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Abstract
Recent work has shown that deep learning
models in NLP are highly sensitive to low-
level correlations between simple features
and specific output labels, leading to over-
fitting and lack of generalization. To miti-
gate this problem, a common practice is to
balance datasets by adding new instances or
by filtering out “easy” instances (Sakaguchi
et al., 2020), culminating in a recent pro-
posal to eliminate single-word correlations al-
together (Gardner et al., 2021). In this opin-
ion paper, we identify that despite these efforts,
increasingly-powerful models keep exploiting
ever-smaller spurious correlations, and as a re-
sult even balancing all single-word features is
insufficient for mitigating all of these corre-
lations. In parallel, a truly balanced dataset
may be bound to “throw the baby out with the
bathwater” and miss important signal encod-
ing common sense and world knowledge. We
highlight several alternatives to dataset balanc-
ing, focusing on enhancing datasets with richer
contexts, allowing models to abstain and in-
teract with users, and turning from large-scale
fine-tuning to zero- or few-shot setups.

1 Introduction

Effective human communication relies on our abil-
ity to understand extra-textual context based on
common sense, world knowledge or shared cul-
tural experiences, a property often cited as Grice’s
second maxim of quantity: “Do not make your con-
tribution more informative than is required” (Grice,
1975, 1989). Studies have estimated that only 12%
of the information conveyed by text is mentioned
explicitly (Graesser, 2013; Tandon et al., 2020). To
illustrate this, consider the question “who is the
president of the U.S.?”. To answer it, a human
reader is likely to presume many unstated proposi-
tions, as exemplified in Tab. 1.

In contrast to humans, supervised models of-
ten fail to generalize and understand implicit con-
text, instead resorting to low-level correlations in

Figure 1: A high-level overview of the current state
of supervised NLP research. Dataset developers cre-
ate more aggressive filtering techniques (left), leading
to larger models that are able to solve them by finding
more elusive spurious correlations (right).

Who is the president of the U.S.?

Context Answer

∅ Joe Biden
The year 2019 Donald Trump
The West Wing, season 1 Josiah “Jed” Bartlet

Table 1: Context, whether explicit or implicit, matters
in textual understanding, as exemplified by the question
“who is the president of the U.S.?”. E.g., in the first line,
given no other context, a QA system should provide the
most sensible fallback answer (Joe Biden, at the time of
writing).

the data, leading to amplified bias (Zhao et al.,
2017; Stanovsky et al., 2019) and brittle perfor-
mance (Schwartz et al., 2017; Gururangan et al.,
2018). To address this, recent approaches have sug-
gested mitigating such correlations by balancing
the dataset via either adding or removing certain
instances (Goyal et al., 2017; Hudson and Man-
ning, 2019; Zellers et al., 2018; Sakaguchi et al.,
2020). In parallel, developers keep building larger
and larger pretrained models (Devlin et al., 2019;
Liu et al., 2019; Raffel et al., 2020), which, when
fine-tuned on these datasets, consistently manage
to reach human performance. Taken together, these
trends lead to an arms-race between data curation
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and model development (Fig. 1).
In this position paper, we question the value of

mitigating spurious correlations via dataset balanc-
ing, by showing that their existence in large training
sets is both inevitable and to some extent even de-
sired, as they are an inherent property of natural
language understanding. We build on a recent re-
sult by Gardner et al. (2021), who assumed that
every single-word feature correlation is spurious,
i.e., can be used to mislead a model. We extend
their argument, showing that balancing single-word
features is insufficient for eliminating all spurious
correlations, and that balancing feature combina-
tion is needed for that purpose. On the other hand,
we show that balancing too much leads to datasets
that contain no learnable signal either. We conclude
by questioning whether mitigating all spurious cor-
relations via dataset balancing is practical.

Following, we show that this practice is also un-
desired. We show that ignoring these correlations
will hinder the learning of fallback options for both
world knowledge facts (Joe Biden is the president
of the U.S.) and common sense knowledge (a per-
son is happy when receiving a gift), thus prevent-
ing models from using this knowledge in cases
of uncertainty. We conclude that the existence of
spurious correlations in training sets should not be
solved by creating more balanced datasets.1

We then discuss alternatives to mitigating spu-
rious correlations. We argue that models should
be trained to understand constructions emanating
from an apriori theory of language, such as nega-
tion, sarcasm, humor, and metaphors. We also
suggest adopting modeling approaches that iden-
tify when the context is insufficient. We argue that
in such cases, the model should not fallback to
default assumptions, but rather abstain or interact
with the user to clear ambiguities. Finally, we ques-
tion the basic procedure of large-scale fine-tuning,
and suggest focusing on zero- and few-shot learn-
ing instead (Liu et al., 2021b).

