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Abstract

Cross-lingual transfer (CLT) is of various ap-
plications. However, labeled cross-lingual cor-
pus is expensive or even inaccessible, espe-
cially in the fields where labels are private,
such as diagnostic results of symptoms in
medicine and user profiles in business. Al-
though being lack of labels, there are off-the-
shelf models in these sensitive fields. Instead
of pursuing the original labels, a workaround
for CLT is to transfer knowledge from the
off-the-shelf models without labels. To this
end, we define a novel CLT problem named
FreeTransfer-X that aims to achieve knowl-
edge transfer from the off-the-shelf models in
rich-resource languages. To address the prob-
lem, we propose a 2-step knowledge distil-
lation (KD, Hinton et al., 2015) framework
based on multilingual pre-trained language
models (mPLM)1. The significant improve-
ment over strong neural machine translation
(NMT) baselines demonstrates the effective-
ness of the proposed method. In addition to
reducing annotation cost and protecting pri-
vate labels, the proposed method is compati-
ble with different networks and easy to be de-
ployed. Finally, a range of analyses indicate
the great potential of the proposed method.

1 Introduction

Cross-lingual transfer (CLT) is a critical topic for
natural language processing due to the data imbal-
ance between languages. While models of rich-
resource languages (e.g. English) have been ap-
plied on various real-world tasks, the progress on
poor-resource languages lags behind. CLT re-
searches enable the knowledge transfer from the
rich-resource languages to the poor-resource lan-
guages.

Although the application of CLT is valuable,
data labels are expensive or even inaccessible in

1Source code are available at https://github.com/huawei-
noah/noah-research/tree/master/NLP/FreeTransfer-X

private and sensitive domains, such as medicine
and business. For example, the diagnostic results
of a user’s symptoms are private and a company’s
internal description of users are confidential. Since
short of labels for CLT, even though there are ex-
cellent applications in rich-resource languages, it is
difficult to benefit the people using poor-resource
languages. Previous CLT researches have not well
studied how to leverage knowledge of rich-resource
languages without labels. To define and tackle this
problem will benefit both the community and the
industry.

In order to reduce the demand of labels, exist-
ing works mainly fall into two paradigms as fol-
lows. One paradigm focuses on learning language-
agnostic representation and model parameters.
CLT is realized by either aligning parameters of
monolingual models or sharing parameters among
different languages (Liu et al., 2019; Devlin et al.,
2019b; Conneau et al., 2020; Wang et al., 2020).
The objective is to build a unified representation,
which is used by downstream tasks, for all the lan-
guages. In this paradigm, although the demand of
labels is reduced, it still requires a certain number
of labels to adapt the model to a particular language
and task. Besides, models in this paradigm are
usually large-scale Transformers (Vaswani et al.,
2017) based on mPLMs, which limits their deploy-
ment in real-world. Another paradigm is to lever-
age machine translation (MT) systems to generate
training or testing pseudo-corpus for a specific lan-
guage (Conneau et al., 2018). For simplicity, we
take English as the rich-resource languages in this
paper. Translate-train translates annotated
training corpus from English to other languages.
Gold labels are directly applied to the translated
data. Although labels in poor-resource languages
are not required, gold labels in English are still
necessary. On the contrary, Translate-test
translates testing corpus from poor-resource lan-
guages to English. This method can directly lever-
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Figure 1: Overview of the proposed 2-step knowledge distillation (KD) framework. KD-(1) distills knowledge
from the off-the-shelf English model to the mPLM. KD-(2) distills knowledge from the mPLM to the model in the
target language. Blue modules: in the source language src, green modules: in the target language tgt.

age off-the-shelf English models, but it runs a 2-
pass inference which highly limits its efficiency.
Both the two CLT paradigms mentioned above re-
quire language-specific and task-specific labels,
except for the 2-pass Translate-test. The
demand of labels highly limits the reuse of the En-
glish knowledge in private and sensitive domains.
Then a question comes up: Is it possible to perform
CLT totally without labels?

