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Abstract

News recommendation is different from movie
or e-commercial recommendation as people
usually do not grade the news. Therefore, user
feedback for news is always implicit (click be-
havior, reading time, etc). Inevitably, there are
noises in implicit feedback. On one hand, the
user may exit immediately after clicking the
news as he dislikes the news content, leaving
the noise in his positive implicit feedback; on
the other hand, the user may be recommended
multiple interesting news at the same time and
only click one of them, producing the noise
in his negative implicit feedback. Opposite
implicit feedback could construct more inte-
grated user preferences and help each other to
minimize the noise influence. Previous works
on news recommendation only used positive
implicit feedback and suffered from the noise
impact. In this paper, we propose a Denoising
neural network for news Recommendation with
Positive and Negative implicit feedback, named
DRPN. DRPN utilizes both feedback for rec-
ommendation with a module to denoise both
positive and negative implicit feedback to fur-
ther enhance the performance. Experiments on
the real-world large-scale dataset demonstrate
the state-of-the-art performance of DRPN.

1 Introduction

Online news platforms, such as Google News and
Microsoft News, have attracted a large population
of users (Wu et al., 2020b). However, massive
news articles emerging every day on these plat-
forms make it difficult for users to find appealing
content quickly (Wu et al., 2019b). To alleviate the
information overload problem, recommender sys-
tems have become integral parts of these platforms.

A core problem in news recommendation is
how to learn better representations of users and
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news (Hu et al., 2020b). Early works include col-
laborate filtering (CF) based methods (Das et al.,
2007), content-based methods (IIntema et al., 2010)
and hybrid methods (De Francisci Morales et al.,
2012) that combine the two. These methods usually
have the cold start problem when being exposed
to the sparsity of user-item interactions (Zhu et al.,
2019). Recently, deep learning methods have been
proposed to learn better user and news represen-
tations. The techniques evolve from using recur-
sive neural network (Okura et al., 2017), attention
mechanism (Zhu et al., 2019; Wu et al., 2019¢), to
graph neural network (Wang et al., 2018a; Hu et al.,
2020b,a; Qiu et al., 2022). These methods usually
recommend news for users based on their historical
feedback.

Implicit feedback is more commonly collected
than explicit feedback for news because the users
usually do not grade the news. Hence, current news
recommendation methods naturally use positive im-
plicit feedback like click behavior as the historical
feedback to model user interests. However, there
are gaps between positive implicit feedback and
user real preferences (Wang et al., 2018b). For ex-
ample, the click behaviors do not fully reflect the
user’s preferences. The user may exit the news im-
mediately after clicking, which will involve a noise
in the positive feedback. Additionally, some news
that users did not click, may also attract them later.
Ignoring them also impacts the recommendation
performance. Our observation is that using both
positive and negative implicit feedback can better
model user interests. Besides, positive and negative
implicit feedback can help to denoise each other by
conducting inter-comparison and intra-comparison.
If a news story in one feedback sequence is more
similar to the news in the opposite feedback se-
quence rather than the news in the same sequence,
it is very likely that this news story constitutes
noise. We can remove this news when building
user interests. This idea is shown in Figure 1.
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Figure 1: The idea to denoise the implicit feedback.
Noises are found by conducting inter-comparison and
intra-comparison and then reduced.

In this paper, we propose the Denoising neural
network for news Recommendation with Positive
and Negative implicit feedback, named DRPN. It
first introduces a news encoder to represent the
news in two implicit feedback sequences. Then
two parallel aggregators are used to extract user
representations from both positive and negative
historical feedback: (1) content-based aggregator,
which selects the informative news in the feedback
sequences to represent the user; (2) denoising ag-
gregator, which finds and reduces the noises in the
feedback sequences. In addition to the semantic in-
formation, we introduce a graph neural network to
incorporate the collaborative information to further
enrich the user representation. Finally, the user and
candidate news representations are used to predict
the clicking probability. The contributions of this
paper are summarized as follows:

* We propose a novel neural news recommen-
dation approach DRPN which jointly models
both positive and negative implicit feedback
sequences to represent the user to improve
recommendation performance.