2 Dataset-Model Arms Race

This section provides a view of recent research in
NLP as an arms race between models and datasets.
Below we describe the conditions leading to this

1We emphasize that balancing methods are still useful as
they can lead to mitigation of some spurious correlations,
and therefore better generalization (Le Bras et al., 2020;
Swayamdipta et al., 2020), as well as potentially more ef-
ficient training. We argue that these methods are inherently
limited in their ability to mitigate all spurious correlations.

Figure 2: An example of dataset balancing (adapted
from Goyal et al., 2017). For each (question, image)
pair in the VQA dataset (left), VQA2.0 adds another
image, for which the answer is different (right).

arms race, and present our main research question,
challenging its value for making progress in NLP.

Models exploit spurious correlations While
pretrained models consistently perform well across
multiple tasks, various studies have pointed out
that this is often achieved by exploiting spurious
correlations in datasets, rather than improving on
the underlying task (Glockner et al., 2018; Guru-
rangan et al., 2018; Elazar et al., 2021), and that
this phenomenon becomes more prominent as the
models grow in size (Li et al., 2021).

Mitigating spurious correlations via balancing
Various dataset curators have tried to prevent mod-
els from learning spurious correlations by modify-
ing their training data via a careful control for the
training label distribution, effectively striving for
a balanced dataset. One approach is to add exam-
ples in order to balance the dataset (Goyal et al.,
2017; Sharma et al., 2018; Hudson and Manning,
2019). For instance, the VQA2.0 dataset (Goyal
et al., 2017) is built by taking every (question q,
image i, answer a) triplet in the VQA dataset (An-
tol et al., 2015), and adding another triplet with the
same question q, but a different image i′, guaran-
teed to lead to a different answer a′. See Fig. 2 for
an example.

Filtering as balancing A complementary bal-
ancing approach to augmentation is filtering ex-
amples out from datasets such that spurious corre-
lations are minimized. This approach was taken
in the creation of the SWAG dataset (Zellers et al.,
2018), using “adversarial filtering” (AF). In AF,
dataset instances that are easily solved by an ad-
versarial model are filtered out. The AF approach
and similar approaches were picked up by many
datasets such as ReCoRD (Zhang et al., 2018),
DROP (Dua et al., 2019), HellaSWAG (Zellers
et al., 2019), αNLI (Bhagavatula et al., 2020), and
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WinoGrande (Sakaguchi et al., 2020).
Here we argue that approaches like AF converge

to removing all low-level correlations,2 and there-
fore a fully balanced dataset. As this approach
relies on an external model, applying it with ever
stronger models with higher capacity, will allow
these models to pick up on subtler correlations (Li
et al., 2021). At the extreme, the remaining in-
stances that could not be solved by a fully capable
model will have no statistical signal that can be ex-
ploited by that model, i.e., a balanced dataset. We
henceforth refer to both augmentation and filtering
as balancing methods.

Large models solve the new datasets In paral-
lel to the efforts in dataset balancing, the leading
modeling approach in recent years in NLP is pre-
training large language models on raw text cor-
pora, followed by fine-tuning them on supervised
downstream applications. These models continue
to grow in size (Peters et al., 2018; Devlin et al.,
2019; Liu et al., 2019; Radford et al., 2019; Raf-
fel et al., 2020), and their fine-tuning performance
improves accordingly. This in turn leads to more
aggressive balancing, setting in motion a kind of
arms race between datasets and models (Fig. 1).

