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Abstract

Cross-domain named entity recognition (NER)
aims to borrow the entity information from the
source domain to help the entity recognition
in the target domain with limited labeled data.
Despite the promising performance of existing
approaches, most of them focus on reducing the
discrepancy of token representation between
source and target domains, while the transfer of
the valuable label information is often not ex-
plicitly considered or even ignored. Therefore,
we propose a novel autoregressive framework
to advance cross-domain NER by first enhanc-
ing the relationship between labels and tokens
and then further improving the transferability
of label information. Specifically, we associate
each label with an embedding vector, and for
each token, we utilize a bidirectional LSTM
(Bi-LSTM) to encode the labels of its previ-
ous tokens for modeling internal context infor-
mation and label dependence. Afterward, we
propose a Bi-Attention module that merges the
token representation from a pre-trained model
and the label features from the Bi-LSTM as the
label-aware information, which is concatenated
to the token representation to facilitate cross-
domain NER. In doing so, label information
contained in the embedding vectors can be ef-
fectively transferred to the target domain, and
Bi-LSTM can further model the label relation-
ship among different domains by pre-train and
then fine-tune setting. Experimental results on
several datasets confirm the effectiveness of our
model, where our model achieves significant
improvements over existing methods.1

1 Introduction

Named entity recognition (NER) is a fundamental
task in natural language processing (NLP), aim-
ing to identify salient information from raw texts,
such as persons, locations, and so on. NER can

†Corresponding author.
1Our code is released at https://github.com/

jinpeng01/LANER.

be viewed as a specific sequence labeling prob-
lem, where models built upon pre-trained language
models have recently achieved significant improve-
ments. However, most conventional approaches
trained on specific domains (source domains) are
hard to generalize to new domains (target domains)
due to the differences in text genre and limitation
of labeled data. Thus, cross-domain NER has been
proposed for alleviating this problem, which aims
to learn information from the source domain to
enhance NER in the target domain.

For example, Jia et al. (2019) utilized a param-
eter generation network to combine cross-domain
language modeling and NER, thereby enhancing
the model to extract knowledge of domain dif-
ferences from raw texts. Furthermore, Liu et al.
(2020b); Gururangan et al. (2020) proposed to con-
tinue pre-training the language models on the tar-
get domain-related corpus. Despite the outstanding
performance, existing approaches mainly focus on
handling the text discrepancy between different do-
mains and apply Conditional Random Fields (CRF)
(Lafferty et al., 2001) to capture label-label depen-
dence in neighbor tags. Several issues cannot be
appropriately solved. First, most of them rely heav-
ily on the powerful encoder to implicitly extract
token-label relationships due to the limitation of the
sequence labeling framework, which is insufficient,
especially for the limited data in a new domain,
where the encoder is hard to be fully trained. In
cross-domain NER, token-label relationships are
more critical since better token-label interaction
can help the model distinguish the differences and
similarities between the two domains. For exam-
ple, in the general domain, “Bayes” usually is a
“person” entity, while in the artificial intelligence
(AI) domain, for “supervised learning are Naive
Bayes classifier”, “Bayes” is an “algorithm” entity.
Clearly, if a model is aware that the NE label of
the previous phrase “supervised learning” is an “AI
field” entity and thus pays more attention to this
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Figure 1: The overall architecture of our proposed model. The upper part is the general sequence labeling model
paradigm, and the left bottom part is used to extract label-aware information (i.e., zi) and the right bottom part
reveals the Bi-Attention structure.