In this paper, we define a novel problem: safe
and label-free cross-lingual transfer from off-the-
shelf models (FreeTransfer-X). The FreeTransfer-X
asks researchers to achieve CLT only with off-the-
shelf English models but any labels, as formally
defined in Section 2.1. To the best knowledge of the
authors, it’s the first time that the FreeTransfer-X
is clearly defined.

To address the FreeTransfer-X, we propose a
2-step knowledge distillation (KD, Hinton et al.,
2015) framework based on mPLM, as shown in
Figure 1. Given an off-the-shelf model θsrc in the
source language (e.g. English), first we take θsrc as
the teacher and an mPLM model θmsrc as the student,
then train θmsrc on unlabeled corpus Dsrc. Second,
we take θmtgt as the teacher and train a student θtgt
on unlabeled corpus Dtgt. This cross-lingual trans-
fer framework is label-free and applicable for any
model architecture. Experimental results demon-
strate the effectiveness of the proposed framework
on both sentence classification and sequence tag-
ging.

In short, the major contributions of this work
include:

• A novel cross-lingual transfer problem
FreeTransfer-X is defined. The FreeTransfer-
X asks researchers to achieve CLT from off-

the-shelf models without using labels. It re-
duces the labeling cost and protects the labels
in private domains such as medicine and busi-
ness.

• We propose a 2-step knowledge distillation
framework based on mPLMs, e.g. XLM-
RoBERTa (Conneau et al., 2020), to address
the FreeTransfer-X. It significantly outper-
forms the NMT baselines on sentence classi-
fication and sequence tagging tasks. Besides,
it’s compatible with heterogeneous networks.

• Further analysis indicates abundant research
potentials of the proposed framework. To im-
prove the two distillation steps and the mPLM
may benefit the framework.

2 Methodology

2.1 Problem Definition
Denote the source language and the target language
as src and tgt respectively. Given an off-the-shelf
model θsrc (e.g. English intent classifier), unla-
beled in-domain corpus Dsrc and unlabeled in-
domain corpus Dtgt, the objective is to output a
model θtgt in the target language tgt. For sim-
plicity in this paper, we constrain the target model
θtgt to be of the same network architecture to the
off-the-shelf source model θsrc.

2.2 Basic Framework
We propose to adopt knowledge distillation (KD,
Hinton et al., 2015) to address the FreeTransfer-X,
since it can transfer knowledge from teacher mod-
els without knowing original labels. In addition,
knowledge distillation is free from network archi-
tectures and can be applied between heterogeneous
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networks, which benefits the deployment in various
environment.

2.2.1 Two-Step Knowledge Distillation
For a specific natural language processing (NLP)
task, given a model θsrc and the unlabeled data
Dsrc in the source language src and the unlabeled
data Dtgt in the target language tgt. As shown in
Figure 1, we propose to train a model θtgt in the
target language tgt via 2 KD steps:

1. Leverage the NLP capability of the off-the-
shelf model θsrc, e.g. an English sentence
classifier θen,cls. We distill knowledge from
the teacher θsrc to the student mPLM θmsrc on
data Dsrc.

2. Due to the zero-shot cross-lingual transfer ca-
pability of the mPLMs, θmsrc implicitly achieve
the NLP capability on the target language θmtgt.
Then similar to the step 1, we distill knowl-
edge from the teacher θmtgt to the student θtgt
in the target language tgt on data Dtgt.

The proposed framework works for arbitrary net-
work including but not limited to Transform-
ers (Vaswani et al., 2017), BiLSTM (Schuster and
Paliwal, 1997) and CNN (Kim, 2014).

2.2.2 Training Objectives
The training is purely based on KD that no other
training objectives is included. We only apply KD
between the classification distribution PT (·) and
PS(·) of the teacher and the student respectively,
which is compatible to arbitrary model architecture.
Freezing the parameters of the teacher, we train the
student by minimizing the Kullback-Leibler Diver-
gence (DivKL, Joyce, 2011) between them. De-
note the prediction category as C = [c0, c1, ..., ck],
then the DivKL can be formalized as,

DivKL(PT (C|·)∥PS(C|·)

=
∑

ci∈C
PT (ci|·) log (

PT (ci|·)
PS(ci|·)

)
(1)

