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Abstract
Different types of transformations have been
used to model sentence simplification ranging
from mainly local operations such as phrasal
or lexical rewriting, deletion and re-ordering
to the more global affecting the whole input
sentence such as sentence rephrasing, copy-
ing and splitting. In this paper, we pro-
pose a novel approach to sentence simplifi-
cation which encompasses four global opera-
tions: whether to rephrase or copy and whether
to split based on syntactic or discourse struc-
ture. We create a novel dataset that can
be used to train highly accurate classification
systems for these four operations. We pro-
pose a controllable-simplification model that
tailors simplifications to these operations and
show that it outperforms both end-to-end, non-
controllable approaches and previous control-
lable approaches.

1 Introduction

Sentence simplification is a text generation task
where a sentence is transformed into a simpler
version of itself while preserving its core mean-
ing. Transformations can involve several different
rewrite operations such as word substitutions (lex-
ical paraphrasing), structural modifications (e.g.
sentence splitting or syntactic paraphrasing), and
deletion.

Sentence simplification has been shown to aid
reader comprehension (Mason, 1978; Williams
et al., 2003; Kajiwara et al., 2013) and be a useful
preprocessing step for downstream NLP tasks such
as relation extraction (Miwa et al., 2010; Niklaus
et al., 2016) and machine translation (Chandrasekar
et al., 1996; Mishra et al., 2014; Li and Nenkova,
2015; Mishra et al., 2014; Štajner and Popovic,
2016).

Modern systems are data-driven, learning to
perform transformations from parallel corpora of
complex-simple 〈C, S〉 pairs. Although many dif-
ferent approaches have been attempted in the past,

including statistical machine translation (SMT)-
based methods, nearly all systems proposed in re-
cent years follow a neural sequence-to-sequence
approach. As these systems are trained in an end-
to-end manner they are able to perform lexical and
syntactic operations in combination and produce
outputs with very high fluency.

However, given the black-box nature of these
end-to-end systems, they are forced to rely on im-
perfect training corpora to implicitly learn rewrite
operations, many of which occur infrequently
(Jiang et al., 2020). As a result, neural end-to-end
systems have been found to be overly conserva-
tive, often making no changes to the original text
or being limited to the paraphrasing of short word
sequences (Alva-Manchego et al., 2017; Maddela
et al., 2021). In addition, these systems provide
limited capacity for controllability and are unable
to express alternative variants of the simplified text
(Alva-Manchego et al., 2017; Cripwell et al., 2021).

In response, attempts have been made to pro-
duce controllable simplification systems that can
constrain either the shape (length, amount of para-
phrasing, lexical and syntactic complexity) of the
output (Martin et al., 2020) or the type of trans-
formation to be applied (e.g., copy, split, merge,
rewrite, etc.) (Scarton and Specia, 2018; Dong
et al., 2019; Scarton et al., 2020; Garbacea et al.,
2021; Maddela et al., 2021).

In this work we propose a novel approach to
sentence simplification which encompasses four
global operations: whether to copy the input sen-
tence (no simplification needed), rephrase it, split it
based on syntax, or split it based on discourse struc-
ture. We create a novel dataset that can be used
to train highly accurate classification systems for
these four operations and propose a controllable-
simplification model that tailors simplification to
them. We compare our model with various alter-
natives and previous work, using both quantitative
metrics and human evaluation, and show that our
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model outperforms them. We also provide a quali-
tative analysis of the differences between the best
models.

2 Related Work

2.1 Controllable Simplification

Scarton and Specia (2018), Nishihara et al. (2019)
and Scarton et al. (2020) focus on tailoring outputs
to specific reader groups based on the Newsela
corpus (Xu et al., 2015), a popular simplification
dataset which provides versions of news articles
written for audiences of different reading levels.
These works propose systems that adjust their sim-
plifications to match one of these reading levels.

Martin et al. (2020) introduce a wider array
of control attributes concerning grammatical fea-
tures of the desired text such as compression level,
amount of paraphrasing, and lexical and syntactic
complexity.

Most recently, Maddela et al. (2021) propose
a system that first uses a rule-based component
(Niklaus et al., 2019) to generate candidates that
have undergone splitting and deletion, before rank-
ing them and sending the top n to a neural para-
phasing model. Tunable settings in both compo-
nents provide control over how much of the input is
changed and whether to favour deletion or splitting.
Their system received higher fluency and simplicity
scores from human annotators compared to existing
works.