* In DRPN, to minimize the impacts of the
noises in the implicit feedback, the denois-
ing aggregators are designed to refine the two
feedback sequences and can help to further
improve the recommendation performance.

* The experiments on the large-scale real-world
dataset demonstrate that DRPN achieves state-
of-the-art performance.

2 Related Works

2.1 Recommendation with Multi-type
Feedback

Few works notice the noise problem in the implicit
feedback. (Zhao et al., 2018; Liu et al., 2020) use
multiple types of feedback to improve recommen-
dation. However, they ignore the noise in the im-

plicit feedback. (Wang et al., 2018b) notices the
noise problem but it fails to use the meaningful se-
mantic information in the news. (Wu et al., 2020a;
Xie et al., 2020; Bian et al., 2021) use the explicit
feedback (such as reading time and like/dislike
behaviors) to help denoise the implicit feedback.
However, the explicit feedback is harder to collect
than the implicit feedback. Differently, DRPN only
depends on the implicit feedback (click and non-
click behaviors) to conduct the denoise to better
model the user preferences.

2.2 Graph Neural Network

Recently, graph neural networks (GNN) have re-
ceived wide attention in many fields (Wu et al.,
2020c). The convolutional GNN can learn power-
ful node representations by aggregating the neigh-
bors’ features. Recently, some works have at-
tempted to leverage the graph information to en-
hance the representations learning for news recom-
mendation with GNNs. (Wang et al., 2018a) uses
entities in news to build a knowledge graph and
use the entity embeddings to improve the model
performance. (Ge et al., 2020) combines the one-
and two-hop neighbor news and users to enrich the
representations of the candidate news and user, re-
spectively. However, these methods also depend
on the positive implicit feedback to model user
representations and ignore the noise problem.

3 Problem Formulation

The news recommendation problem in our paper
can be illustrated as follows. Let &/ and R denote
the entire user set and news set. The feedback
matrix for the users over the news is denoted as
Z € RlwXlr where Zu,r = 1 means user u gives a
positive implicit feedback to news r (e.g., u clicks
), Zu, = —1 means user u gives a negative im-
plicit feedback to news r (e.g., u sees r but ignores
it), and z,, = 0 means no feedback. [, and I,
denote the numbers of the users and news, respec-
tively. For each specific user, his historical positive
feedback sequence [p1, ..., p;,] and negative feed-
back sequence [nq,...,n;,] can be gathered from
the feedback matrix Z, where p;,n; € R.

Given the feedback matrix Z, the goal is to train
amodel M (i.e., DRPN). For each new pair of user
and candidate news (u € U,r € R), we can use
M to estimate the probability that u would like to
click r.
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Figure 2: The DRPN framework.

4 Framework

Figure 2 shows the architecture of DRPN. It first
employs the title encoder and id embedding layer to
represent all news in two feedback sequences and
the candidate news. Then two separate encoders
are employed to extract the user semantic interest
and collaborative interest information from both
positive and negative implicit feedback sequences.
Next, two fusion nets combine multiple interest
representations to represent the user. Finally, we
use the user and candidate news representations to
estimate the clicking probability. We will detail
each component in the following subsections.

4.1 Input

The inputs of the DRPN contain six parts: the titles
of positive feedback sequence [p!, ..., pfp], the ti-
tles of negative feedback sequence [nf, ...,n] |, the
candidate news title r’, the IDs of positive feedback
sequence [pg, ..., plp], the IDs of negative feedback
sequence [ng, ...,n{ ], and candidate news ID r¢.
For each news title ¢, we convert its every word
w to a d-dimensional vector w via an embedding
matrix Eyy € RlwX4 where [, is the vocabulary
size and d is the dimension of word embedding.
Then, the title ¢ is transformed into a matrix T.
For each news ID o, we also convert it to a d-
dimensional vector o via an embedding matrix
Eo € RY*4  In this manner, we can encode
all news to obtain P? = [p{,....p{ | (p{ € R9),

N° = [ng,...,n? | (n? € R?), and r2 € R
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Figure 3: The content-based aggregator (CA) on the
left and the denoising aggregator (DA) on the right in
semantic interest encoder. They encode positive prefer-
ences for the user. (best viewed in color)

4.2 Title Encoder

The title encoder can extract the sentence-level se-
mantic representation of the news title. It contains
two sub-layers. We take the title T as an example
to detail the encoding process.