phrase, predicting “Bayes” as an “algorithm” en-
tity shall be an easier task. Such previous label
information (e.g., labels of “supervised learning”)
can be explicitly used to help the model enhance
the relationship between tokens and labels instead
of purely depending on the encoder itself. Second,
remote label-label relationships and label semantic
information are also important for cross-domain
NER instead of only modeling the interdependency
among adjacent labels as CRF does. For exam-
ple, for “Like a Girl which is from the Scenery
and Fish”, “Like a Girl” is an “album” entity and
“Scenery and Fish” is a “song” entity. Although
they are not adjacent, since entity type ‘album” is
semantically close to “song”, they tend to exist in
the same sentence. When the model has predicted
an “album” entity, it will pay more attention to the
“song” entity during predicting other words in the
sentence, which is a type of helpful supplementary
information. Third, when two domains share the
same NE types, these shared labels usually rep-
resent similar meanings such that they are easily
adapted to the target domain, which is paid less
attention in previous studies. Therefore, fully using
shared NE labels and further appropriately model-
ing the correlations between the shared labels and
target domain-related ones are also beneficial to
advance cross-domain NER.

In this paper, we propose a novel autoregressive
cross-domain NER framework to help the model
facilitate domain adaptation by improving the re-
lationship between the source text and its named
entity (NE) labels and enhancing label informa-
tion transfer. In detail, we associate each label
with an embedding vector (randomly initialized
and learned later), and for each token in the original
text, we input the embeddings of the label sequence
generated from previous steps into a bidirectional
LSTM (Bi-LSTM), whose hidden states model la-
bel sequence information. Next, we propose a Bi-
Attention module to perform two attention between
token representations from a pre-trained model and
label features from the Bi-LSTM to calculate la-
bel background and context information and then
concatenate them as the label-aware information.
We then fuse label-related knowledge into current
token representation for promoting cross-domain
NER. In doing so, our model can learn label embed-
dings and the potential relationship between tokens
and labels by pre-training on the source domain,
especially for shared entity labels, and then adapt
them to the target domain by fine-tuning. Exper-
imental results on several datasets show that our
approach outperforms existing studies.
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2 Method

2.1 Problem Definition

NER can be conventionally performed as a se-
quence labeling problem (Lample et al., 2016; Luo
et al., 2020), where named entities can be viewed
as labels of tokens. Specifically, given an input se-
quence X ={x1, x2, · · · , xN} with N tokens, the
goal of NER is to output the corresponding label se-
quence Y={y1, y2, · · · , yN} with the same length,
i.e., modeling p(Y | X ). In the cross-domain NER
task, we are given two datasets from the source and
target domains, denoted as Dsrc and Dtgt, respec-
tively. The aim is to learn valuable knowledge from
Dsrc and transfer it to the target domain Dtgt.

Many existing (cross-domain) NER models (Liu
et al., 2020b; Jia and Zhang, 2020; Lin and Lu,
2018) predict a token’s entity purely based on
the context of the sequence, and they formulate
p(Y | X ) =

∏N
i=1 p (yi | X ). However, these ap-

proaches pay less attention to the label information
and the relationship between labels and tokens. To
explicitly enhance such relationship and capture la-
bel information, we propose a novel framework to
predict NE labels by utilizing both previous labels
and token representation, which can be formulated
as an autoregressive model:

p(Y | X )=

N∏

i=1

p (yi | y1, . . . , yi−1,X ) . (1)

In the cross-domain setting, such information can
be extended between the labels in the source and
target domains, which is an effective way of trans-
ferring knowledge to the target domain.

2.2 Proposed Model

As mentioned above, our proposed model con-
sists of three main parts: the input sequence en-
coder that encodes the input sequence X , the label
encoder that encodes the previous tokens’ labels
y1, · · · , yi−1, and the label predictor that predicts
NER labels of tokens. An overview of our pro-
posed model is shown in Figure 1, whose details
are introduced as follows.

2.2.1 Input Sequence Encoder
Following many other cross-domain NER methods
(e.g., Liu et al. (2020b)), we use a pre-trained BERT
(Devlin et al., 2019) model denoted as fdte(·) to
encode the input sequence:

[h1,h2, · · · ,hN ] = fdte(x1, x2, · · · , xN ), (2)

where hi is a d1-dimensional vector for each token
xi, which is expected to capture the contextual
information of the corresponding token.