However, KD objectives of different NLU tasks
varies a lot. We classify NLU tasks into two
categories: 1) sentence-level tasks like sentence
classification, 2) word-level tasks like sequence
tagging. Given an input example X ∈ D as
a sequence of words X = [x0, x1, ..., xn]. For
sentence-level tasks, X ’s sentence-level category is
CX . The teacher model and student model respec-
tively output sentence-level prediction distribution

PT (CX |X ) and PS(CX |X ). For word-level tasks,
X ’s word-level category is Cxi , i ∈ [0, n]. Then the
KD objective can be written as,

L = DivKL(PT (C|X )∥PS(C|X ))

where C =

{
CX , sentence-level
Cxi ,word-level

(2)

It’s worth noting that word-level DivKL cannot
be directly applied for heterogeneous teacher and
student models since their tokenizations are differ-
ent. In order to align the predictions of teacher and
student, we only adopt the prediction on the first
sub-word of each word.

2.3 Enhanced Cross-Lingual Distillation

To explore the potentials of improving the two KD
steps, we propose to enhance them with machine
translation (MT) and paraphrase generation (PG).

2.3.1 Language Balanced Distillation
During the first KD step that training the mPLM
from an English (i.e. the source language) classi-
fier, to leverage the cross-lingual transferarability
of mPLM, the conventional method is to train the
mPLM only on the English corpus. However, in
our preliminary experiments, we notice that the
mPLM’s accuracy gap between English and the tar-
get languages are very huge. It’s over 5% between
the English target model (94.0) and the average of
all target models (88.4), as reported by 2-step KD
in Table 7, Appendix A.

Figure 2: Language balanced distillation. Leverage the
MT model to translate unlabeled English Den into tar-
get languages Dtrans

tgt . Perform KD on the translated
Dtrans

tgt with θen’s predicted distribution Pen(C|X ).

Hence, we propose to translate the unlabeled
English corpus Den to target languages Dtrans

tgt , as
depicted by Figure 2. Since Den and Dtrans

tgt are
aligned, source English model’s predicted distri-
bution Pen(C|X ) of Den can be directly applied to
Dtrans

tgt . In this way, KD is able to be performed
on not only the source language but also the target
languages.
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As shown in the lower left of Figure 1, the trans-
lated Dtrans

tgt is incorporated in the training of KD
step one.

2.3.2 Language-Specific Data Augmentation
Inspired by data augmentation for KD (Jiao et al.,
2020) and multilingual paraphrase generation (Guo
et al., 2019), we augment the unlabeled target cor-
pus Dtgt via paraphrasing.

Figure 3: Language-specific data augmentation. We
paraphrase the target corpus Dtgt into Dpara

tgt as the
augmented training data. KD is then performed on the
mixture of Dtgt and Dpara

tgt .

3 Experiments

3.1 Datasets and Preprocessing

MultiATIS++ (Xu et al., 2020) extends the Mul-
tilingual ATIS corpus (Upadhyay et al., 2018) to
9 languages across 4 language families, including
Indo-European (English, Spanish, German, French,
Portuguese and Hindi), Sino-Tibetan (Chinese),
Japonic (Japanese) and Altaic (Turkish). It pro-
vides annotations for intent recognition (sentence
classification) and slot filling (sequence tagging)
for each languages. The utterances are profession-
ally translated from English and manually anno-
tated. MultiATIS++ includes 37,084 training ex-
amples and 7,859 testing examples.
MTOP (Li et al., 2021) is a recently released mul-
tilingual NLU dataset covering 6 languages: En-
glish, German, French, Spanish, Hindi, Thai. It’s
also manually annotated for intent recognition (sen-
tence classification) and slot filling (sequence tag-
ging). MTOP provides a larger corpus consisting
of 104,445 examples, of which 10% is validation
set and 20% is testing set.

For each language, we randomly split both Mul-
tiATIS++ and MTOP into two balanced parts: an-
notated and unannotated. The annotated parts are
used to train and simulate the off-the-shelf source
models while the unannotated parts are used for
training the baselines and the proposed 2-step dis-
tillation model. We tokenize Chinese, Japanese
and Thai utterances using Jieba2, MeCab3 and

2https://github.com/fxsjy/jieba
3https://github.com/polm/fugashi

pythainlp4 respectively.