The first sub-layer is a multi-head self-attention
layer, which can model the contextual represen-
tation of each word. Given three input matrices
Q € Rlaxd K € Rlv*d and V e R*4 the atten-
tion function is defined as:

attn(Q, K, V) = softmax(QK " /Vd)V (1)

Multi-head self-attention layer MH(-, -, -) will fur-
ther project the input to multiple semantic sub-
spaces and capture the interaction information from
multiple views:

MH(Q, K, V) = [head; .. 'headlh]WI

head; = Attn(QW2 KWK vwY) @)
where WiQ, WiK, WZV € RI*d/ln and W ¢
R?*4 are the parameters to learn. I, is the number
of heads. [;] denotes the column-wise concatena-
tion for matrices.

Moreover, we employ the residual connection
and layer normalization function LN defined in (Ba
et al., 2016) to fuse the original and contextual
representations: T = LN(T + MH(T, T, T)).

The second sub-layer is a gated aggregation
layer (Qiu et al., 2020). It will select the impor-
tant words to generate an informative title repre-
sentation. The gated mechanism is employed to
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decide the weight of each words. Given the word
embedding matrix T, its sentence-level semantic
representation t is calculated as follows:

t= Aggregate(’i‘)

_ T. 3
= (softmax(tanh(TWa + ba)wg)> T

where W, € R™*? b, € RY and W, € R¥*!
are trainable parameters.

Finally, we can use the title encoder to model the
titles of all news in two user feedback sequences
to obtain P* = [p{, ..., pj ] and N* = [n{, ..., m] |.
For the candidate news, we can also obtain its title
representation r’, via the same title encoder.

4.3 Semantic Interest Encoder

The titles of the news which the user interacted
usually reflect the user’s interests. Hence, we can
learn user interest representations by encoding the
semantic representations of the news. As is shown
in Figure 3, the semantic interest encoder lever-
ages two aggregators, content-based aggregator
(CA) and denoising aggregator (DA), to extract
user preferences from both positive and negative
feedback sequences.

4.3.1 Content-based Aggregator

Different news have different informativeness
when representing users. For example, sport news
are more informative than weather news in mod-
eling user personality, since the latter are usually
browsed by most users. The content-based aggre-
gator (CA) will first evaluate the importance of
different news in the feedback sequence from the
content view and then aggregate the important news
to represent the user. It contains two sub-layers.
The first one is a multi-head self-attention layer,
which can enhance the news representations by cap-
turing their interactions. For the positive feedback
sequence P!, the multi-head self-attention layer
generates P! = LN(P! + ME(P!, P!, P!)). The
MH is define in Eq.(2) with independent parameters
and the LN is the layer normalization function.
The second sub-layer is a gated aggregation layer
that has the same structure as the one defined in
Eq.(3). For f’t, it can select the more informative
news to generate the user representation: p) =
Aggregate(f’t). We also use the content-based
aggregator to generate another user representation

from the negative feedback sequence N?, n’.

4.3.2 Denoising Aggregator

Denoising aggregator will conduct what we call
a refining operation, which aims to mitigate the
impacts of the noises in the feedback when model-
ing the user interests. Intuitively, if news clicked
by the user is more semantically relevant with the
news in the positive feedback sequence, this news
is more likely the user true preference. Other-
wise, if it is more semantically relevant with the
news in the negative feedback sequence, it is more
likely a noise for representing the user interest.
As shown in Figure 3, for each news in the pos-
itive feedback sequence, we will conduct the intra-
comparisons with the news in the positive sequence
and inter-comparisons with the news in the negative
sequence to decide its weight when representing
the user. This module contains three sub-layers.

The first sub-layer is an intra-attention layer. For
news p’ € P, this layer uses it as the query to
aggregate all news in P? except pg. by the attention
mechanism to obtain the sequence-level represen-
tation, p}; = (D iz a;?ipf)Wf}, where

exp ((pLWH) (W) T /Vd)

> e (W (LW T/Va)
e#£j

«

i 4)

WZ, W ij € R%*d gre learnable parameters.