2.2.2 Label Encoder
To model the relations between the token sequence
and label sequence, we propose a novel label en-
coder to extract the contextual information from
the label sequence. An important distinction of
our work from most previous approaches is that we
predict the NE labels based on both commonly-
used current token representation (i.e., hi) and
label-aware information extracted from the pre-
vious labels (i.e., y1:i−1

2). Intuitively, the process
of generating labels has a flavor of the sequence-
to-sequence decoders. In detail, we first con-
struct a randomly initialized label lookup table
U ∈ RK∗d2 , where K denotes the number of
unique labels in source or target domains, and d2
is the size of label embedding. For a label yk with
k ∈ {1 : K}, we can embed it to sk ∈ Rd2 by us-
ing U. To fully utilize the label-related knowledge
for the current token xi, we employ a Bi-LSTM
(Hochreiter et al., 1997) to encode the label se-
quence (i.e., y1:i−1) , expressed as:

[e1, e2, · · · , ei−1] = fre(s1, s2, · · · , si−1), (3)

where fre(·) is the label sequence encoder (i.e., Bi-
LSTM) and ek∈R2d2 is the output of the Bi-LSTM
for k∈{1 : i−1}, which is expected to capture the
contextual information of previous labels.

2.2.3 Label Predictor
The label predictor is to leverage the contextual in-
formation of both the input sequence and previous
label sequence to predict the NER labels. To merge
the two kinds of information, we introduce a sim-
ple yet effective Bi-Attention module. Specifically,
following (Wang et al., 2016), we regard the last
hidden state of Bi-LSTM in the label encoder (i.e.,
ei−1 in Equation (3)) as the representation of label
sequence, which severs as the query vector, while
all token representations from the input sequence
encoder (i.e., h1:N in Equation (2)) are viewed as
the key and value matrices. Before performing the
matrix product, we apply a fully connected layer to
project the ei−1 into the same dimension as the hi:

e′i−1 = W2 · ei−1 + b2, (4)

2In the training stage, the previous labels are from the
ground truth while they are predicted by our model in the test
stage.
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where e′i−1 is a d1-dimensional vector. We then
compute the attention weight with the softmax func-
tion:

abi = Softmax(e′i−1h
T). (5)

Herein, abi can be viewed as a probability distribu-
tion and used to produce a weighted sum over the
input token representations (i.e., [h1:N ):

hb
i =

N∑

k

abi,khk. (6)

Since label background information hb
i is guided

by ei−1, it is naturally to represent the relationship
between the label of current token (i.e., yi) and the
whole input sequence. In addition, it is also nec-
essary to capture the relationship between the cur-
rent token xi and previously predicted labels (i.e.,
y1:i−1), which can improve the sensitivity of xi to
previous NE tags. We first concatenate token rep-
resentation hi and label background information
hb
i as a comprehensive intermediate state, which is

further mapped to a 2d2-dimensional vector:

h′
i = W3 · hi ⊕ hb

i + b3. (7)

Below, we still adopt a simple attention module to
compute the label context information:

eci =
i−1∑

k

aci,kek,a
c
i = Softmax(h′

ie
T). (8)

where aci indicates the weight vector of token i
over e1, e2, · · · , ei−1. Finally, we concatenate la-
bel background information over input sequence
and context information over predicted NE labels
as the final label-aware information zi:

zi = hb
i ⊕ eci . (9)

Note that, W2, W3, b2 and b3 are learnable pa-
rameters.

To further fuse label-related knowledge into to-
ken xi, we concatenate hi and corresponding label-
aware information zi, formulated as:

u = [h1 ⊕ z1,h2 ⊕ z2, · · · ,hn ⊕ zN ], (10)

where u is the final sequence representation. Fi-
nally, we apply a trainable matrix Wo and bias
bo to map the ui to the output space by oi =
Wo · ui + bo and utilize a softmax function to
obtain the distribution with respect to all NE labels.