3.2 Baselines

Translate-Test (Conneau et al., 2018) is a machine
translation based method. It performs two-pass
inferences to tackle the FreeTransfer-X problem:
1) translate the testing utterances into English (i.e.
the source language) from the target language, 2)
predict on the translated English utterances with
the off-the-shelf English model.
Translate-Train-Pseudo is also based on ma-
chine translation. It’s a variant of the Translate-
Train (Conneau et al., 2018), which translates En-
glish training examples into target languages and
applies English annotations to the translated exam-
ples. However, annotations are not provided in the
FreeTransfer-X problem. Hence, Translate-Train-
Pseudo utilizes the prediction of the off-the-shelf
English model to pseudoly annotates the translated
examples.
Gold-Supervised is for reference since it’s trained
with annotations. It replaces the first distilla-
tion step of the proposed framework with gold-
supervised training, in other words, the mPLM is
supervised by gold annotations instead of the off-
the-shelf English model. It’s supposed to be very
strong.

3.3 Experiment Settings

3.3.1 Model Architectures
We experiment with three mainstream NLU model
architectures to verify the universality of the pro-
posed framework. They are used as the backbones
of the off-the-shelf models θsrc and the output mod-
els θtgt in target language.
Transformer encoder (Vaswani et al., 2017) mod-
els input sequences fully with Attention mecha-
nism. We follow the language modeling method
of BERT (Devlin et al., 2019a). We adopt absolute
positional encoding. The contextual representa-
tion vector of the first word is used for sentence
classification. Sequence tagging is based on the
contextual representation of each word.
Bidirectional LSTM (BiLSTM) (Schuster and
Paliwal, 1997) models input sequences via lever-
aging two stacked LSTM layers respectively from
backward and forward directions. We take the rep-
resentation vector of the last word for sentence
classification. Word-level representation is used
for sequence tagging like Transformer.

4https://github.com/PyThaiNLP/pythainlp
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Models
MTOP MultiATIS++

Avg
Transformer BiLSTM CNN Transformer BiLSTM CNN

Reference
Off-the-shelf En source 88.3 86.2 90.5 94.4 90.8 92.7 90.5
Gold-supervised target 78.4 65.0 79.2 84.6 85.2 86.6 79.8

Baselines
Translate-test 69.6 66.0 73.8 86.4 80.7 86.2 77.1
Translate-train-pseudo 64.2 57.9 67.4 84.7 81.2 83.2 73.1

Ours
2-step KD 75.1 72.3 75.6 87.7 83.8 85.0 79.9
+ Balanced distillation 79.3 75.9 77.8 88.9 85.2 86.2 82.2
+ Data augmentation 79.6 79.1 78.8 88.7 86.4 86.9 83.3

Table 1: Classification accuracy averaged over target languages. MTOP: de, es, fr, hi, th. MultiATIS++: de, es, fr,
hi, ja, pt, tr, zh. For simplicity, the architecture of a target model is identical to its corresponding English source
model.

Convolutional Neural Networks (CNN) (Kim,
2014) encodes input sequences with CNN mod-
ules. We adopt three kind of 1-D kernels with
kernel size of 3, 4 and 5. Output vectors from
all kernels and channels are concatenated as the
representation for sentence classification. Dilated
CNN (Strubell et al., 2017) is adopted for sequence
tagging.

3.3.2 Training Details

English is regarded as the source language in all
the experiments. Off-the-shelf English models are
trained on the hold-out annotated English corpus
as described in Section 3.1. All the experimented
models are controlled in comparable model scale.
AdamW (Loshchilov and Hutter, 2019) is adopted
as the optimizer with ϵ = 1e − 8. We train the
models for 50 epochs and take the checkpoint of
the best validation accuracy as the final model.
Table 2 reports the hyper-parameters of the model
architectures.

Model Embed size Hidden size #Layers #Params
Transformer 256 256 4 5.3M
BiLSTM 256 512 2 5.3M
CNN 256 768 2 5.0M

Table 2: Hyper-parameters of the experimented mod-
els.