The second sub-layer is an inter-attention layer.
For pz», this layer uses it as the query to aggregate
its relevant news in the negative feedback sequence
N by the attention mechanism.

il = attn(pi W N'WE NIW!)  (5)
where Wh/, ij/ € R%*9 are learnable parame-
ters.

The third sub-layer is a gated aggregation layer.
The weight of the news p§ are decided by the se-

mantic similarities between p§- and two sequence-
level representations, p’; and .

% = tanh((pls B WY + bYW + by

s = tanh([p?; ﬁ;]Wg + b5)Wi + by ©
exp(s} — ReLU(7) * s7)

Oéj = -

Z;jop exp(st — ReLU(7)  s7)
where WY, WY € R2xd Wy WY € R

U, by € RY bY, b4 € R and ~y are learnable
parameters. Then, this layer will aggregate all news
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according to their weights to obtain the denoised
representatioin, PZ = ZJ f)p a]pj

For the negative feedback sequence N, we take
a dual denoising process to obtain its final repre-

sentation n’,fl.

4.4 Graph Neural Network

If two news, r; and 7, are co-clicked by the user
uy and r; is also clicked by wus, us may also prefers
r; based on the idea of the collaborative filtering.
Hence, we can further enrich the user interest rep-
resentations by modeling the collaborative infor-
mation. Like the knowledge graph, we build a
collaborative graph G = {(r;,r;)|r;,r; € R} over
the news set ‘R based on the co-clicking relation-
ships in the historical feedback matrix Z. (r;,r;)
indicates they are neighbors in the graph and have
been clicked by the same user. To incorporate the
collaborative information, we employ the graph
transformer neural network (Shi et al., 2021) to
model the news in the user feedback sequence.

First, for each news node r° in P° and N°, we
compute the attention weights between it and its
neighbors N'(r°) in G. NV (r°) denotes the neighbor
set of node r°. Take its neighbor r{ (k € N (r°))
as an example, the attention weight between r° and
r}, at the m-th head is calculated by

exp (oW, ) (g WS, 2) T/ Vd)
> exp <(r°an7 )( rOW T/\[)

geN (r°)

apt =

where W9, , € R4*d/l, are learnable parameters.
/ is the number of heads and d is equal to d/I},.
Next, each news node will aggregate the informa-
tion of its neighbors from multiple heads according
to the attention weights. For the node r°, the repre-
sentation aggregated from its neighbors is:

> aprwo (7

Hm:l;I
keN (ro)

m=1

where {W7 5 € Rx /b, }Zzlfl are trainable pa-
rameters. || denotes the concatenation operation for
I}, heads.

Finally, we will update the representation of each
node by fusing its aggregated and original repre-
sentations.

¥ = Fuse(r®, i°)

8
= o, W) © tanh(; £]WH)

where W{ , Wg € R2?*4 are learnable parame-
ters. © denotes the element-wise multiplication
operation. o is the sigmoid function.

We can use this graph neural network to encode
all news in the user positive and negative feedback
sequences to obtain P° = [pg, .. ,pl | and N° =

ng,...,n7 |.

4.5 Collaborative Interest Encoder

The module aims to model user interests by ag-
gregating the representations of two feedback se-
quences encoded by the graph neural network layer,
which have incorporated the collaborative informa-
tion. The structure of the collaborative interest
encoder is similar to that of the semantic inter-
est encoder and also contains two aggregators, a
content-based aggregator and a denoising aggre-
gator. The denoising aggregators have the same
structure as the one in the semantic interest en-
coder. The only structural difference between two
content-based aggregators of two encoders is that
there is no multi-head self-attention operation in
the content-based aggregator of the collaborative
interest encoder. This is because the context infor-
mation is already propagated by the graph neural
work, which has a similar effect with the multi-
head self-attention.

The inputs of this encoder are the positive se-
quence representation P? and the negative se-
quence representation IN°. The content-based ag-
gregator will generate two user representations, p$
and n¢, based on two sequence representations,
respectively. Similarly, the denoising aggregator
will denoise two sequences and generate two user
representations pj and nj.