Evidently, a similar trend emerges for the pre-
viously mentioned datasets: (1) the first baselines,
reflecting the state of the art at the time of dataset
creation, perform relatively poorly, e.g., 59% on
SWAG, 47% on ReCoRD, 47 F1 on DROP, 47%
on HellaSWAG, 69% on αNLI, and 79% on Wino-
Grande; (2) model developers introduce increas-
ingly larger and heavily-parameterized models,
hill-climbing on these datasets; and eventually
(3) models essentially solve the dataset within a
year or two, often outperforming humans: 86%
on SWAG (Devlin et al., 2019), 94% on ReCoRD
(He et al., 2021b), 88 F1 on DROP (Chen et al.,
2020), 93% on HellaSWAG (He et al., 2021b), 92%
on αNLI (He et al., 2021a), and 90% on Wino-
Grande (Raffel et al., 2020). (4) new large-scale
datasets are collected with more aggressive pruning
techniques, thus repeating the cycle.

Based on these findings, our main research
question is whether dataset balancing is the most
promising method for mitigating spurious correla-
tions. We note that an arms race between models

2Indeed, AFLite, an extension of AF, was designed to
“systematically discover and filter any dataset artifact in crowd-
sourced commonsense problems” (Le Bras et al., 2020, em-
phasis in the original).

Name Description

ingenuine Correlations between features and
output labels for no reason.

ungeneralizable Correlations that do not generalize
to new contexts.

every-word Correlations between every single-
word feature and output label.

Table 2: Different definitions of spurious correlations.

and datasets might spur advances. Here we ques-
tion a specific aspect of this arms race: the improve-
ment of datasets by using more aggressive filtering
techniques. Next we turn to present practical and
conceptual limitations of this practice.

3 The Lost Battle Against Spurious
Correlations

So far we have identified dataset balancing as a
common way to mitigate spurious correlations.
Next, we outline how different works define spu-
rious correlations (Sec. 3.1), and then question
whether dataset balancing is a viable way for
mitigating them; we note that balancing too lit-
tle is bound to leave spurious correlations in the
data (Sec. 3.2), while balancing too much discards
meaningful signal (Sec. 3.3). We finish by question-
ing whether this practice is even desired (Sec. 3.4).

3.1 What are Spurious Correlations?

Mitigating spurious correlations is frequently used
as motivation for developing new balancing ap-
proaches. However, the term spurious correlations
is often not clearly and consistently defined. The
basic definition is a set of features that are corre-
lated but not causally related.3

In NLP, several definitions of spurious correla-
tions are typically used. One conceptual defini-
tion, denoted here ingenuine (e.g., Wang and
Culotta, 2020; Rogers, 2021) is a feature corre-
lated with some output label for no apparent rea-
son. Such features often result from the annotation
process (referred to as annotation artifacts; Gu-
rurangan et al., 2018). For instance, Gururangan
et al. (2018) have shown that the words “cat” and
“sleeping” are correlated with contradictions in the
SNLI dataset (Bowman et al., 2015).

This definition is appealing: we want our models
to learn real information about the world, and not
properties of a given dataset. However, it is also

3https://en.wikipedia.org/wiki/
Spurious_relationship
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somewhat subjective, and could include features
that might be referred to as genuine, such as the
word “not” indicating NLI contradictions. Further,
genuine features, i.e., those representing a real phe-
nomenon in the world (e.g., “amazing” as a feature
for positive sentiment), are also likely to lead mod-
els make to erroneous predictions in some contexts
(e.g., negation or sarcasm; Gardner et al., 2021).
Such features could thus harm generalization, so
some might consider them spurious as well.4

In an alternative definition, denoted
ungeneralizable, a spurious feature is
one that works well for specific examples but
does not hold in general (Chang et al., 2021;
Yaghoobzadeh et al., 2021). This definition does
not address the nature of the feature (genuine or
not), but does make an implicit assumption that
such features are of high importance (e.g., high
pointwise mutual information values with the
corresponding label; Gururangan et al., 2018).
This definition is no longer subjective in terms of
the genuineness of the feature, but is still subjective
in the level of effect on generalizability (i.e., what
is a high value of PMI?).

Gardner et al. (2021) relaxed the last constraint,
and assumed that every simple correlation between
single word features and output labels is spurious
(henceforth every-word). They then defined a
class of competent datasets, where the marginal
probability for every feature is uniform over the
class label, i.e., for any feature xi and label y ∈ Y ,
p(y|xi) = 1

|Y | , thus limiting models from pick-
ing up any correlation between single features and
output labels.

We next extend the every-word approach be-
yond single words, showing that models that can
exploit single word features can also exploit some
feature interactions, and therefore these should also
be considered spurious. Tab. 2 summarizes the dif-
ferent definitions of spurious correlations.