However, at inference time, these methods all
require the model to be explicitly informed about
which reader level to cater to or which specific
grammatical features or rewrite operations to pri-
oritise. In constrast, we develop an approach that
can not only be tuned manually, but can also oper-
ate in an end-to-end manner by inferring tunable
parameters from the input.

2.2 Operation Classification

Alva-Manchego et al. (2017) and Dong et al. (2019)
consider sentence simplification as a sequence-
labeling problem, proposing systems that predict
rewrite operations at the token-level before realis-
ing them downstream. Alva-Manchego et al. (2017)
showed gains over previous approaches in terms
of simplicity, but at the cost of fluency and mean-
ing preservation. Dong et al. (2019) appears to
resolve this trade off by introducing an enhanced
interpreter that better constructs the resulting text.

Several existing works have attempted to use
a classifer to determine which rewrite operation
should be performed on an input at the sentence-
level. Applying a sentence-level binary classifier
as an initial step to predict whether simplification
should be performed has been found to yield im-
proved SARI results, reducing conservatism and
spurious transformations (Scarton et al., 2020; Gar-
bacea et al., 2021).

Multi-class systems have been explored with lim-
ited results. Scarton and Specia (2018) and Scarton
et al. (2020) predict one of 4 operations (identical,
elaboration, split, and merge) and feed this into
an end-to-end model alongside the C as either a
control token or one-hot vector. While Scarton and
Specia (2018) fail to produce an accurate classifier
or show any improvement over baselines, Scarton
et al. (2020) show some gains in SARI when us-
ing predicted operation labels. However, their best
classifier only yields an accuracy of 70%.

In the multi-class setting, models tend to struggle
to accurately predict identity cases. We believe
this is partially due to the training data used. All
existing works use Cs from identical 〈C, S〉 pairs
as training examples for this class, either alone or
alongside standard Ss. The assumption here is that
these pairs are identical because the C is already
simplified. We will show that it is much more
likely these items are unsimplified noise from the
distribution of Cs and that excluding them from
training data can dramatically improve accuracy.

We extend upon these sentence-level classifica-
tion approaches by redefining the set of operations,
creating comprehensive training and test data, and
ultimately producing a classifier with much higher
accuracy. We show that a pipeline approach which
first predicts a rewrite operation outperforms exist-
ing end-to-end and controllable systems.

3 Operation Classification

We consider 4 operation types: identity, rephrase,
syntax-split, and discourse-split. The identity and
rephrase classes are equivalent to identical and
elaboration from Scarton et al. (2020). In contrast,
we split the split class into two distinct groups to
capture further nuances of sentence splitting, as
was explored in Cripwell et al. (2021).

Syntax-split indicates that a split should be per-
formed based on a syntactic construct, whereas
discourse-split indicates that a split should be per-
formed based on a discourse relation. Examples of
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these can be found in Appendix A.
As we focus on single sentence simplification,

we exclude the merge class used in (Scarton and
Specia, 2018; Scarton et al., 2020).

3.1 Training Data

We construct training data for a simplification oper-
ation classifier by combining subsets of existing En-
glish datasets. We consider simplification datasets
Wiki-auto, Newsela-auto 1 (Jiang et al., 2020), and
MUSS (Martin et al., 2021) as well as dedicated
splitting datasets WikiSplit (Botha et al., 2018) and
D-CCNews (Cripwell et al., 2021).

Wiki-auto and Newsela-auto are automatically
aligned 〈C, S〉 pairs extracted from Wikipedia and
Newsela, respectively. MUSS contains 2.7M pairs
mined from Common Crawl web data which are
estimated paraphrases based on embedding dis-
tance. WikiSplit contains 1M split pairs mined
from Wikipedia edit history, while D-CCNews con-
tains discourse-split pairs mined from the CCNews
corpus (Nagel, 2016). D-CCNews has two sub-
sets: D-CCNews-C which contains single Cs, and
D-CCNews-S which contains pairs of organic Ss
and synthetic Cs. We include samples from both
subsets. Table 1 provides a breakdown of the inclu-
sions from each source.

We heuristically assign silver operation labels to
sentences from these datasets as follows:

identity: Ss from the Wiki-auto and Newsela-
auto rephrase and syntax-split sets. We can be
fairly confident that Ss from known simplification
datasets are sufficiently simplified.

rephrase: Cs from MUSS, Wiki-auto and
Newsela-auto where there is no split in the out-
put S and Levenshtein similarity between the C
and S is less than 1 standard deviation above the
mean (< 0.92). This is to exclude near-identical
pairs.

syntax-split: Cs from WikiSplit, MUSS, Wiki-
auto and Newsela-auto whose S exhibits a split and
does not contain an identifiable discourse marker.

discourse-split: Cs from all datasets whose S
contains a split and a discourse adverbial. 2

We call the resulting dataset IRSDC
4 . 3 We also

1We specifically use the aligned pairs used for simplifi-
cation experiments in Jiang et al. (2020), which excludes
identical pairs and those of readability levels 0-1, 1-2, and 2-3.