4.6 Fusion Net

There are two fusion nets as shown in Figure 2.
They are used to fuse multiple user interest rep-
resentations extracted by two interest encoders to
form a comprehensive user representation. For
different user-candidate news (u, r) pairs, the fu-
sion net dynamically allocates different weights
for different interest representations. Two fusion
nets have similar structures but different param-
eters. We take the one for the semantic interest
encoder as an example to detail the fusion process.

The fusion net first represents the (u,r) pair.
It should mitigate the effect of two interest en-
coders and independently calculate the weights
for the output representations of two encoders.
Hence, it uses the outputs of the title encoder

2324



to represent (u,r), f' = [u);rf], where u’ =

Aggregate([PYINY]). P!, Nt and r!, are the title
representations of the news in user positive and neg-
ative feedback sequences and the candidate news
extracted by the title encoder. [|| denotes the row-
wise concatenation for matrices.

Then, this module leverages four different fully
connected layers to calculate the weights for four
representations extracted by the semantic interest
encoder (i.e., p%, n}, p}, and n}). For example, the
weight of pl is calculated by

BP = tanh(F'WP* + BESYWE® +15°  (9)

where W)'* € R2xd Wh* ¢ R*1 bl € RY,
b5* € R are learnable parameters. The weights,
", B, and !, of the representations nf, p!, and
n}, can be calculated by the same way in Eq.(9).
Finally, the user content-view representation is
calculated by

u’ = B2« pl+ B xnl + B« pl, + 81 xnj, (10)

Another fusion net is used to fuse four inter-
est representations extracted by the collaborative
interest encoder and has a similar structure with
the above one. The only difference is that it uses
the outputs of the news ID embedding layer to
represent the (u,r) pair, £2 = [u};rg], where
u} = Aggregate([P°|N°]). Then, it uses f°
to calculate the respective weights 6%, 67, 6 and
0} for four interest representations p3, ng, pj and
nj by the same way in Eq.(9). The final user graph-
view representation is calculated by

u’ = 0%+ p? + 07«0+ 6} +pf + 6} +nf, (11)

4.7 Prediction

Following (Wu et al., 2019c), the clicking prob-
ability score ¢ is computed by the inner product
of the user representation and the candidate news
representation: § = u’ ' r’, + u®'r¢, where u’ ' r’
stands for the score calculated from title informa-
tion and u® ' r¢ stands for the score calculated from

collaborative information.

4.8 Training

Following (Wu et al., 2019c), for each positive sam-
ple, we randomly select [, negative samples from
the same user to construct a [, + 1 classification
task. Each output of the DRPN for a classification
sample is like [§*, 91, ..., §; |, where § denotes

#users | 654870 | # avg. titles words 12.66
#news | 104153 | # positive samples 1048414
# words | 54292 | # negative samples 25145229
# avg. positive feedback sequence length 4.14
# avg. negative feedback sequence length 96.80

Table 1: Statistics of the dataset.

the clicking probability score of the positive sam-
ple and the rest denote the scores of the [ negative
samples. We define the training loss (to be mini-
mized) as follows.

exp(;)

L=— Z log( P

€P exp(9) + 21 exp(y; ;)
‘7:

) (12)

where P denotes the set of positive samples.

4.9 Computation Complexity

The time complexity of the title encoder is O(L2d+
Ld?), where L is the title length and d is the em-
bedding size. The time complexity of each interest
encoder is O((lp + 1n)d® + (12 + 17 + (1, +1n)?)d)
where [, and [,, are the lengths of positive and neg-
ative feedback sequences. The time complexity of
GNN is O(|G|d), where |G| denotes the number of
edges that existed in collaborative graph. Hence,
The overall time cost is O((l, + I,) (Ld? + L%d) +
2412+ (I, + 1) +1G])d).

During the inference phase, we can compute the
news representations in advance and the computa-
tion complexity will be O((12 412 + (I, + 1,)%)d).