3.2 Balancing too Little Leaves some
Spurious Features

Gardner et al. (2021) assumed that as each word
can appear in certain contexts that change its se-
mantic meaning (e.g., negation, sarcasm), each
word is potentially spurious. Here we note that
the same argument can be applied to feature inter-
actions, such as word n-grams. We start with a toy

4See Eisenstein (2022) for discussion of different feature
types.

Split Text Label

Train

very good +
very bad −
not good −
not bad +

Test not very good −
good +

Table 3: A toy example of a training set (Train), which
is balanced for unigrams, but not for bigrams. Relying
on the bigram correlations (e.g., memorizing that “very
good” leads to a positive sentiment) will lead to mispre-
dictions on the test set (Test).

example to illustrate our argument for bigrams, and
then extend it for larger values of n.

Consider the toy dataset for the task of senti-
ment analysis shown in Tab. 3, with vocabulary
V ={good, bad, not, very}, and label set Y = { +,
− }. The Train split is balanced with respect to
single-word features, i.e., it is a balanced or com-
petent dataset:

∀w ∈ V, y ∈ Y : p(y|w) = 1

|Y |

Assume the semantics of this dataset is that of
English, while ‘+’ means positive sentiment and
‘−’ means negative.

A model trained on Train can achieve perfect
training accuracy by learning the correct semantics.
However, achieving perfect training accuracy can
also be done by learning correlations between two-
word features and the target label (i.e., memorizing
all the training examples). In this case, the model
would make the wrong prediction for the first test
example in Test (as it has learned that very good
is a feature that indicates positive sentiment), and
similarly, will make a random prediction for the
second test example, which does not contain any
two-word feature seen during training.

This example highlights that balancing single-
word features does not guarantee resiliency to spu-
rious correlations, and therefore in order to miti-
gate all spurious correlations, balancing pairs of
features is also required. One can construct sim-
ilar examples for larger values of n, by similarly
considering multi-word expressions and common
co-occurrences (e.g., “jaw dropping”, “worst day
ever”). These could serve as spurious correlations
in the same way single words do.

Another example is sarcasm. A model that fails
to understand sarcastic contexts will misinterpret
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Original Train Set Augmented Samples
Input Label Input Label

0 0 0 *0 0 1
0 1 1 *0 1 0
1 0 1 *1 0 0
1 1 0 *1 1 1

Table 4: Left: a training set for the XOR function,
balanced for unigrams. Right: requiring that bigrams
are also balanced would prevent models from learning.

statements that appear in such contexts, even if it
perfectly understands the base meaning of these
statements. Thus, the entire reasoning process of
such a model, whether relying on simple features,
feature interactions, or other types of understand-
ing, will result in mispredictions of certain inputs,
and thus can be considered spurious.

As a result, to truly mitigate all spurious correla-
tions in a dataset, balancing feature combinations is
required as well. Accordingly, balancing too little
will leave some spurious correlations in the dataset.

3.3 Too much Balancing Prevents Learning
Valuable Semantic Knowledge

We observed that balancing too little does not al-
low models to fully eliminate spurious correlations.
Here we show that too much balancing can prevent
models from learning valuable knowledge.

Consider the training data for learning the XOR
function presented in Tab. 4 (left). This dataset
contains enough learnable signal when consider-
ing feature interactions despite being balanced for
single words. Nonetheless, balancing this dataset
for pairs of features would result in no informa-
tion, and thus prevent any model from learning this
function (Tab. 4, right).

Now consider a given natural language dataset
D. Define n to be the length of the longest docu-
ment in D. By definition, balancing every combi-
nation of up to n features leaves no learnable signal
in D.5 We conclude that balancing too much can
prevent models from learning semantic knowledge.

Combining the two observations, we are left with
the question of the potential intersection between
balancing too much and balancing too little: does
a sweet spot exist for which no spurious correla-
tions are found in the dataset, but enough learnable
signal is left? And even if so, would a balancing

5We assume the standard data collection process when
using AF, in which the last step is balancing (Zellers et al.,
2018; Dua et al., 2019), and longer instances cannot be added.

algorithm, whether by augmentation or filtering, be
able to find it? We leave these questions for future
work, but note that addressing them is a prerequi-
site for the theoretical and practical application of
dataset balancing for mitigating spurious correla-
tions.