2.3 Pre-training and Fine-tuning in the
Cross-domain Setting

To enhance text feature extraction in the target do-
main, we follow Liu et al. (2020b) to continue pre-

DATA NUM TYPE TRAIN DEV TEST

CONLL2003 4 #SENT. 15.0k 3.5k 3.7k
#ENT. 23.4k 5.9k 5.6k

POLITICS 9 #SENT. 0.2k 0.5k 0.7k
#ENT. 1.3k 3.5k 4.2k

SCIENCE 17 #SENT. 0.2k 0.5k 0.5k
#ENT. 1.1k 2.5k 3.1k

MUSIC 13 #SENT. 0.1k 0.4k 0.5k
#ENT. 0.6k 2.7k 3.3k

LITERATURE 12 #SENT. 0.1k 0.4k 0.4k
#ENT. 0.5k 2.1k 2.3k

AI 14 #SENT. 0.1k 0.4k 0.4k
#ENT. 0.5k 1.5k 1.8k

MOVIE 14 #SENT. 7.8k - 2.0k
#ENT. 23.0k - 5.7k

RESTAURANT 8 #SENT. 7.7k - 1.5k
#ENT. 15.4k - 3.2k

Table 1: The statistics of datasets, including the num-
ber of entity types (NUM), the number of sentences
(#SENT.), and the number of entities (#ENT.).

training the input sequence encoder on the domain-
related corpus to narrow the difference between
source and target domain in terms of domain back-
ground and text distribution (Gururangan et al.,
2020) and further capture more productive features
from the target domain, which refers as domain-
adaptive pre-training (DAPT). Moreover, to effec-
tively transfer information to the target domain,
we train our model in two stages: pre-training and
fine-tuning. In detail, in the first stage, we train our
model on Dsrc to learn text knowledge and enhance
feature extractor. More importantly, this process
can learn valuable label embeddings before access-
ing the target domain, especially for shared NE
labels. At the second stage, we fine-tune our model
on the target domain to adopt it to Dtgt. Since we
utilize a Bi-LSTM to encode label sequences with
the help of the pre-trained shared label embeddings
from the first stage, our model can further learn
relations between the shared NE labels and target
domain-specific NE labels (i.e., the labels that only
exist in the target domain) as well as the intrinsic
label dependency information. This can further
help the model to leverage the knowledge of the
source domain to better understand these unseen
labels in the target domain.

3 Experimental Setting

3.1 Datasets

We conduct our experiments on the following
datasets: Conll2003 (Sang and De Meulder, 2003),
CrossNER (Liu et al., 2020b), MIT Movie (Movie)
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MODEL
CONLL2003

POLITICS SCIENCE MUSIC LITERATURE AI AVERAGE MOVIE RESTAURANT

w/o DAPT
LSTM-CRF† 56.60 49.97 44.79 43.03 43.56 47.59 68.31∗ 78.13 ∗

CROSS-DOMAIN LM† 68.44 64.31 63.56 59.59 53.70 61.92 - -
FLAIR 69.54 64.71 65.60 61.35 52.48 62.73 - -
COACH† 61.50 52.09 51.66 48.35 45.15 51.75 67.62∗ 77.82∗

BARTNER-BASE 69.90 65.14 65.35 58.93 53.00 62.46 71.55 79.53
MULTI-CELL LSTM† 70.56 66.42 70.52 66.96 58.28 66.55 69.41∗ 78.67∗

OURS 71.65 69.29 73.07 67.98 61.72 68.74 72.41 80.55

Introducing DAPT
MULTI-CELL LSTM + DAPT† 71.45 67.68 74.19 68.63 61.64 68.71 - -
OURS+DAPT 74.06 71.83 78.78 71.11 65.79 72.31 - -

Table 2: Comparisons of existing studies and our proposed models with respect to F1 scores. AVERAGE is the
average F1 score of five domains in the CrossNER dataset. † indicates that the results are directly cited from Liu
et al. (2020b) (except values with ∗). Results of our model are averaged over three runs with different seeds.