2D-CCNews is down-sampled to keep classes similar in
size.

3Our data and code is available at https://github.
com/liamcripwell/control_simp. Newsela data is
excluded, subject to their terms of use, but can be provided

consider a 3-class subset which excludes the iden-
tity class (IRSDC

3 ) to explore how results change
when models are trained to always simplify.

3.2 Test Data

We use two datasets for evaluation. A random
sample of 1% of the training data is set aside as a
large (34K examples) silver test set. We also create
a smaller gold test set by randomly sampling 100
items from each of the 4 classes in our silver test set
and presenting them to 3 annotators instructed to
select the most appropriate operation with which to
simplify the text. Further details of the annotation
process are in Appendix B.

We approved all annotations that received a ma-
jority label agreement and manually adjudicated
cases where all annotators disagreed (11%). The
mean Cohen’s Kappa agreement score between an-
notators is 0.246, illustrating the difficulty of this
task. In many cases, several operations could fea-
sibly apply, and so assigning a single correct label
is not always a perfect solution. Appendix C lists
some examples of this.

3.3 Classification Model

We fine-tune pretrained RoBERTa models (Liu
et al., 2019) with classification heads on IRSDC

4

and IRSDC
3 . 4 Further training details are provided

in Appendix D.

Results on Silver Test Data. Results can be seen
in Figure 1. Accuracy on the silver test set (98%)
is much higher than previous works: Scarton and
Specia (2018) and Scarton et al. (2020) achieve
mean accuracies of 51% and 70% for a similar 4-
class task. Garbacea et al. (2021), who only train
a binary (simp, no-simp) classifier achieve 81%
accuracy.

Notably, the accuracy for the identity class is
much higher than the 59% achieved by Scarton et al.
(2020). This is perhaps in part due to our exclusion
of Cs from identical 〈C, S〉 pairs in the identity
training subset. We explored this hypothesis by
using a test set containing Cs from identical pairs
alongside the existing identity examples.

Figure 2 shows that doing so reduces perfor-
mance on the identity class dramatically; the model
only classifies 9.8% of these Cs as identity and
82.4% of them as rephrase. This suggests that

upon request after receiving a licence.
4We use the pretrained roberta-base model available at

https://huggingface.co/roberta-base.
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Source
Class WikiSplit MUSS Wiki-auto Newsela-auto D-CCNews-C D-CCNews-S Total

Identity (0) - - 513,436 338,798 - - 852,234
Rephrase (1) - 461,702 366,382 171,508 - - 999,592
Syntax-Split (2) 633,900 53,008 68,357 88,669 - - 843,934
Discourse-Split (3) 269,666 1,002 5,277 2,060 250,062 249,958 778,025

Total 903,566 515,712 953,452 601,035 250,062 249,958 3,473,785

Table 1: Data source distributions for each operation class in IRSDC
4 .

(a) 4-class (b) 3class

Figure 1: Normalised confusion matrix of (a) the four-class classifier and (b) the three-class classifier, evaluated
on the silver-label test set.

these examples are from a distribution more similar
to the rephrase examples and are possibly com-
plex sentences themselves that have not been fully
simplified in the source data. This observation vali-
dates our decision to exclude them.

Figure 2: Normalised confusion matrix for the 4-class
operation classifier, evaluated on the silver-label test set
containing Cs from identical 〈C, S〉 pairs in the identity
class.

Results on Gold Test Data. As shown in Fig-
ure 3, classification accuracy on the gold test set is
considerably lower than on the silver data. Identity
examples are often predicted as rephrase; syntax-
split often as discourse-split; and rephrase exam-
ples regularly receive predictions across all four
classes.

However, this aligns with our observations with
respect to manual labelling difficulties. Often it is

not immediately clear whether a particular example
should be ignored or slightly rephrased. Similarly,
it often seems plausible for either type of split to
be performed. Rephrase is the broadest of the four
classes, and so cases where any one of the other
three classes could also apply should be expected.

Despite being lower than on the silver examples,
we believe these results show a strong signal of per-
formance, with common mistakes being analogous
to difficulties encountered by human annotators.

