV 77 m 49 m
DER θT,AV 57 m 38 m
DER++ θT,AV 56 m 38 m
MA-MRC(norm1) θT,AV,D 61 m 40 m
MA-MRC(norm2) θT,AV,D 60 m 39 m

Table 10: Parameters and speed comparison.

ful forgetfulness on the very previous seen domain.
The results prove that the adversarial learning in-
deed helps for remembering previous knowledge.

4.5.3 Effect of Memory
Memory Size M. Table 8 shows the perfor-
mance with three different memory sizeM: 200,
300, and 400. In low memory scenario, i.e.,M =
200, the proposed method performs poorly. The
reason is that the adversarial domain adaption has
difficulty transferring well with a too small mem-
ory. Therefore, as the number of memory samples
increases, it will be more conducive to transfer to a
new domain, and the overall performance will be
better. We believe that an appropriate memory size
could lead to better performance.
Uncertainty-aware Sampling. We replace the
uncertainty-aware memory updating strategy with
another two strategies. First, we use another un-
certainty measurement that takes heuristic max
softmax probability of spans as the uncertainty:
uprob = maxi,j(p

start
i + pendj ). The second strat-

egy is random sampling. The experimental results
in Table 7 indicate that the uncertainty-aware sam-
pling (both Entropy-based and Probability-based
uncertainty) is better than random sampling.

4.5.4 Effect of Domain Order
Table 9 shows the results of different domain or-
ders. Order 1 is a descending order based on the
number of training samples in each domain and or-
der 2 is an ascending order, and order 3 is a random
order. The performance of AGEM and DER++ de-
grades severely in order 1. However, the proposed
MA-MRC methods is superior to baselines and are
stable and robust under different orders.
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4.5.5 Efficiency Analysis
We compare the parameters and training speed of
methods with the same size of the memory in Table
10. The MA-MRC have more parameters for do-
main discriminator. Nevertheless, considering the
larger number of parameters of the Transformer, we
conclude all methods have almost the same num-
ber of parameters. As for training time per epoch,
MA-MRC is slower than DER++ (4%/5% under
CDA-C/CDA-Q). It can be accepted because of the
significant improvement of MA-MRC.

5 Conclusion

In this paper, an incremental learning MRC model
with uncertainty-aware fixed memory and adver-
sarial domain adaptation, MA-MRC, is proposed
for continual MRC and alleviating catastrophically
forgetting. Inspired by the human learning process,
There are two main ideas of MA-MRC: a memory
that stores a small number of samples in previous
seen domain data and always focuses on what the
model most needs to replay; and adversarial learn-
ing the domain adaptation in a two-player game to
learn better transfer representations between pre-
vious and current domain data. Experimental re-
sults show that the proposed MA-MRC can achieve
a good continuous learning performance without
catastrophically forgetting under CDA-C and CDA-
Q settings.

In the future, we would like to explore a more ef-
fective sampling strategy, domain adaptation strat-
egy, and balance training strategy for multiple ob-
jectives to enhance the continual MRC model.
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