(Liu et al., 2013b) and MIT Restaurant (Restaurant)
(Liu et al., 2013a), where the first one is regarded
as the source domain dataset and the others are
performed as the target domain datasets. Specifi-
cally, Conll2003 is a popular NER dataset collected
from the Reuters Corpus and is tagged with four
NE types, including PER, LOC, ORG and MISC.
CrossNER is drawn from Wikipedia and contains
five different domain datasets: politics, natural sci-
ence, music, literature, and AI. Movie and Restau-
rant corpus consist of user utterances for movie
and restaurant domains with 12 and 8 classes. For
all datasets, we follow their official splits of train-
ing, validation, and test sets, and their statistics are
summarized in Table 1. Note that in this paper, we
employ the standard BIO scheme to represent each
NE label.

3.2 Baselines and Evaluation Metrics

To explore the performance of our proposed model,
we compare it to following main baselines:
• BERT-TAGGER (Devlin et al., 2019): This fine-

tunes the BERT model with a label classifier.
• DAPT-TAGGER (Liu et al., 2020b): This first

applies DAPT and then is directly fine-tuned on
the cross-domain NER task.

• BERT-CRF, DAPT-CRF (Liu et al., 2020b):
These have the same main architecture as BERT-
TAGGER and DAPT-TAGGER, and the differ-
ence is that they incorporate a CRF layer.

We also compare our model to existing studies:
• LSTM-CRF (Lample et al., 2016): This pro-

poses to combine character- and word-level fea-
tures and utilize a bidirectional LSTM with a
sequential CRF layer to perform NER.

• FLAIR (Akbik et al., 2018): This leverages the
internal states of a character language model to
produce contextual string embedding and then

integrate them into the NER model.
• COACH (Liu et al., 2020a): This learns the slot

entity pattern and combines the features for each
slot entity to enhance entity types prediction.

• CROSS-DOMAIN LM (Jia et al., 2019): This
employs a parameter generation network to com-
bine cross-domain language modeling and NER,
thereby enhancing The model performance.

• MULTI-CELL LSTM (Jia and Zhang, 2020):
This utilizes a multi-cell compositional LSTM
structure for enhancing NER domain adaptation.

• BARTNER (Yan et al., 2021): This formulates
NER tasks as an entity span sequence generation
problem and incorporates BART as their back-
bone (Lewis et al., 2020).

To make a fair comparison, we exploit F1 scores as
the evaluation metric.

3.3 Implementation Details
In our experiments, our model is implemented
based on transformers3 and Liu et al. (2020b)4.
We choose BERT-base-cased5 as our input se-
quence encoder to extract the features from the
source sequence and follow its default model set-
ting where we use 12 layers of self-attention with
768-dimensional embeddings. The dimension of
the label embedding (i.e., d2) is set to 100, and the
hidden size of LSTM is the same as the d2, which
is also set to 100. Other hyperparameters, includ-
ing the learning rate, batch size, and the number
of epochs, are reported in Appendix A.1. During
the training process, we utilize Adam (Kingma and
Ba, 2015) to optimize all the trainable parameters,
including the ones in the pre-trained model. The

3https://github.com/huggingface/
transformers

4https://github.com/zliucr/CrossNER
5https://github.com/google-research/

bert.
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MODEL SETTINGS
CONLL2003

POLITICS SCIENCE MUSIC LITERATURE AI AVERAGE MOVIE RESTAURANT

BERT LB+LC 71.65 69.29 73.07 67.98 61.72 68.74 72.41 80.55
BERT w/o LC 70.94 71.11 71.51 67.24 59.23 67.93 72.26 80.35
BERT w/o LB 70.61 68.43 70.07 67.53 59.41 67.21 70.79 79.08
BERT+CRF w/o LB+LC 70.47 66.77 70.34 67.15 58.03 66.55 69.92 78.74
BERT-TAGGER† w/o LB+LC 68.71 64.94 68.30 63.63 58.88 64.89 69.80∗ 78.63∗