5 Experiment

5.1 Dataset

There is no off-the-shelf dataset in which the user
profile includes both positive and negative histori-
cal feedback sequences. Therefore, we use MIND !
dataset (its original user profile only contains pos-
itive feedback) to re-build one to conduct the ex-
periments. The original MIND dataset contains the
user impression logs. An impression log records
the news displayed to a user when visiting the news
website homepage at a specific time, and the click
behaviors on the news list. We re-build the dataset
based on the MIND’s impression logs as follows:
(1) Select the impression logs of the first 5 days
of the original training set. Then we add the news
that a user has seen but did not click to his negative
feedback sequence, and add the news he clicked

"https://msnews.github.io/
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to his positive feedback sequence. In this manner,
the user profile includes both positive and negative
historical feedback sequences; (2) Training set: the
impression logs of 6-th day of the original training
set; (3) Validation set: the first 10% chronological
impression logs of the original validation set; (4)
Testing set: the last 90% chronological impression
logs of the original validation set.

The training, validation, and testing sets use the
same user profile built in Step (1). Since the user
profiles are only built in Step (1) which is ahead of
Step (2)-(4), there is no label leakage to validation
and testing sets. Moreover, same as the original
MIND dataset, the re-built dataset also has 44.6%
users of validation set and 48.7% users of test set
that are not shown in the re-built training set. Ta-
ble 1 shows some statistics of the re-built dataset.

5.2 Baseline Approaches and Metrics

We evaluate the performance of DRPN by com-
paring it with several baseline methods, including:
(1) LibFM (Rendle, 2012), factorization machine
(FM); (2) DeepFM (Guo et al., 2017), which com-
bines the FM and neural networks; (3) DKN (Wang
et al., 2018a), which uses the CNN to fuse the
entity and word embeddings to learn news repre-
sentations; (4) LSTUR (An et al., 2019), which uses
the GRU to model short- and long-term interests
from the click history; (5) NPA (Wu et al., 2019b),
which introduces the attention mechanism to se-
lect important words and news; (6) DEERS (Zhao
et al., 2018), which uses GRU to encode positive
and negative feedback sequences; (7) DFN (Xie
et al., 2020), a factorization-machine based net-
work which uses transformers to encode both pos-
itive and negative feedback sequences to enhance
performance; (8) GERL (Ge et al., 2020), which
constructs user-news graph to enhance the perfor-
mance; (9) NAML (Wu et al., 2019a), which uses
multi-view learning to aggregate different kinds of
information to represent news; (10) NRMS (Wu
et al., 2019c¢), which uses multi-head self-attention
to learn news and user representations; (11) NAML
+ TCE, which incorporates the denoising training
strategy TCE (Wang et al., 2021) into NAML; (12)
NRMS + TCE, which improves NRMS by using
TCE.

Following the previous news recommendation
work (Wu et al., 2020b, 2019c; Ge et al., 2020), we
use AUC, MRR, nDCG@5, and nDCG@10 scores
as our evaluation metrics.

5.3 Implementation Details

For DRPN, the representation dimension d is set
to 300. We use the GloVe.840B.300d (Pennington
et al., 2014) as the pre-trained word embeddings.
The maximum title length is set to 15. The lengths
of feedback sequences [, and [,, are set to 30 and 60.
Padding and truncation are used to keep sequence
and word numbers the same. The head number /5, in
multi-head self-attention is set to 6. The hidden size
d’ in the gated aggregation layer is set to 200. The
head number in graph neural network [}, is set to
2. The negative sampling ratio [, is set to 4. When
preparing data for graph neural network, we only
input sub-graph that contains nodes in the user feed-
back sequences. Moreover, we pick the maximum
5 neighbor nodes for each node r in user feedback
sequences, which are most frequently co-clicked
with . We have also released the source code at
https://github.com/chungdz/DRPN.

For NRMS, DKN, LSTUR, NPA, and NAML,
we use the official code and settings 2. For oth-
ers, we reimplement them and set their parame-
ters based on the experimental setting strategies
reported by their papers.

For fair comparisons, all methods only use the
news ID, title, category and subcategory as features.
The validation set was used for tuning hyperparam-
eters and the final performance comparison was
conducted on the test set.