3.4 Dataset Balancing is Undesired

Even if a sweet spot exists between balancing too
little and too much, do we really want to find it?
Here we argue that perhaps not.

The practice of dataset balancing is designed to
prevent models from learning that some words or
expressions have a common fallback meaning that
can stem from dataset artifacts (e.g., “cat” as an in-
dicator of contradiction) but also from cultural and
historical contexts (e.g., Biden is the U.S. president
in 2022). Fallback meanings are crucial for under-
standing language, as contexts are often underspec-
ified (Graesser, 2013). Indeed, relying on fallback
meanings might make models fail to process some
inputs correctly, and might not generalize to other
domains where the fallback meaning is different.
We argue that the ability to use them is a central
ability of language understanding.

For example, substantial efforts are made to
teach models world knowledge, such as that the
president of the U.S. is Joe Biden, the capital of
Brazil is Brasília, and France is the soccer world
champion. These efforts include building world
knowledge datasets (Wang et al., 2021), develop-
ing methods for enhancing models with this infor-
mation (Zhang et al., 2019; Peters et al., 2019),
and evaluating how well models capture it (Rubin-
stein et al., 2015; Roberts et al., 2020). But many
of these world-knowledge facts are context depen-
dent: the capital of the Brazil has changed in 1960,
the president of the U.S., as well as soccer world
champions potentially change every 4 years, etc.

Another example is common sense knowledge,
such as “people are happy when they receive a gift”,
“an elephant is taller than a zebra”, and “a statue that
doesn’t fit into a suitcase is too large”. A large body
of work has been carried out to create benchmarks
that measure the common sense abilities of models
(Liu and Singh, 2004; Levesque et al., 2012; Zellers
et al., 2018; Sakaguchi et al., 2020; Bisk et al.,
2020), as well as augmenting models with such
abilities (Qin et al., 2020; Bosselut et al., 2021).

Common sense reasoning is, by definition,
stochastic and reliant on understanding presup-
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posed, underspecified context. One could imagine
a person unhappy to receive a gift (e.g., because
it is not what they wanted), a fantastically large
zebra compared to a tiny elephant, and a suitcase
with multiple compartments which prevent a small
statue from fitting in it.

These examples illustrate that a model that learns
these correlations and relies exclusively on them to
make predictions is limited and is bound to make
mistakes in some contexts. One way to avoid these
mistakes is to balance these correlations out, and
prevent models from knowing these assertions to
begin with. We argue that this solution is not a
desired solution. In essence, an interpreter’s task
(be it human or machine) is to infer the most prob-
able context in which a statement is made, and as
a result, it should have a fallback option for such
world knowledge and common sense assertions.

Discussion We recognize that a balanced dataset
may not be balanced with respect to the appearance
of common-sense or world-knowledge assertions
in a given context. E.g., a model might balance-out
the general fact that Joe Biden is the U.S. president,
but not that he is the president in 2022. As in many
cases much of the context is unobserved (Graesser,
2013), the question is whether we want models to
make a prediction in cases of uncertainty based on
the fallback option. We argue that doing so is a
desired strategy in many cases (though a preferred
strategy might be to interact of abstain from making
a decisive prediction, see Sec. 4.2).

We also acknowledge that correlations in the
real world can be misleading. For instance, people
often mistake the biggest commercial city in some
countries for their capital (e.g., Istanbul in Turkey),
potentially due to the high correlation between the
two. In such cases, relying on the fallback option
might lead to prediction error. However, we argue
that following the human strategy of relying on a
fallback option in cases of uncertainty will promote
models’ communication abilities.6

We want to stress that balancing methods can re-
sult in mitigating some of the spurious correlations,
and therefore lead to increased generalization (Le
Bras et al., 2020; Swayamdipta et al., 2020). More-
over, the process of filtering the data naturally re-
sults in smaller datasets, which leads to lower train-
ing costs (Swayamdipta et al., 2020). While such

6A counter example is social biases, where we want to
explicitly discourage models from having a fallback option
(see Sec. 4.4 for discussion).