Initial learning rate is decided based on
a gradient-based searching heuristics proposed
by Smith (2015), since in our preliminary exper-
iments Smith (2015) stably finds better learning
rates than manual searching. We build vocabu-
laries of 10k words for each language via Byte
Pair Encoding (BPE) Sennrich et al. (2016). Ex-
periments are implemented with PyTorch (Paszke
et al., 2019) and conducted on a single Nvidia V100
32GB GPU.

3.3.3 Auxiliary Models
M2M-100 (Fan et al., 2021) is adopted as the MT
system in our experiments. We apply the 418M
model checkpoint from Huggingface5.
XLM-RoBERTa (Conneau et al., 2020) is adopted
as the mPLM in the proposed 2-step distillation
framework.

3.4 Results

Average accuracy across languages and models
is given in Table 1 and Table 3. Language-wise
results are provided in Appendix A.

3.4.1 Sentence Classification
As shown in Table 1, the proposed 2-step KD
framework significantly outperforms the MT base-
lines on most model architectures, except for the
CNN of Translate-test. Although Translate-test is
strong in a very few cases, it requires 2-pass infer-
ence (MT and classification) that results in a high
latency. On the contrary, the proposed framework
directly produces classification models in the target
languages, which is more efficient. In addition,
the language-balanced distillation and language-
specific data augmentation further enhance our
model to a large extent, +2.3% and +1.1% respec-
tively. Language-wise results in Table 7 demon-
strate the robustness of our method across various
languages.

To our surprise, the naive 2-step KD model even
performs on par with the Gold-supervised reference
on average. We guess it’s due to the regularization
effects of knowledge distillation that brings a good
generalizability to the proposed model. It implies
the proposed framework may be a annotation-free
alternative to current zero-shot cross-lingual trans-
fer framework.

5https://huggingface.co/facebook/m2m100_418M
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Models
MTOP MultiATIS++

Avg
Transformer BiLSTM CNN Transformer BiLSTM CNN

Reference
Off-the-shelf En source 74.8 81.1 72.1 88.4 94.0 89.1 83.3
Gold-supervised target 64.6 68.6 63.3 71.5 76.5 74.1 69.8

Baselines Translate-test 37.2 41.4 34.2 24.8 38.8 40.8 36.2
Translate-train-pseudo 34.4 40.4 28.6 53.9 63.1 61.8 47.0

Ours 2-step KD 63.7 67.6 55.7 71.7 76.9 73.5 68.2

Table 3: Sequence tagging F1 score averaged over target languages. MTOP: de, es, fr, hi, th. MultiATIS++: de, es,
fr, hi, ja, pt, tr, zh. For simplicity, the architecture of a target model is identical to its corresponding English source
model.

Models
Original Finetuned Zero-Shot Cross-Lingual Transfer

en en de es fr hi ja pt tr zh Avg
Gold-supervised - 97.9 97.6 97.4 97.4 92.4 90.6 97.3 83.8 92.8 93.7

Transformer
Naive KD

94.4
97.2 96.9 96.8 96.2 90.8 90.1 95.6 84.3 91.3 92.8

+ Balanced distillation 97.5 97.6 96.9 96.6 95.4 96.3 96.1 90.8 97.5 95.9

BiLSTM
Naive KD

90.8
93.2 93.5 93.5 93.2 90.4 83.4 93.5 77.2 85.0 88.7

+ Balanced distillation 92.4 93.3 93.7 92.4 91.8 91.9 93.1 86.6 92.8 92.0

CNN
Naive KD

92.7
94.7 91.8 94.1 93.2 90.3 90.9 94.2 83.5 90.3 91.0

+ Balanced distillation 92.8 93.2 92.9 92.4 91.8 91.6 93.2 89.2 92.9 92.2

Table 4: Classification accuracy of the finetuned mPLM models, i.e. XLM-RoBERTa. Evaluated on MultiATIS++.
Gold-supervised is trained with gold annotations. Bold languages is not in the Indo-European language family as
English.

However, comparing the results of the English
source model and those of the target models in
Table 7, the cross-lingual transferred models still
lag far behind the original English models. There
is a great potential of the proposed framework.