4 Sentence Simplification

4.1 Data

Training Data. For the sentence simplification
task we use a modified version of IRSDC which
additionally includes target simplifications, i.e.
〈C, o, S〉 triples. We refer to this as IRSDS

4 and
its 3-class subset as IRSDS

3 .
For the identity class, we take all inputs from

IRSDS
4 labelled as identity and map them to them-

selves. For rephrase and syntax-split, we take the
rephrase and syntax-split inputs and map them to
their simplifications in the source datasets. We do
the same for discourse-split, but, as D-CCNews-C
instances do not contain simplifications, we replace
them with additional 〈C, S〉 pairs from D-CCNews-
S.
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(a) 4-class (b) 3-class

Figure 3: Normalised confusion matrix of (a) the four-class classifier and (b) the three-class classifier, evaluated
on the human-annotated test set.

Test Data. We first train and test our systems on
IRSDS

3/4 and Newsela-auto.
Next, in order to compare with past works, we

perform evaluation on the Newsela-auto test set
introduced by Maddela et al. (2021). It contains
24,035 rephrases, 9,208 syntax-splits, and 148
discourse-splits. We refer to this as Newsela-M
and also include results on the subset with split
in their reference S (Newsela-M (Split)). We use
this test set so we can leverage pre-existing system
outputs from past works for comparison.

Additionally, we evaluate on the ASSET cor-
pus (Alva-Manchego et al., 2020) which is a much
smaller test set (359 examples) containing 10
human-written references per input. All test ex-
amples have at least one rephrase reference, 248
have at least one syntax-split reference, 12 have at
least one discourse-split reference, and 0 have an
identity reference.

4.2 Models

Existing Systems We consider a number of past
works for comparison: (i) Hybrid (Narayan and
Gardent, 2014), an older system with a proba-
bilistic splitting component combined with an MT-
based lexical paraphraser; (ii) BERT, pretrained
encoder-decoder transformer (BERTbase) finetuned
on simplification which achieved state-of-the-art
performance (Jiang et al., 2020); (iii) EditNTS
(Dong et al., 2019), a recent model using op-
eration prediction; and (iv) MadExP (Maddela
et al., 2021), current state-of-the-art controllable
system. 5 We exclude other systems which require
conditioning on specific reading levels.

5We use system outputs from versions of all of these mod-
els that have been trained on Newsela-Auto.

Baseline End-to-End Model. We include end-
to-end baselines that are trained to perform C → S
with no additional information. These are used to
gauge whether our controllable models are compet-
itive with a black-box approach. We use the BART
architecture (Lewis et al., 2020) and fine-tune a
pretrained model with a language-modelling head
on 〈C, S〉 pairs from 4 distinct datasets: IRSDS

4

(BART4), IRSDS
3 (BART3), Wiki-auto (BARTW )

and Newsela-auto (BARTN ). 6

Controllable Model. Next, we train an end-to-
end generative model to perform 〈C, o〉 → S,
where o is an operation label. The o is used as
a control token prepended to the input sequence
for C. We use the same BART architecture as our
end-to-end baselines.

From this model, we construct several systems:
(i) an oracle baseline (CtrlOracle) taking the sil-
ver operation label and performing generation as
an end-to-end task; (ii) a pipeline system using a
classifier to predict o before running the generative
model.

We refer to different configurations as Ctrli,j ,
where i is the number of classes the classifier is
trained on and j is the number of classes the gen-
erator is trained on. E.g. Ctrl3,4 uses a classi-
fier trained on IRSDC

3 and a generator trained on
IRSDS

4 . 7 We expect that using the 4-class classifier
will result in more conservative outputs. Using the
3-class generator could allow more model capacity
to focus on simplification. Conversely, the extra
training data used by the 4-class generator could
improve general performance.

6We use the pretrained facebook/bart-base model
available at https://huggingface.co/facebook/
bart-base.

7For Ctrl4,3 any inputs classified as ignore are returned
without being passed to the generator.
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Model IRSDS
4 IRSDS

3 Newsela-auto

PBERT SARI RSplit PSplit PBERT SARI PBERT SARI RSplit PSplit

Input 0.83 27.4 0.00 0.00 0.77 25.4 0.53 15.9 0.00 0.00
Reference 0.99 80.1 1.00 1.00 0.99 95.3 0.99 94.1 1.00 1.00

End-to-End Models

BARTW 0.81 35.0 0.18 0.85 0.76 34.7 0.54 24.6 0.05 0.64
BARTN 0.77 38.9 0.64 0.81 0.74 42.0 0.56 35.9 0.46 0.59
BART3 0.85 50.6 0.82 0.94 0.81 54.9 0.55 27.3 0.27 0.59
BART4 0.86 51.2 0.85 0.93 0.82 55.7 0.56 26.9 0.21 0.62

