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Abstract

The logical negation property (LNP), which im-
plies generating different predictions for seman-
tically opposite inputs (p is true iff ¬p is false),
is an important property that a trustworthy lan-
guage model must satisfy. However, much re-
cent evidence shows that large-size pre-trained
language models (PLMs) do not satisfy this
property. In this paper, we perform experiments
using probing tasks to assess PLMs’ LNP un-
derstanding. Unlike previous studies that only
examined negation expressions, we expand the
boundary of the investigation to lexical seman-
tics. Through experiments, we observe that
PLMs violate the LNP frequently. To alleviate
the issue, we propose a novel intermediate train-
ing task, named meaning-matching, designed to
directly learn a meaning-text correspondence,
instead of relying on the distributional hypoth-
esis. Through multiple experiments, we find
that the task enables PLMs to learn lexical se-
mantic information. Also, through fine-tuning
experiments on 7 GLUE tasks, we confirm that
it is a safe intermediate task that guarantees a
similar or better performance of downstream
tasks. Finally, we observe that our proposed ap-
proach1 outperforms our previous counterparts
despite its time and resource efficiency.

1 Introduction

Contemporary large-size PLMs, such as BERT (De-
vlin et al., 2019), ELECTRA (Clark et al., 2020),
and GPT-2 and -3 (Radford et al., 2019; Brown
et al., 2020), have shown excellent results in many
downstream tasks, even performing better than hu-
mans in the GLUE (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019b) benchmark datasets.

However, their reliability is recently being chal-
lenged. Many studies have conducted various prob-
ing tasks and observed that PLMs exhibit faulty
behaviours, such as insensitiveness to sentence or-
dering (Pham et al., 2021; Gupta et al., 2021; Sinha

1https://github.com/MJ-Jang/beyond-distributional

et al., 2021b), incomprehension on number-related
representations (Wallace et al., 2019; Lin et al.,
2020; Nogueira et al., 2021), and lack of semantic
content understanding (Ravichander et al., 2020;
Elazar et al., 2021). These issues raise concerns
about PLMs’ stability and reliability, precluding
them from applications in practice, especially in
risk-sensitive areas.

Another critical problem of PLMs is their inac-
curate behaviour on negation, which is a principal
property in many language understanding tasks.
For tasks where the LNP holds (p is true iff ¬p is
false; see Aina et al. 2018), PLMs should make dif-
ferent answers for the original and negated inputs.
However, several studies observed that PLMs vio-
late this property. In masked knowledge retrieval
tasks, PLMs frequently generate incorrect answers
for negated input queries (Ettinger, 2020; Kassner
and Schütze, 2020). In other studies, PLMs show a
poor generalisation ability on negated natural lan-
guage inference (NLI) datasets (Naik et al., 2018;
Hossain et al., 2020).

Although the aforementioned studies produced
promising analysis results, they limited the scope of
the LNP only to adding negation expressions (e.g.,
“no” and “not”). However, other perturbations that
generate the opposite meaning also can be applied
to the property. Therefore, a consideration of such
perturbation methods is necessary to fully assess
whether PLMs satisfy the LNP.

Also, remedies to alleviate the problem have
not been studied much yet. Hosseini et al. (2021)
recently employed data augmentation and unlike-
lihood training (Welleck et al., 2020) to prevent
models from generating unwanted words, given
the augmented negated data during masked lan-
guage modelling (MLM). However, this approach
has several downsides. First, like previous works,
Hosseini et al. (2021) only considered negation ex-
pressions. Second, the data augmentation method
is contingent on many additional linguistic compo-
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nents, which causes the dependency of a model’s
performance on certain modules and precludes ap-
plying the method to other languages where such re-
sources are unavailable. Finally, the model should
be pre-trained from scratch with the unlikelihood
objective, which consumes considerable time and
resources.

In this paper, we expand the boundary of the
LNP to lexical semantics, i.e., synonyms and
antonyms, and ascertain that PLMs are prone to vi-
olate the LNP. Next, we propose a remedy, called
intermediate-training on meaning-matching (IM2),
which hardly employs additional linguistic com-
ponents. We hypothesise that a leading cause lies
in the MLM training objective, which assumes the
distributional hypothesis for learning the meaning
of the text (Sinha et al., 2021a). Instead, we de-
sign a model that directly learns the correspon-
dence between words and their semantic contents.
Through experiments, we verify that our approach
improves the model’s comprehension of the LNP,
while showing a stable performance on multiple
downstream tasks.