Current Practice Proposal

Dataset balancing Richer contexts (§4.1)
A closed label set Abstain/interact (§4.2)
Large-scale fine-tuning Few-shot learning (§4.3)

Table 5: Our suggestions for mitigating the effects
of spurious correlations, listing three current practices,
each with an alternative proposal.

contribution is meaningful in terms of, e.g., envi-
ronmental concerns (Strubell et al., 2019; Schwartz
et al., 2020), it is orthogonal to our research ques-
tion. Overall, despite the important contributions
of balancing techniques, this paper shows that even
the perfect balancing method might not mitigate all
spurious correlations in a satisfying way.

So how can we make models more resilient to
spurious correlations without balancing the data?
Below we discuss several ideas for doing this.

4 Ways to Move Forward

So far, we presented limitations of dataset balanc-
ing as a means to mitigate spurious correlations. In
this section we discuss several alternatives to this
practice, summarized in Tab. 5. We note that none
of these proposals is particularly novel. Rather, we
intend to survey alternatives proposed in literature
and argue that these may be promising for address-
ing the drawbacks of spurious correlations, and that
more efforts should be put into studying them.

4.1 Augmenting Datasets with Rich Contexts
The implicit assumption of dataset balancing is
that in order to mitigate spurious correlations the
model has to unlearn them, that is, they should be
removed altogether from the training set. We argue
that instead we should be focusing on learning and
modeling richer contexts.

As an example, consider negation. A model
that generalizes well, should learn the meaning of
words such as not, and should be able to negate new
words, even those that were seen only in positive
contexts at training time. For example, if a model
only sees during training words like “amazing” or
“happy” with positive sentiment, and thus learns
that these words bear positive meaning, we would
still expect it to interpret their negated appearance
(e.g., not amazing) as an indicator of negative sen-
timent. Such generalization is crucial for language
learning, and should ideally allow models to not
rely exclusively on spurious correlations. Despite
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the immense progress in the field in the past decade,
negation still poses a challenge to modern NLP
tools (Hossain et al., 2020, 2022).7

We suggest taking into account different types
of contexts during dataset design. In particular,
collecting training examples with contexts such
as negation (Morante and Blanco, 2012), humor
(Weller and Seppi, 2019; Annamoradnejad and
Zoghi, 2020), sarcasm (Davidov et al., 2010; Oprea
and Magdy, 2020), or metaphors (Tsvetkov et al.,
2014; Mohammad et al., 2016). This recommenda-
tion applies to both supervised tasks, and perhaps
more so to pretrained data. We suggest adding
documents with such contexts throughout the pre-
training corpus, or as a continued pretraining step
to existing large-scale models.8

To incorporate contexts from a wide range of
phenomena, we can leverage the vast literature
on broad-coverage semantics (Baker et al., 1998;
Steedman and Baldridge, 2006; Banarescu et al.,
2013; Abend and Rappoport, 2013).9 This line of
work proposes theories of language, composing
inventories of linguistic constructions with an alge-
braic formulation of their inter-relations in terms of
truth value, factuality, and more. These inventories
often include the phenomena discussed above, such
as negation, sarcasm, and presupposition.

4.2 Interaction and Abstention to Cope with
Underspecified Contexts

Most NLP tasks are designed with a closed label
set that forces models to make a concrete predic-
tion for each test instance, without an option to
abstain or interact with the user to get more infor-
mation. Even for tasks with a large label set (e.g.,
language modeling), models still have to output
a valid vocabulary item. Here we argue that this
practice creates an inductive bias towards using
spurious correlations in cases of uncertainty, as the
model has “nothing to lose” in case of low certainty,
and is encouraged to always make some prediction,
potentially relying on spurious correlations.10

7Though we should continually assess the challenge nega-
tion poses on the most recent models (Bowman, 2022).

8We recognize that editing pretrained corpora poses signif-
icant challenges due to their immense size, as demonstrated
by recent efforts such as corpus analysis (Dodge et al., 2021)
and deduplication (Lee et al., 2022).

9See Abend and Rappoport (2017) for a survey.
10We recognize that in some cases we do want the model

to make a prediction under cases of uncertainty (see Sec. 3.4).
The ability to detect when is it reasonable to make an educated
guess is an important property of an intelligent agent, and an
exciting research question.