Controllable Models with predicted control-tokens

Ctrl3,3 0.83 50.6 0.99 0.93 0.82 58.5 0.54 33.6 0.48 0.54
Ctrl3,4 0.84 51.2 0.99 0.93 0.83 59.4 0.55 35.9 0.49 0.54
Ctrl4,3 0.86 52.9 0.99 0.98 0.83 59.5 0.55 30.7 0.45 0.56
Ctrl4,4 0.87 55.1 0.99 0.98 0.83 60.4 0.56 32.4 0.45 0.56

Controllable Models with Oracle control-tokens

CtrlOracle 0.87 55.5 1.00 1.00 0.83 60.7 0.57 38.3 0.99 1.00

Table 2: Automatic sentence simplification results on the IRSDS
4 , IRSDS

3 and Newsela-auto test sets.

5 Experimental Setup

5.1 Automatic Evaluation
The most common evaluation metrics used in text
simplification are BLEU and SARI, with SARI
being viewed as the more effective at describing
simplicity. Both focus primarily on lexical simi-
larities between the reference and system output
without consideration for structural simplification.

A recent meta-analysis (Alva-Manchego et al.,
2021) of automated text simplification evalua-
tion shows that the precision-based BERTScore
(PBERT ) (Zhang et al., 2019) is most highly corre-
lated with human judgements. As PBERT is very
effective at identifying low quality simplifications,
the authors recommend using it as a primary test of
quality before referring to other metrics like SARI.

We report PBERT and SARI as our primary met-
rics 8 and also use the split recall (RSplit) to eval-
uate how often the model performs splitting in
known cases. We value recall over precision as
it gives a better indication of whether a model reg-
ularly performs splits, but have also included the
precision (PSplit) for clarity.

5.2 Human Evaluation
We perform a human evaluation of simplification
systems by having 3 annotators evaluate outputs.
In order to consider a range of structurally diverse
examples we use our classifier to label the Newela-
M test set with predicted operations and randomly

8The EASSE python library (Alva-Manchego et al., 2019)
is used for calculation.

select 25 from each of the 4 classes (further de-
tails in Appendix B). We presented the annotators
with the input C from each 〈C, S〉 pair alongside
the reference S and outputs from selected systems.
Judgements are made with respect to 3 criteria: flu-
ency, adequacy, and simplicity.

Fluency refers to the grammaticality of the out-
put; adequacy measures meaning preservation with
respect to the input; and simplicity measures the
overall simplicity of the result. We followed stan-
dard practice by having these criteria judged on a
1-5 Likert scale and averaging the results. For sim-
plicity, we advised workers that a high score can
be given to an output identical to the input if there
is little to no obvious changes that would make the
sentence simpler.

We consider the following systems for compar-
ison: EditNTS, MadExp, BARTN , BART4, and
Ctrl4,4. This allows us to compare our systems to
strong recent works and examine the effect of (i) us-
ing IRSDS vs Newsela training data and (ii) using
our controllable model vs an end-to-end approach.

6 Results and Discussion

Automatic evaluation results are shown in Table 2.

IRSDS vs Other Data Models trained with
IRSDS (BART3/4 and Ctrl∗,∗) greatly outperform
those trained on other datasets (BARTN/W ) across
every metric on the IRSDS test sets. On the
Newsela test set, IRSDS models perform at least
as well as BARTN . This is unsurprising as IRSDS

is much larger than Newsela and contains many of
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Model Training Newsela-M Newsela-M (Split) ASSET

PBERT SARI RSplit PSplit PBERT SARI PBERT SARI

Hybrid Newsela-auto 0.39 30.2 0.17 0.42 0.39 31.9 0.43 30.5
BERT Newsela-auto 0.46 32.2 0.40 0.46 0.47 34.5 0.59 35.2
EditNTS Newsela-auto 0.49 29.3 0.32 0.45 0.53 30.8 0.54 31.4
MadExP Newsela-auto 0.43 36.0 0.41 0.48 0.43 37.4 0.59 36.2

BARTN Newsela-auto 0.54 34.0 0.52 0.48 0.58 37.1 0.64 36.4
BART3 IRSDS

3 0.54 25.0 0.31 0.49 0.58 28.8 0.64 34.3
BART4 IRSDS

4 0.55 25.3 0.25 0.51 0.58 28.6 0.64 33.7
Ctrl3,3 IRSDS

3 0.54 33.4 0.54 0.43 0.58 35.9 0.64 34.1
Ctrl3,4 IRSDS

4 0.55 35.6 0.54 0.43 0.59 37.8 0.64 33.8
Ctrl4,4 IRSDS

4 0.54 30.4 0.51 0.45 0.59 34.5 0.64 33.5

CtrlOracle IRSDS
4 0.56 37.3 1.00 0.99 0.59 38.6 - -

Table 3: Comparison with existing systems and baselines. Oracle labels are acquired by applying the same heuris-
tics used in the creation of IRSDS . Note that the oracle labels for these test sets do not contain identity cases.