Our main contributions are as follows: (i) We
extend the investigation of the LNP from negation
to lexical semantics (Section 2), (ii) we reveal that
PLMs are prone to violate the LNP (Section 3),
(iii) we propose a novel remedy, named IM2, which
is decoupled from the distributional hypothesis but
learns meaning-text correspondence instead (Sec-
tion 4), (iv) through experiments, we ascertain that
the proposed approach improves the understanding
of negation and lexical semantic information (Sec-
tions 5.1 and 5.2), and (v) we verify that meaning-
matching is a stable and safe intermediate task that
produces a similar or better performance in multi-
ple downstream tasks (Sections 5.3 and 5.4).

2 Probing Tasks for Investigating the
Logical Negation Property

We design three probing tasks to evaluate whether
PLMs satisfy the LNP: masked knowledge re-
trieval on negated queries (MKR-NQ), masked
word retrieval (MWR), and synonym/antonym
recognition (SAR). Brief illustrations of each task
are in Figure 1.

2.1 Masked Knowledge Retrieval on Negated
Queries

The MKR-NQ task examines whether PLMs gener-
ate incorrect answers for negated queries. Follow-
ing the work of Kassner and Schütze (2020), we

constructed the evaluation dataset by negating the
LAMA dataset (Petroni et al., 2019), which con-
tains masked free-text forms of ConceptNet (Speer
et al., 2017) triplets and their corresponding an-
swers (e.g., (bird, CapableOf, fly) → (“A bird can
[MASK]”, fly)). The task aims to generate a correct
word through MLM.

According to the LNP, a model must not gen-
erate the original answer if the query is negated.
To measure how likely PLMs generate wrong pre-
dictions for negated queries, we collected pairs
of (negated_query, wrong_predictions). We se-
lected several relations in the LAMA dataset that
ensure mutual exclusiveness between the original
and negated queries.2 For negating sentences, we
selected LAMA data points that contain a single
verb using the Spacy parts of speech (POS) tagger
(Honnibal and Johnson, 2015). Next, we added
negation expressions, such as “not” and “don’t”, or
removed such expressions if they existed. Finally,
we collected the wrong predictions from Concept-
Net by using the head entity and relation. As a
result, we collected 3,360 data points for this task.
The list of the relations that we used and examples
of the data are in Table 10 in Appendix A.

2.2 Masked Word Retrieval
To expand the boundary of the LNP to lexical se-
mantics, we design the MWR task, which gener-
ates an answer of a masked query, asking for the
synonym/antonym of a target word through MLM
(e.g., “happy is the synonym of [MASK]”).

Let sw and aw denote masked queries that ask
the synonym and antonym of the word w, respec-
tively. Also, let As and Aa refer to the list of correct
answers for sw and aw, respectively. Intuitively, Aa

becomes the wrong predictions of sw, because sw
and aw have the opposite meaning. Therefore, we
can evaluate the violation of the LNP by investigat-
ing whether a PLM generates wrong predictions.

To extract commonly-used words for our exper-
iment, we first extracted nouns, adjectives, and
adverbs that appear more than five times in the
SNLI dataset (Bowman et al., 2015). Among the
extracted candidates, we filtered words that have
synonyms or antonyms in ConceptNet. Finally, we
generated masked queries by employing templates
used by Camburu et al. (2020). As a result, we
collected about 27K data points for MWR. The

2For example, the HasProperty relation is not suitable to
use, because sentences like “Some adults are immature” and
“Some adults are not immature” are not mutually exclusive.

2031



notA bird can [MASK]

PLM

𝐸! 𝐸" 𝐸# 𝐸$ 𝐸%

𝑇! 𝑇" 𝑇# 𝑇$ 𝑇%

flyWrong Prediction:
fly

Violate

(a) MKR-NQ

fromboy is different [MASK]

PLM

𝐸! 𝐸" 𝐸# 𝐸$ 𝐸%

𝑇! 𝑇" 𝑇# 𝑇$ 𝑇%

ladWrong Prediction:
lad

Violate

(b) MWR

skilless[CLS] skillful [SEP] [EOS]

PLM

𝐸!"# 𝐸$ 𝐸#%& 𝐸' 𝐸%(#

𝑇!"# 𝑇$ 𝑇#%& 𝑇' 𝑇%(#

Synonym
Antonym

(c) SAR
Figure 1: Illustration of the MKR-NQ, MWR, and SAR tasks.

templates and examples of the data are in Table 11
in Appendix A.