Models | AUC | MRR | nDCG@5 | nDCG@10
LibFM 60.48 | 2638 | 2775 34.63
DeepFM 62.18 | 27.26 | 29.08 35.68
DKN 64.00 | 2898 | 31.49 38.22
LSTUR 6531 | 30.31 | 3334 39.86
NPA 6435 | 29.61 | 32.88 39.23
DEERS 6529 | 30.78 | 3378 40.09
DFN 63.11 | 29.14 | 3188 38.33
GERL 64.08 | 29.34 | 3250 38.96
NAML 65.84 | 30.60 | 33.89 4023
NRMS 65.46 | 30.73 | 3378 40.13
NAML + TCE | 65.95 | 30.66 | 33.93 40.52
NRMS + TCE | 65.84 | 31.58 | 34.93 4126
DRPN | 67.30 | 32.68 | 3627 | 4233

Table 2: Performance comparison of all methods. Best
results are highlighted in bold.

5.4 Performance Evaluation

The experimental results of all models are sum-
marized in Table 2. We make the following ob-
servations from the results. First, our proposed

Zhttps://github.com/microsoft/recommenders
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Positive implicit feedback

Negative implicit feedback

Weights | Categories Titles Weights | Categories Titles
[ ] Sports The Geno Smith ... thing in Seahawks' win over 49ers. [ | Finance | Confidence in the US economy accelerates.
|| Sports Russell Wilson has MVP ... beat 49ers in OT classic. || Music Top 100 country songs of all time.
|| Weather | ... farmers endure major crop and profit losses as climate changes. Lifestyle | 200 shocking home photos you have to see.
Sports Russell Wilson, Richard Sherman swap jerseys despite ... Politics : New poll shows Buttigieg in the lead in lowa. Can he win it all?
Movies | Actress accuses Roman Polanski of raping her in 1975. Sports i Watch: John Harbaugh shared awesome moment with Lamar Jackson.
Finance | Dean Foods files for bankruptcy. Sports i Angels hire Tony La Russa as baseball operations special assistant.
Music Broadway actress Laurel Griggs dies at Age 13. Sports i Fred Taylor on Pro Football Hall of Fame: 'I think I belong’.
Lifestyle | A master suite ... is asking for $1,200/month in rent. Sports  { What this week's 5 biggest upsets mean for the NFL playoff picture.
Top 2 recommended news Last 2 recommended news
Feedbacks | Categories Titles Feedbacks | Categories Titles
Clicked Sports } Colin Kaepernick is about to get what he deserves: a chance. Ignored | Moives | ... Disney for casting 'the White Guy' in The Little Mermaid.
Clicked Sports | ... after Redskins' player Montae Nicholson took her to hospital. Ignored | Music Taylor Swift ... be owed $7.9 million in unpaid royalties.

Figure 4: Visualization of the attention weights for an example user’s feedback in the denoising aggregator and the
recommendation results for him in validation dataset. A darker color indicates a larger attention weight.

Models | AUC | MRR | nDCG@5 | nDCG@10
DRPN | 67.30 | 32.68 | 3627 | 42.33
DRPN-D | 66.51 | 31.09 | 35.40 41.63
DRPN-G | 66.82 | 31.90 | 3534 41.62
DRPN-DG | 66.14 | 31.17 | 3457 40.97
DRPN-N | 66.38 | 31.39 | 3479 41.13
DRPN-P | 65.89 | 31.11 | 3438 40.59

Table 3: Performance comparison of all variants of
DRPN. Best results are highlighted in bold.

model, DRPN, outperforms all baselines on the
news recommendation datasets. Second, among
all baselines, the methods which use the deep neu-
ral networks to model the news (i.e., DKIN, NPA,
LSTUR, DFN, DEERS, NAML, GERL, NRMS)
perform better than the feature-based methods (e.g.,
LibFM and DeepFM). This performance improve-
ment should be attributed to better news represen-
tation methods. Among the deep neural methods,
NRMS+TCE achieves the best performance by us-
ing two level multi-head self-attention to learn user
representations and using TCE to denoise the nega-
tive samples. Third, among two baselines that use
both positive and negative feedback, DFN performs
worse than DEERS. The reason may be that origi-
nal DFN depends on the explicit feedback but the
experimental dataset only contains implicit feed-
back. Compared with NAML, DEERS has a com-
petitive performance even if its news encoder is a
simple pooling layer. This also proves the effec-
tiveness of the negative implicit feedback.