Figure 3: An example of abstention/interaction in cases
of uncertainty. For the task of sentiment analysis, mod-
els currently assign a label to each input, even for am-
biguous or underspecified ones (top). This may lead the
model to over-rely on spurious correlations (marked in
red, bottom left). Models that abstain or interact (bot-
tom right) might learn to rely less on such correlations.

To further illustrate this point, consider the am-
biguous sentence “To my great surprise, the movie
turned out different than what I thought.”, in the
context of sentiment analysis. The reader cannot in-
fer whether the writer is pleasantly surprised (a pos-
itive review) or disappointed (a negative review).
We argue that in such cases models might lean
towards a positive sentiment based on the words
“great” and “surprise”, which are typically corre-
lated with a positive sentiment.

To test this, we ran a RoBERTa-large model
(Liu et al., 2019) fine-tuned on SST-2 (Socher
et al., 2013) on that example.11 As expected, the
model returns a positive label, with 99.99% confi-
dence. Interestingly, three different interpretation
methods (simple gradient visualization, Simonyan
et al., 2014; integrated gradient visualization, Sun-
dararajan et al., 2017; and SmoothGrad, Smilkov
et al., 2017) all find the word “great” or “surprise”
to be one of the three most influential words on
the model’s prediction. While this example does
not prove the prevalence of this problem, it does
demonstrate its existence.

To address this problem, we suggest adopting ap-
proaches that allow models to abstain and interact
when they cannot make a decision with high confi-
dence (Chow, 1957; Hellman, 1970; Laidlaw and
Feizi, 2019; Balcan et al., 2020). See Fig. 3. This
can be achieved by building datasets with unan-
swerable questions (Ray et al., 2016; Rajpurkar
et al., 2018; Sulem et al., 2021), but also by design-
ing models that abstain in cases of low certainty for

11We used the AllenNLP demo (https://demo.
allennlp.org/sentiment-analysis/).
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all inputs, even those with an unambiguous gold la-
bel.12 We hypothesize that encouraging the model
to provide this output when it is unsure, rather than
making a semi-educated guess, potentially based
on spurious correlations, could reduce its depen-
dency on such correlations.

4.3 The End of Large-Scale Fine-Tuning?

This paper has demonstrated the limitations of mit-
igating spurious correlations via dataset balancing.
A naive way to mitigate spurious correlations is to
stop using large-scale datasets altogether. We echo
recent calls (Liu et al., 2021b) and argue that for su-
pervised learning (i.e., large-scale fine-tuning), re-
cent advances in zero- and few-shot learning might
make this option possible.

Large pretrained models such as T5 (Raffel et al.,
2020) or GPT-3 (Brown et al., 2020), trained on
vast amounts of data, arguably learn enough about
the world to acquire many of the skills currently
learned through supervised learning. Indeed, the
large increase in the size and capacity of pretrained
language models has led to a new wave of few-shot
and zero-shot methods (Schick and Schütze, 2021;
Shin et al., 2020; Gu et al., 2022), which are able to
reach human-level performance on certain tasks us-
ing only a few dozens of training examples (Schick
and Schütze, 2021). Given these impressive results,
it is not clear whether there is still value in fine-
tuning models on large-scale datasets for all tasks.
In the context of this work, focusing on few-shot
learning might allow models to not learn some of
the correlations that result from manual annotation
(Schwartz et al., 2017; Gururangan et al., 2018;
Poliak et al., 2018), as they will not be exposed to
many of them to begin with.

We note that this proposal is not a perfect so-
lution. First, some spurious correlations may be
picked up by the small number of examples. This
is less of a problem in the zero-shot setting, or in
cases where the model parameters are not updated
in few-shot settings (Brown et al., 2020), but study-
ing the extent to which spurious correlations are
picked up in other few-shot settings is an important
avenue for future research. Second, some spurious
correlations might be picked up during the pre-
training stage (Gehman et al., 2020; Birhane et al.,

12Model calibration techniques (DeGroot and Fienberg,
1983; Guo et al., 2017; Card and Smith, 2018) are often
used both for allowing models to abstain (Cortes et al., 2016;
Shrikumar et al., 2019) and identifying unanswerable ques-
tions (Kamath et al., 2020; Zhang et al., 2021).

2021; Dodge et al., 2021). Continuing to quantify
this phenomenon and finding ways to mitigate it is
another important line of research.