System Fluency Adequacy Simplicity Mean

Ref. 4.65∗∗ 3.95∗∗ 4.37∗ 4.32

EditNTS 3.81∗∗ 3.83∗∗ 3.91∗∗ 3.85
MadExP 3.74∗∗ 3.52∗∗ 3.97∗∗ 3.75
BARTN 4.68 4.26∗∗ 4.38∗ 4.44
BART4 4.71 4.74 4.14 4.53
Ctrl4,4 4.77 4.74 4.20 4.57

Table 4: Human evaluation results for selected simplifi-
cation systems and baselines. Ratings significantly dif-
ferent from Ctrl4,4 are denoted with ∗ (p < 0.05) and
∗∗ (p < 0.01). Significance was determined with a
Student’s t-test.

the same examples. However, it shows the diver-
sity of IRSDS does not reduce Newsela-specific
performance.

On Newsela test data, using the 3-class classifier
(Ctrl3,∗) yields higher SARI and RSplit than the
4-class case. This is likely because identity is never
predicted thereby encouraging less conservative
simplification on a test set where most examples
are simplified (Maddela et al. (2021) excludes all
examples with high or low similarity between the
input and the reference from the test set).

End-to-End vs Controllable Controllable sys-
tems outperform their end-to-end counterpart on
all metrics and datasets. In particular, they show a
large increase in RSplit, suggesting that explictly
triggering splits via control tokens greatly improves
a model’s ability to correctly administer splits
where needed. Using silver operation labels in
CtrlOracle shows universally higher scores than
classifier-based pipelines, indicating that there is
still room for improvement in terms of classifica-
tion performance.

Existing Systems Comparative results with ex-
isting systems are summarised in Table 3. All of
our systems achieve much higher PBERT scores
than any existing system. This suggests that merely
using the BART architecture yields much more flu-
ent outputs than other models. MadExP, which
receives the highest SARI scores, actually receives
much lower PBERT than almost any other system,
indicating that although it may be simplifying the
text well, outputs might be less fluent.

Ctrl3,4 achieves the highest scores on Newsela-
M, except for being slightly beaten by MadExP
on SARI. It is expected to be better than Ctrl4,4
here as Newsela-M does not include any identical
〈C, S〉 pairs and therefore penalises copying inputs.
CtrlOracle universally outperforms other systems.

On ASSET, BARTN actually achieves the high-
est SARI, closely followed by MadExP. We hypoth-
esise that models trained on IRSDS might achieve
lower SARI as the training data includes examples
from splitting datasets that do not exhibit any fur-
ther simplification, leading to more conservative
lexical changes when splitting is performed.

Human Evaluation Human evaluation results
are shown in Table 4. Ctrl4,4 scores highest in
fluency and overall. Both Ctrl4,4 and BART4 score
highest in adequacy. BARTN scores highest in
simplicity.

All of our systems are rated highly accross all
criteria and receive better average scores than even
the reference. This clearly highlights the capabil-
ity of pretrained generative models like BART to
produce highly fluent texts. Further, we see that
using a classifier trained on our data to predict
operation-specific control-tokens further enhances
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Output

(1) Complex An acidic goo from the stomach dissolves the snail’s flesh so the worm can re-swallow both stomach and prey.
Simple An acidic goo from the stomach dissolves the snail’s flesh, and the flatworm can then re-swallow both stomach

and snail.

BARTN [del] The goo dissolves the snail’s flesh so the worm can re-swallow both stomach and prey.
BART4 An acidic goo from the stomach dissolves the snail’s flesh so the worm can re-swallow both stomach and prey.
Ctrl4,4 An acidic goo from the stomach dissolves the snail’s flesh. [split] This allows the worm to re-swallow both

stomach and prey.

(2) Complex Archer’s parents were Catholic in Protestant England, which became illegal.
Simple Archer’s parents were Catholic. Being Catholic was against the law in England at the time.