3.4.2 Sequence Tagging
On the sequence tagging task, the proposed model
beats the baselines by a wide margin. The MT-
based baselines perform very poor on this task due
to the error from word-level annotation alignment.
Also because of the alignment error, we do not
apply language balanced distillation and language-
specific data augmentation on this task.

As to the comparison with the Gold-supervised
reference, our model performs slightly worse than
it. It may due to the insufficient knowledge dis-
tillation from the teacher to the student, which
comes from the discrepancy between teacher’s and
student’s tokenizations. Although, as described
in Section 2.2.2, we perfectly align their predic-
tion at word-level, only the first subword of each
word is used for distillation. More informative
subword-level aligning and distillation methods
can be explored. We leave this problem for the
future research. Besides, similar to sentence clas-
sification, gap between the English source model
and the transferred target models is huge, as shown
in Table 3.

In sum, both experimental results on sentence

classification and sequence tagging demonstrate
that the proposed model is significantly stronger
than MT-based cross-lingual transfer methods. Fur-
thermore, the proposed model only slightly lags
behind or even performs on par with the strong
Gold-supervised reference, which is not able to
address the FreeTransfer-X problem.

4 Further Analysis

In order to explore the potential of the proposed
framework, we analyze it in more details. For sim-
plicity, experiments in this Section are conducted
only on the MultiATIS++ sentence classification
task.

4.1 Effects of the Distillation

Table 4 reports the accuracy of the XLM-RoBERTa
finetuned from gold annotations, Transformer
teacher, BiLSTM teacher and CNN teacher.

First, compare the Original with the Naive KD
Finetuned of each model respectively. It’s very
interesting that the accuracy of the student mPLM
is consistently higher than its teacher. The XLM-
RoBERTa students gain 2.8%, 2.4% and 2.0% im-
provement from the Original teachers as Trans-
former, BiLSTM and CNN respectively. The phe-
nomenon implies the general effectiveness of lan-
guage modeling of mPLMs. We conjecture the
improvement comes from two aspects: 1) mPLMs’
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Models
Original Finetuned Zero-Shot Cross-Lingual Transfer

en en de es fr hi ja pt tr zh Avg

Transformer
XLM-RoBERTa

94.4
97.2 96.9 96.8 96.2 90.8 90.1 95.6 84.3 91.3 92.8

mBERT 96.9 88.4 92.4 93.8 81.1 85.7 94.0 73.7 83.2 86.5

BiLSTM
XLM-RoBERTa

90.8
93.2 93.5 93.5 93.2 90.4 83.4 93.5 77.2 85.0 88.7

mBERT 92.3 80.4 87.5 82.5 79.2 79.4 82.3 76.5 75.0 80.3

CNN
XLM-RoBERTa

92.7
94.7 91.8 94.1 93.2 90.3 90.9 94.2 83.5 90.3 91.0

mBERT 93.3 82.6 86.9 87.9 78.1 78.7 88.2 72.9 80.9 82.0

Table 5: Classification accuracy of XLM-RoBERTa and mBERT. Step-1 KD: off-the-shelf English model ->
mPLM. The mPLMs are finetuned and evaluated on MultiATIS++.

Models
Original Transferred Transferred Target Languages

en en de es fr hi ja pt tr zh Avg ∆

Transformer
XLM-RoBERTa

94.4
94.0 94.4 93.3 90.8 85.7 81.3 92.4 76.5 87.1 87.7 -5.1

mBERT 95.6 86.2 91.8 92.8 79.8 81.7 90.9 72.9 80.3 84.6 -1.9

BiLSTM
XLM-RoBERTa

90.8
89.8 89.8 89.7 89.5 84.1 78.1 84.9 71.5 83.1 83.8 -4.9

mBERT 89.6 80.9 82.9 81.0 78.5 76.0 83.7 71.7 78.6 79.2 -1.1

CNN
XLM-RoBERTa

92.7
90.7 87.9 88.1 87.8 85.0 83.2 86.3 75.2 86.7 85.0 -6.0

mBERT 89.1 79.4 82.9 81.5 76.0 78.2 82.4 72.0 79.5 79.0 -3.0

Table 6: Classification accuracy of the target models, distilled from XLM-RoBERTa and mBERT respectively.
Step-2 KD: mPLM -> target model. ∆: changes w.r.t Table 5. The target models are transferred and evaluated on
MultiATIS++.