An important question in this context is the tasks
for which supervised learning is still needed. It
seems plausible that excelling in language model-
ing tasks requires mastering the skills that stand
in the base of many NLP tasks, such as sentiment
analysis, syntactic parsing, and NER. However, it
is similarly plausible that this is not the case for
other tasks, e.g., summarization, simplification and
dialogue. We are cautious in making concrete rec-
ommendations for which tasks to apply this prin-
ciple, but suggest the following intuitive rule of
thumb: for datasets or tasks for which the state of
the art is close to or surpasses the human baseline,
we should consider moving to few-shot setups.

Finally, dataset creation is still a valuable and
important line of research. Our recommendation to
stop building large scale training sets does not make
this task redundant, to both spur the design of better
models, and to better test their capabilities. We
suggest that instead of building large training sets
and small validation and test sets, authors should
consider building large test sets, as a means for
achieving improved statistical power (Card et al.,
2020).

4.4 A Note on Social-Bias Correlations

So far, we discussed the problems with unlearning
spurious correlations, and advocated instead for
more elaborate context modeling. One exception
might be the case of social biases. Textual data
often reflects human stereotypes such as spurious
correlations between labels and protected group at-
tributes, e.g., alignments between professions and
gender or race. Unlike other types of knowledge
discussed in Sec. 3.4, in this case there is an in-
centive to prevent models from learning this type
of correlation as means for actively reducing the
harms of such biases, especially in commercial and
public-facing applications, such as machine transla-
tion (Stanovsky et al., 2019) or automated financial
decision-making (Bartlett et al., 2021). As a result,
methods for dataset balancing are no longer unde-
sired for mitigating such spurious correlations.

Nonetheless, as demonstrated in Sec. 3, methods
for dataset balancing are a limited solution for mit-
igating spurious correlations, including social-bias
ones. In contrast, the methods proposed in this sec-
tion for mitigating spurious correlations might also
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assist in mitigating social biases, or at least slow
down their amplification (Zhao et al., 2017).

5 Related Work

This paper discusses the arms-race between mod-
els and datasets. Previous works criticized one
side of this arms race—the increasing size of pre-
trained models—due to ethical and environmen-
tal concerns (Schwartz et al., 2020; Bender et al.,
2021), or questioning its ability to learn meaning-
ful abstractions from raw text (Bender and Koller,
2020; Merrill et al., 2021). This work studies the
second part of this arms race, regarding the efforts
to mitigate spurious correlations through dataset
balancing. The release of such datasets is often
motivated by their potential to spur progress in
modeling, and to help tease apart qualitative differ-
ences between models. Liu et al. (2021a) showed
that this is not necessarily the case, by observing
that the ranking of reading comprehension models
on small and synthetic benchmarks is similar to
that of the (large) SQuAD dataset (Rajpurkar et al.,
2016).

Raji et al. (2021) recently criticized the concept
of benchmarks as a whole, arguing that they are
only capturing specific skills and not “general” ca-
pabilities. Our paper raises related concerns about
training sets implicitly containing spurious corre-
lations, and suggests reconsidering the practice of
building large-scale training sets.

Finally, concurrent to this work, Eisenstein
(2022) discussed several types of spurious corre-
lations in the context of causality theory (Pearl,
2009), and used a toy example to demonstrate their
different effects on models. They concluded that
domain knowledge is required to identify the cor-
relations that are indeed spurious, i.e., those that
might challenge the generalization ability of mod-
els.

6 Conclusion

Spurious correlations in large textual corpora can
result in model brittleness, lack of generalization,
and an inflated sense of the state of the art. Mit-
igating their negative side-effects is an important
research goal of the NLP community. In this paper
we presented practical and conceptual limitations
of dataset balancing as a means for doing so. We
proposed alternative ways for mitigating spurious
correlations, including adding richer contexts to
textual corpora, and allowing models to abstain or

interact in cases of uncertainty. We concluded by
suggesting to reconsider the practice of fine-tuning
pretrained models on large-scale training sets.

7 Broader Impact and Ethical
Consideration

Our work did not involve any new data or annota-
tion collection, and as such did not require crowd-
sourced or in-house workers, or introduces any
new models and related risks. Instead, we examine
existing resources and common data balancing ap-
proaches. In Section 4.4 we specifically discuss the
relation between these practices and implications
on social bias in models.
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