BARTN Archer’s parents were Catholic. They did not want the government to interfere with their religion.
BART4 Archer’s parents were Catholic in Protestant England. [del]
Ctrl4,4 Archer’s parents were Catholic in Protestant England, which became illegal.

(3) Complex Many people around the world are now furious at an American dentist who paid to go lion hunting in Zimbabwe.
Simple Palmer paid to go lion hunting in Zimbabwe, which is in Africa.

BARTN People around the world are mad at a dentist. He was paid to go lion hunting in Africa.
BART4 Many people around the world are now furious at an American dentist who paid to go lion hunting in Zimbabwe.
Ctrl4,4 Many people around the world are now furious at an American dentist who paid to go lion hunting in Zimbabwe.

(4) Complex The Senegalese capital, on the far western edge of Africa, looks nothing like the sleepy port city that Amadou
Sy remembers from his youth.

Simple Amadou Sy remembers Dakar as a quiet city.

BARTN The Senegalese capital [del] does not look like the sleepy port city that Amadou Sy remembers from his youth.
BART4 The Senegalese capital [del] looks nothing like the sleepy port city that Amadou Sy remembers from his youth.
Ctrl4,4 The Senegalese capital is on the far western edge of Africa. [split] It looks nothing like the sleepy port city

that Amadou Sy remembers from his youth.

Table 5: Example system outputs illustrating commonly seen patterns. Blue/bold marks positive changes while
red/underlined marks negative changes or errors.

performance in both fluency and simplicity. How-
ever, we also believe our training data limits sim-
plicity at times due to examples from pure splitting
datasets exhibiting no simplification but for a split.

We believe the relatively low adequacy rating
given to the reference can partly be attributed to
sentence alignment failures and cases where the S
makes reference to terms mentioned earlier in their
article that are not explicit in the C.

Qualitative Analysis We perform a qualitative
analysis of system outputs from the human evalua-
tion to get a better idea of differences between our
models. Table 5 illustrates common patterns.

BARTN regularly produces the most simple out-
put, but often over-simplifies to the point of remov-
ing important contextual information (e.g. item
1). It also sometimes fails to maintain the correct
meaning of the input (e.g. items 2 and 3).

BART4 often produces outputs very similar to
Ctrl4,4, but performs splitting much less regularly
(e.g. items 1 and 4) which can uphold structural
complexity.

Ctrl4,4 outputs best retain the original meaning
of the input. The benefit of having a classifier pre-

dict identity cases can be seen in item 2 where the
other models end up rephrasing poorly or deleting
important information. However, when performing
splits, it fails to sufficiently rephrase, often keeping
obviously complicated words (e.g. item 4).

7 Conclusion

In this work we present a new dataset for simpli-
fication operation classification and show that it
can be used to produce classifiers of much higher
accuracy than what has been proposed in existing
studies. We show that a controllable system using
such a classifier to predict control tokens outper-
foms end-to-end baselines and existing systems on
a range of datasets and receives extremely high
ratings in fluency, adequacy and simplicity from
human evaluators. However, this system does re-
sult in slightly lower simplicity ratings compared to
reference texts and a Newsela baseline, suggesting
that further improvements can be made to the sys-
tem or dataset in order to achieve the best possible
results across all criteria.
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Table 6 shows an example of these differences. 9

The text in C1 contains a temporal discourse rela-
tion marked by and after this which is made ex-
plicit in the discourse-split output (S1a) by the ad-
verbial Afterwards. A possible variant exists (S1b)
where an inverse adverbial connective (Before this)
is used. The seconds tier of the table shows two
syntax-split examples, where minimal rephrasing
is required.

B Human Annotation

In order to compile the gold-label test set for the
classification task we instructed 3 human anno-
tators to assign the labels they considered most
appropriate for 400 examples. These annotators
were students enrolled in a local NLP master’s pro-
gram and were paid slightly above the minimum
wage for their work. Nine items were identified as
malformed and thus removed.

Annotations were completed through a web form
interface (e.g. in Figure 4). For each of the 400
items, they were presented with the input sentence
and required to select one of the four class labels.
They were also given the option to flag examples as
being malformed or incomprehensible (which we
removed from the final set). Prior to their comple-
tion of the task, they were given a detailed descrip-
tion of each class along with a range of examples.

For the simplification output evaluation we in-
structed the same 3 annotators to give their judge-
ments on outputs from 6 systems for 100 inputs
randomly sampled from the silver-label test set.
Again, this was done via a web form where each
input text is provided followed by the outputs from
each system (e.g. in Figure 5). Below this, the
annotators select 1-5 for each of the outputs on
the three quality criteria: fluency, adequacy, and
simplicity.