DAPT LB+LC 74.06 71.83 78.78 71.11 65.79 72.31 - -
DAPT w/o LC 73.99 71.55 78.71 70.38 64.78 71.89 - -
DAPT w/o LB 73.94 70.81 77.41 69.45 62.82 70.88 - -
DAPT+CRF w/o LB+LC 73.07 68.99 77.53 68.82 62.63 70.21 - -
DAPT-TAGGER† w/o LB+LC 72.05 68.78 75.71 69.04 62.56 69.63 - -

Table 3: The performance of baselines and our full model. LC and LB represent label context information, and
label background information, respectively. † denotes the results from Liu et al. (2020b) (except values with ∗).

model that achieves the highest performance on the
validation sets is evaluated on the test set.

4 Results

4.1 Comparison with Previous Studies

To illustrate the effectiveness of our proposed
model, we compare it to previous studies and re-
port the results in Table 2. There are several
observations. First, we can observe that our model
significantly outperforms all previous works, which
illustrates the effectiveness of the proposed frame-
work. Second, the comparison between our model
and BARTNER-BASE confirms the validity of
incorporating label information in cross-domain
NER. Although both methods utilize generative
approaches to perform NER, our model can grasp
label-related knowledge by directly encoding NE
tags with the help of a label embedding table. How-
ever, BARTNER-BASE needs to covert NE labels
to original tokens, which may hurt the label infor-
mation extraction and transfer. Third, our model
demonstrates its superiority of simplicity when
compared with those works that either incorporate
external resources or introduce complicated train-
ing designs. For example, MULTI-CELL LSTM
combines two auxiliary tasks, entity type predic-
tion and attention score guidance, with the NER
task, and applies multi-task learning. In contrast,
our model can achieve better results with a simpler
method, where we only need to train our model on
the source domain and then fine-tune it to the target
domain. This indicates that an appropriate design
can alleviate the need for additional resources.

When DAPT is introduced to OURS and MULTI-
CELL LSTM, OURS+DAPT and MULTI-CELL

LSTM+DAPT further improve the performance
(with 3.71% and 2.16% improvements on aver-
aged F1-score on CrossNER dataset), which illus-
trates that DAPT can narrow the gap between the

source and target domains. Since domain-related
corpus contains abundant domain-specialized back-
ground information, it can help the model better
understand the text in the target domain. Besides,
both OURS and OURS+DAPT outperform MULTI-
CELL LSTM+DAPT, regardless of DAPT, further
demonstrating the potential of our proposed model
in cross-domain NER.

4.2 Effect of Label-Aware Information

The main results are shown in Table 3. First,
models incorporating label information outperform
those ignoring such information (i.e., BERT and
DAPT w/o LB+LC), which further confirms the
validity of label information in this task. We can
attribute that such information can provide valu-
able label-related knowledge to enhance the en-
tity prediction. Second, on these datasets, the per-
formance gains from our full model (i.e., BERT
with LB+LC) over BERT-TAGGER on the Cross-
NER are larger than that of Movie and Restau-
rant. This observation owes to the fact that Movie
and Restaurant do not share the same entity types
with Conll2003, leading to a larger gap between
label information from the source domain and tar-
get domain, which makes it more difficult for label
features transfer. Third, our proposed framework
shows its effectiveness when compared with those
models that introduce the CRF layer. The reason
behind this might be that our model can learn better
label-related information from the source domain
(including token-label and label-label relationships)
and transfer it to the target domain, especially for
two domains that share the same NE labels, while
CRF can only recognize correlations between tags
in the neighborhoods.