generalizability learn from the large-scale pre-
training, 2) the large model scale of mPLMs, which
enhances its NLU capability. Besides, the improve-
ment with respect to the Original varies across
model architectures. Especially when compare
Transformer (+2.8%) to CNN (+2.0%), although
the Transformer’s student XLM-RoBERTa per-
forms much closer to the Gold-supervised, it still
improves greater than the CNN’s student. Since
the XLM-RoBERTa is Transformer-based network,
it implies that the knowledge distillation performs
better if the architectures of the teacher and the
student are more similar.

Second, under the cross-lingual transfer condi-
tion, although the Gold-supervised outperforms the
Naive KD on most target languages, it performs
weaker on Turkish (tr). It demonstrates the better
generalizability and few-shot performance of the
Naive KD, since Turkish is a low-resource language
in MultiATIS++. The number of training exam-
ples of Turkish (578) is less than other languages
(4488).

Third, the effectiveness of the proposed lan-
guage balanced distillation is very clear. In the
comparison between the Naive KD and + Balanced
distillation, the accuracy is highly boosted almost
on all the target languages. This improvement is
particularly significant on the languages that is not
in the same family of English: Hindi (hi), Japanese
(ja), Turkish (tr) and Chinese (zh). A future re-
search topic is to improve language balanced dis-

tillation on the languages similar to the source lan-
guage, e.g. European languages to English. Data
selection algorithms may have potentials.

In sum, the proposed framework and distillation
method is effective and of strong generalizability.
Future researches on heterogeneous distillation and
data selection may benefit the proposed framework.

4.2 Effects of mPLM Models
Table 5 and Table 6 respectively reports accuracy
of the step-1 KD and step-2 KD in the proposed
framework. According to Table 6, the choice of
mPLM is critical to the target models’ perfor-
mance. Performance with XLM-RoBERTa as the
mPLM is stronger than with mBERT. However,
there are interesting observations we should notice.

First, observe the performance changes (∆) of
the Step-2 KD: from the mPLM teacher to the
target model student. We notice that the perfor-
mance drop of mBERT is slighter than the XLM-
RoBERTa’s, based on the results of the average
score in Table 6 minus those in Table 5. It implies
that as the capability of mPLM increases, the KD
dissipation tends to increase as well. Similar to
the analysis in Section 4.1, the KD dissipation may
come from: 1) the pre-trained language model that
the target models lack of, 2) discrepancy between
the model size of the mPLM and the target mod-
els. Hence, performance based on XLM-RoBERTa
drops more due to its gap to the target models is
greater than mBERT’s in both the two aspects of
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discrepancy. To reduce the KD dissipation, re-
searches should focus on how to reduce the model
discrepancy between mPLM and the target model,
e.g. improve the language modeling capability of
the target model. Besides, the performance differ-
ence among model architectures is consistent, ei-
ther based on XLM-RoBERTa or mBERT. It further
evidences that the proposed framework is general
and works well for different model architectures.

4.3 Cross-Architecture Transfer

To analyze the proposed framework in a more gen-
eral setting, we free the architecture ties of the
off-the-shelf English models and the target mod-
els to be heterogeneous, that the source and target
models can be different.

Figure 4: Classification accuracy of the target models
via cross-architecture transfer, averaged over all target
languages. Transfer from rows to columns. Row: ar-
chitectures of source English models, Column: archi-
tectures of the target models. Experimented on Multi-
ATIS++.

As depicted in Figure 4, the transfer performs the
best when taking Transformer as both the source
and target models. The worst comes to the trans-
fer between BiLSTM models. On one side, the
advantage of the Transformer architecture may be
a reason. On the other side, it reconfirms the ob-
servation that the more similar teacher and student
models are, the better transfer performance comes.

Besides, taking the BiLSTM as the source or
target model consistently result in lower accuracy,
no matter what the corresponding target or source
models are. Hence, we guess the architecture simi-
larity between BiLSTM and the Transformer-based
mPLM is lower than that between CNN and the
mPLM. We leave this for future work.