5.5 Ablation Study

To highlight the individual contribution of each
module, we use the following variants of DRPN to
run an ablation study: (1) DRPN-D, which removes
the denoising aggregator; (2) DRPN-G, which re-

moves the knowledge graph part; (3) DRPN-DG,
which removes the knowledge graph part and the
denoising aggregator; (4) DRPN-N, which only
uses the positive feedback; (5) DRPN-P, which
only uses the negative feedback.

The results are shown in Table 3. First, DRPN-D
and DRPN-G perform worse than DRPN, proving
the effectiveness of the designed denoising module
and the collaborative graph. Second, the results
of DRPN-N and DRPN-P indicate the effective-
ness of negative and positive feedback, respectively.
Third, even without deliberately designing, by us-
ing both positive and negative implicit feedback,
DRPN-DG can achieve competitive performance
compared with the strongest baseline NRMS+TCE.
This further proves the effectiveness of the negative
feedback.

5.6 Case Study

To intuitively illustrate the effectiveness of the de-
noising aggregator, we sample a user and visualize
his historical feedback attention weights in the de-
noising aggregator of the semantic interest encoder.
The upper part of the Figure 4 shows the attention
weights and ranks the news in descending order of
the attention weight. We can find in positive feed-
back sequence, the top 4 news are about sports and
weather and the last 4 news are about music, movie,
finance, and lifestyle. Meanwhile, in negative feed-
back sequence, the top 4 news are about finance,
music, politics, and lifestyle, and the last 4 news are
all about sports. This indicates that the denoising
aggregator believes that the user likes sports, and
dislikes the topics such as finance, music, movies,
politics, and lifestyle. As shown in the lower part of
Figure 4, based on the predicted user preferences,
we can see DRPN prefers to recommend the sports
news for this user. Moreover, in the validation data,
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we can observe that this user clicks the top 2 rec-
ommended news and ignores the last 2 news. It
suggests the user preference extracted by the de-
noising aggregator is consistent with the user’s real
behaviors. In summary, the visualization results
indicate the denoising module can better capture
the user’s real preferences by conducting the inter-
and intra- comparisons between the positive and
negative implicit feedback sequences.

6 Conclusion

In this paper, we propose a novel deep neural news
recommendation model DRPN. In DRPN, we de-
sign two aggregators to extract user interests from
both positive and negative implicit feedback. The
content-based aggregator focuses on the contents in
the news representations and the denoising aggre-
gator aims to mitigate the noise impact commonly
existing in the implicit feedback. Besides, apart
from the title information, DRPN also exploits the
collaborative information by the graph neural net-
work to further improve the recommendation per-
formance. Experimental results on a large-scale
public dataset demonstrate the state-of-the-art per-
formance of DRPN. The further study results also
show the effectiveness of the denoising module.
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A Discussion

A.1 Limitations

In this paper, to better learn the representations, our
method refines the historical behaviors of the user
by the denoising manner. There are still some po-
tential directions to further improve our approach.
First, since the user profile in the experimental
dataset only contains the historical behaviors and
has no basic information (e.g., gender and age), our
current approach doesn’t support these features but
they are widely used in practice. After these fea-
tures are ready, we can convert them to embeddings
and fuse them with the semantic interest represen-
tations obtained by two interest encoders to better
represent the user. Second, the news generally con-
tains many forms of features except for the title
(such as the cover image and author information)
and our approach will explore how to involve more
features to better represent the news.

A.2 Potential Risks

Our approach is based on the collaborative filtering,
which may lead to that all of recommended news
are similar to what the user has seen. This is a
common problem faced by the majority of recom-
mender systems. The concentration of a large num-
ber of similar information may narrow users’ per-
spective and result in an imbalance on the personal
information structure (Li and Wang, 2019). Our
method can combine with some rule/human-based
strategies (such as popularity based recommenda-
tion) to improve the recommendation diversity to
alleviate this problem.
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