Full text instructions for both human annotation
tasks are provided in the supplementary materials.

C Difficult Labelling Examples

The main paper mentions cases where it is difficult
to determine a single best rewrite operation. Table 7
shows some common examples of this.

D Training Details

During training of the RoBERTa classification mod-
els, we used a learning rate of 2e−5. The network

9These examples are taken directly from Cripwell et al.
(2021)

has 12 hidden layers, a hidden size of 768, and
was pretrained with the masked language modeling
objective on 160GB of books and web content.

During training of the BART generative models,
we used a learning rate of 3e−5. The network has 6
layers in each of the encoder and decoder, a hidden
size of 768, and was pretrained to perform recon-
struction of corrupted documents on a combination
of books and Wikipedia data.

All of our finetuning experiments used a batch
size of 32, performed dropout with a rate of 0.1
and early stopping as regularisation measures. All
models were trained on a computing grid using 4
Nvidia RTX 2080 Ti GPUs (11GB memory) for an
average of 24 hours. For each experiment we set
aside 1% of the training set for validation.

For the generative models, at test time we gener-
ate output sequences by performing beam search
with a beam size of 5 and restrict output to a maxi-
mum length of 128 tokens.

The use of the Newsela corpus is subject to a data
sharing agreement from Newsela, Inc. This licence
permits the data to be used for non-commercial
research purposes.

E System Outputs

Table 8 contains example system outputs not in-
cluded in the main paper which illustrate com-
monly seen patterns across systems.
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C1. The Masovians were caught by surprise, since virtually without any defense the capital, Płock, fell and after
this Mindaugas crossed the Vistula river and captured the fortress of Jazdów.

S1a. The Masovians were caught by surprise, since virtually without any defense the capital, Płock, fell. Afterwards,
Mindaugas crossed the Vistula river and captured the fortress of Jazdów.

S1b. Mindaugas crossed the Vistula river and captured the fortress of Jazdów. Before this, the Masovians were
caught by surprise, since virtually without any defense the capital, Płock, fell.

C2. He settled in London, devoting himself chiefly to practical teaching.
S2. He settled in London. He devoted himself chiefly to practical teaching.
C3. It was a time to go back to nature, and the plastic flamingo quickly became the prototype of bad taste and

anti-nature.
S3. It was a time to go back to nature. The plastic flamingo quickly became the prototype of bad taste and

anti-nature.

Table 6: An example of discourse- (1) vs. syntax-based (2) sentence splitting.

Figure 4: Section of annotation form used for gold-label classification test set creation.

Figure 5: Section of annotation form used for human simplification evaluation.
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C1. He served as Mayor of The Hague from 2008 to 2017; he then took two acting positions in Drenthe and
Amsterdam.

rephrase He was Mayor of The Hague from 2008 to 2017 then took two acting positions in Drenthe and Amsterdam.
syntax-split He served as Mayor of The Hague from 2008 to 2017. He then took two acting positions in Drenthe and

Amsterdam.
discourse-split He served as Mayor of The Hague from 2008 to 2017. Later, he took two acting positions in Drenthe and

Amsterdam.

C2. A bus stop is a designated place where buses stop for passengers to get on and off the bus.

identity A bus stop is a designated place where buses stop for passengers to get on and off the bus.
rephrase A bus stop is a place where buses stop for passengers.

C3. He led Villa to victory in the inaugural League Cup in 1961 but was then sacked in 1964 on grounds of ill
health.

syntax-split He led Villa to victory in the inaugural League Cup in 1961. He was sacked in 1964 on grounds of ill
health.

discourse-split He led Villa to victory in the inaugural League Cup in 1961. However, he was sacked in 1964 on grounds
of ill health.

Table 7: Some complex sentence examples where multiple rewrite operations are plausible.

Output

Complex When that wasn’t enough, Ysra, Sarah and three others who were also strong swimmers jumped into the water
in order to give the boat more buoyancy.

Simple Ysra, Sarah and three others who were also strong swimmers jumped out.

BARTN When that wasn’t enough, Ysra, Sarah and three others who were also strong swimmers jumped into the water.
[del]

BART4 When that wasn’t enough, Ysra, Sarah and three others who were also strong swimmers jumped into the water
in order to give the boat more buoyancy.

Ctrl4,4 When that wasn’t enough, Ysra, Sarah and three others who were also strong swimmers jumped into the water.
[split] They did this to give the boat more buoyancy.

Table 8: Additional system outputs illustrating commonly seen patterns. Blue/bold marks positive changes while
red/underlined marks negative changes or errors.
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