In addition, we study the accuracy drop from
the source English models to the target models, as
shown in Figure 5. From the perspective of the
source model, the drop is the least when BiLSTM

Figure 5: Accuracy drop from the source English mod-
els to the target models, averaged over all target lan-
guages. Transfer from rows to columns. Row: architec-
tures of source English models, Column: architectures
of the target models. Experimented on MultiATIS++.

is the source. From the perspective of the target
model, the drop is the least when Transformer is
the target. It reveals an asymmetry between the
two KD steps with respect to the mPLM. To re-
duce the KD dissipation to the largest extent, it
seems mPLM should be distilled from a weaker
teacher architecture (e.g. BiLSTM) before teaching
a stronger student architecture (e.g. Transformer).

In brief, the proposed framework works for het-
erogeneous cross-lingual transfer. The future work
may focus on how to define the similarity between
model architectures and how to evaluate the source-
target model pairs.

5 Conclusions

In this paper, we define a novel cross-lingual
transfer (CLT) problem - FreeTransfer-X, espe-
cially for CLT in private scenarios such as medi-
cal and business. The FreeTransfer-X is defined
to transfer knowledge from off-the-shelf models
in rich-resource languages to poor-resource lan-
guages, without labeled corpora. To address the
FreeTransfer-X, we propose a 2-step knowledge
distillation (2-step KD) framework based on mul-
tilingual pre-trained language models. In addi-
tion, two data augmentation methods for cross-
lingual KD are proposed to boost the performance
of the 2-step KD framework. Experimental re-
sults clearly demonstrate the effectiveness of the
proposed framework. It’s worth noting that the pro-
posed KD framework can be applied between het-
erogeneous models, which benefits the deployment
in different environment. Further analyses point
out various research directions for future work.
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A Language-Wise Results

Here we list the detailed language-wise experimen-
tal results of Table 1 and Table 3 for reference.
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Models
Source Targets

en en de es fr hi ja pt tr zh Avg
Reference Gold-supervised - 88.5 89.7 89.6 91.9 81.9 79.5 86.3 73.4 89.1 85.2

Transformer

Baselines
Translate-test

94.4

92.5 90.0 88.1 90.6 83.7 86.8 88.1 75.1 88.7 86.4
Translate-train-pseudo 92.7 89.4 90.0 90.5 83.1 74.8 90.1 74.1 85.9 84.7

Ours
2-step KD 94.0 94.4 93.3 90.8 85.7 81.3 92.4 76.5 87.1 87.7
+ Balanced distillation 94.3 93.5 92.9 95.0 84.0 83.0 93.3 78.5 90.7 88.9
+ Data augmentation 94.7 93.6 93.3 94.7 84.2 83.7 93.2 77.6 89.7 88.7

BiLSTM

Baselines
Translate-test

94.4

87.1 84.2 83.4 85.8 77.9 81.5 84.4 64.1 84.2 80.7
Translate-train-pseudo 87.8 85.0 85.4 86.9 80.4 73.5 86.1 72.0 80.4 81.2

Ours
2-step KD 89.8 89.8 89.7 89.5 84.1 78.1 84.9 71.5 83.1 83.8
+ Balanced distillation 90.7 89.4 88.7 88.6 82.5 81.7 86.1 76.2 88.6 85.2
+ Data augmentation 89.1 90.6 90.9 88.7 83.4 82.5 86.7 77.9 90.3 86.4

CNN

Baselines
Translate-test

94.4

90.7 86.6 86.3 88.7 86.9 85.3 88.2 81.0 86.3 86.2
Translate-train-pseudo 86.3 84.4 85.6 86.5 83.8 79.8 82.2 77.5 85.9 83.2

Ours
2-step KD 90.7 87.9 88.1 87.8 85.0 83.2 86.3 75.2 86.7 85.0
+ Balanced distillation 89.1 88.5 87.8 88.8 85.7 83.0 86.2 79.2 90.6 86.2
+ Data augmentation 89.6 89.8 89.2 89.0 86.0 83.8 87.1 79.4 90.9 86.9

Table 7: Sentence classification accuracy on MultiATIS++.
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