Moreover, we also conduct ablation studies: (1)
without label context information (i.e., w/o LC),
(2) without label background information (i.e., w/o
LB), (3) without label context and background in-
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Figure 2: F1 scores of fine-grained comparisons on AI datasets. Results are averaged over three runs. The last four
entity types are shared between the source and target domains.

formation (i.e., w/o LB+LC). The comparison be-
tween the base model (i.e., w/o LB+LC) and ones
with LB or LC shows the effectiveness of each
component in promoting cross-domain entity iden-
tification. Besides, it is observed that our full mod-
els (i.e., LB+LC ) outperform w/o LB and w/o LC,
which illustrates that combining label background
and context information can further enhance in-
formation transfer and bring more improvements.
The main reason might be that these two vectors
are weighted sum over token features and label
representation, respectively, with different focuses.
Therefore, their combination can generate a better
understanding of the label knowledge.

5 Analyses

5.1 In-domain Performance
To test the in-domain performance of our model,
we utilize the single domain dataset to train our
model and evaluate it on the corresponding test set,
with results reported in Table 4. We can observe
that our innovation in terms of incorporating label
information is also productive for the in-domain
NER task, where our model achieves better perfor-
mance than the corresponding baselines. It can be
attributed that our model can grasp a more com-
prehensive understanding between text and their
labels and thus boost in-domain NER. However,
the improvement gains from our model over base-
lines on the in-domain NER task are not as signifi-
cant as that on cross-domain NER. An explanation
for this observation may be that, in cross-domain
NER, our model can better comprehend shared NE
types. Therefore, it could help the model recognize
differences and find more reasonable similarities
between different domains, while this advantage

MODEL POLITICS SCIENCE MUSIC LITERATURE AI

BERT† 66.56 63.73 66.59 59.95 50.37
OURS 68.13 66.21 68.75 61.37 53.09
DAPT† 70.45 67.59 73.39 64.96 56.36
OURS+DAPT 71.83 69.23 74.79 66.35 58.12

Table 4: F1 scores with respect to in-domain NER.

may not be helpful for in-domain NER.

5.2 Fine-grained Comparison

We further investigate the fine-grained compari-
son on the AI dataset and visualize the results in
Figure 2. We can see that our model obtains bet-
ter performance in most entity types, regardless of
whether DAPT is used, which indicates that the im-
provements gained from label-aware information
are consistent across various entity classes. All
shared entity types (i.e., the last four entity types)
achieve increased performance by our models, in-
dicating that our model can grasp more useful label
information from the source domain and effectively
transfer them to the target domain. However, for all
non-shared entity types, our model leads to a slight
decrease on a few entity types (e.g., COUNTRY).
We find that COUNTRY is similar with LOCATION
and Conll2003 annotates some countries as the LO-
CATION while CrossNER tends to label them as
the COUNTRY. For example, “Netherlands” in
Conll2003 is the LOCATION, whereas, in the AI
dataset, it is marked as the COUNTRY. Hence, the
label information learned from the source domain
may contribute to mis-classification about COUN-
TRY in the target domain. It can also explain per-
formance drop in entity category RESEARCHER
since it is easily confused with PERSON.
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Figure 3: The F1 scores from OURS and OURS+DAPT
against the label embedding dimension, where the
model is tested on the AI dataset.

5.3 Effect of Label Embedding Dimension

To demonstrate the impacts of label embedding
size, we train our model by varying the embed-
ding dimension d2 from 10 to 1000, as shown in
Figure 3. It is observed that increasing the em-
bedding size performs a better performance when
the dimension is relatively small (i.e., d2 ≤ 100
for OURS+DAPT and d2 ≤ 150 for OURS). It
indicates that, within this range, larger embedding
can bring more valuable label information. How-
ever, when the dimension becomes too large, the
performance gradually drops. It can be explained
that a too large embedding matrix is difficult to be
trained, resulting in redundant noise and degraded
model performance. In addition, our model only
introduces relatively small parameters when incor-
porating label-aware information. Especially when
our models obtain the best results at d2 = 100 and
150, their introduced extra parameters are 0.88%
and 1.41% compared to the base model.

5.4 Effect of Data Size

To explore the impact of the target domain data size,
we conduct experiments on different amounts of
target training data (i.e., increasing from 10 to 100
samples) based on best-performing settings. The
results are shown in Figure 4. With the data size
increasing, all models gradually obtain better F1
scores, which illustrates that data scale plays an im-
portant role in the NER task. Besides, it is observed
that both OURS and OURS+DAPT outperform cor-
responding baselines (i.e., BERT and DAPT) no
matter how many samples we select, which further
confirms the effectiveness of incorporating label
information into cross-domain NER.
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Figure 4: F1 scores of BERT, OURS, DAPT, and
OURS+DAPT with different amounts of AI data in
the target domain.

6 Related Work

In NLP, NER aims to identify entities from un-
structured text, which has been studied widely over
the past decades. Recently, neural networks have
significantly improved the performance of NER,
owing to their strong ability in feature extraction
(Huang et al., 2015; Lample et al., 2016; Ma and
Hovy, 2016; Yan et al., 2019; Devlin et al., 2019;
Luo et al., 2020; Wang et al., 2021; Yamada et al.,
2020; Yan et al., 2021). For example, Huang et al.
(2015); Lample et al. (2016) combined Bi-LSTM
with a CRF layer to enhance NER. Devlin et al.
(2019); Yamada et al. (2020); Yan et al. (2019) fur-
ther introduced the Transformer-based (Vaswani
et al., 2017) encoders to extract more effective in-
formation from the sequence, which is then used
to facilitate NER. However, although these models
achieved great performance, they required large-
scale labeled training data to adapt to different do-
mains. Therefore, cross-domain NER has drawn
substantial attention in recent years and gradually
become one of the hot research topics in NLP.
Many approaches have been proposed to enhance
cross-domain NER (Pan et al., 2013; Jia et al.,
2019; Jia and Zhang, 2020; Liu et al., 2020b; Chen
and Moschitti, 2019). For example, Jia et al. (2019)
utilized a parameter generation network to perform
cross-domain and cross-task knowledge transfer
and employed multi-task learning to combine NER
and language modeling tasks. Furthermore, Jia and
Zhang (2020) presented a multi-cell compositional
LSTM structure that incorporated the entity type
by a separate cell state to enhance the cross-domain
NER. Compared with these studies, our model pro-
vides a simple but effective solution for addressing
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cross-domain NER by improving label informa-
tion transfer and predicting current labels through
corresponding tokens and previous labels together.

7 Conclusion

In this paper, we have proposed a novel framework
for cross-domain NER to enhance the relationship
between the source text and labels and improve
label information transfer, where each NE label is
jointly predicted by corresponding token and pre-
vious NE labels. We not only adopt a commonly-
used pre-trained model to extract token representa-
tion, but also introduce a random initialized embed-
ding matrix and Bi-LSTM-based label encoder to
model the label sequence generated from previous
steps. After that, we construct two different atten-
tion between hidden states of Bi-LSTM and token
representations to produce label background and
context information, which are then concatenated
as label-aware information and applied to predict
labels. Thanks to this design, the label information
can be effectively transferred from the source to
the target domain. Comprehensive experimental
results on several benchmark datasets illustrate the
effectiveness of our model, which achieves signifi-
cant improvements over existing methods.
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MODEL HY. DATA

CROSSNER MOVIE RESTAURANT

OURS

BS 16 16 16
LR 5e-5 5e-5 1e-5
ME 100 100 100

Table 5: The best hyper-parameters that we used in our
experiments. BS, LR, and ME represent the batch size,
learning rate, and max epochs, respectively.

A Appendix

A.1 Hyper-parameter Settings
We have tested several combinations of hyper-
parameters in tuning our models on CrossNER,
Movie and Restaurant. Table 5 reports the combi-
nations that achieve the highest F-1 score for each
dataset.
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