2.3 Synonym/Antonym Recognition

SAR is a classification that distinguishes whether
two given words are synonyms or antonyms. It
aims to evaluate whether the contextualised rep-
resentations of PLMs reflect the lexical meaning
of words. Therefore, we use a parametric prob-
ing model (Adi et al., 2017; Liu et al., 2019a; Be-
linkov and Glass, 2019; Sinha et al., 2021a) for
the experiment. Specifically, the experiment is per-
formed on the final layer of each PLMs, i.e., we
only train the classifier while keeping the encoder
frozen. We use ConceptNet to build the dataset.
ConceptNet has much more synonym triplets com-
pared to antonyms. As a result, we randomly sam-
ple the synonym triplets to maintain a balance. To
that end, we collect 33K, 1K, and 2K data points
for the train, dev, and test datasets, respectively.

2.4 Evaluation Metrics

We use the top-k hit rate (HR@k) to evaluate the
performance on the MKR-NQ and MWR tasks. As-
sume that P = {(p1, c1), (p2, c2), . . . , (pn, cn)}
denotes the set of predictions for a data point x,
where pt and ct refer to the predicted word and
confidence score of the t-th prediction, respectively.
Then, the top-k hit rate for a data point x is defined
as follows:

HR@k(x) =

∑k
i=1 1(pi ∈ Wx)

k
,

where Wx is the wrong prediction set of x. Intu-
itively, the metric measures the ratio of top-k pre-
dicted words that belong to the wrong prediction
set.

To reflect the prediction confidence score to
the evaluation metric, we additionally define the
weighted top-k hit rate (WHR@k) that uses the

confidence score as weights. It is worth to men-
tion that lower metrics mean a better model per-
formance in both cases as the metrics assess how
likely the models make inaccurate answers that they
must avoid. The weighted metric can be defined as
follows:

WHR@k(x) =

∑k
i=1 ci × 1(pi ∈ Wx)∑k

i=1 ci
.

For the SAR task, we employ accuracy as an
evaluation metric, because each data point has its
own label, and the label distribution is not skewed.

3 PLMs Lack Information of Negation
and Lexical Semantics

We select the following PLMs for the experi-
ments: bidirectional encoder representations from
transformers (BERT)-base/large (Devlin et al.,
2019), RoBERTa-base/large (Liu et al., 2019b),
and ALBERT-base/large (Lan et al., 2019). These
PLMs are pre-trained with the MLM training ob-
jective. We added the ELECTRA-small/base/large
models (Clark et al., 2020) for the SAR task, but
it is not used for the MKR-NQ and MWR ex-
periments, as the discriminator of the ELECTRA
models are trained with the replaced token predic-
tion (RTP) training objective and have no MLM
classifier. No additional training is required for the
MKR-NQ and MWR tasks. For the SAR task, we
fine-tune each PLM for 10 epochs and apply the
early stopping technique. We use the AdamW op-
timiser (Loshchilov and Hutter, 2019) for training
with a learning rate of 5e−6 and a batch size of 32.

3.1 Results for MKR-NQ
The results for the MKR-NQ task are summarised
in Table 1. In general, the results are consistent
with previous works (Ettinger, 2020; Kassner and
Schütze, 2020). We observe three important char-
acteristics from the experimental results.
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Model MKR-NQ MWR
HR@1 HR@3 WHR@3 HR@5 WHR@5 HR@1 HR@3 WHR@3 HR@5 WHR@5

BERT-base 9.57 6.38 8.42 5.00 7.81 35.03 18.83 28.71 13.26 26.03
BERT-large 13.33 7.70 11.17 6.03 10.51 36.66 20.45 29.68 14.60 26.56

RoBERTa-base 11.52 6.85 9.63 5.30 8.91 13.02 8.47 10.50 6.54 9.32
RoBERTa-large 15.72 9.25 13.31 6.86 12.24 27.92 17.07 23.06 12.84 20.82
ALBERT-base 4.24 3.75 4.24 3.26 4.09 26.37 14.95 22.10 10.75 20.32
ALBERT-large 9.22 6.38 7.96 4.94 7.30 50.77 25.05 42.67 17.03 39.09

Table 1: Overall results for the MKR-NQ and MWR experiments. We multiply 100 to each value to improve
readability. Note that the lower the values the better.

BERT RoBERTa ALBERT
base large base large base large

Rsyn 37.79 36.58 17.13 46.01 11.37 76.10
Rant 41.44 41.79 13.57 30.21 33.26 62.65

Table 2: Ratios of instances that PLMs regenerate the
word in the input sentence. Rsyn and Rant are the ratios
of synonym and antonym-asking questions, respectively.

Model Encoder-fixed Fine-tune
Aval Atest Aval Atest

BERT-base (108M) 53.1 55.0 84.0 85.6
BERT-large (333M) 54.4 53.5 92.1 92.5

RoBERTa-base (124M) 71.1 70.1 87.2 87.8
RoBERTa-large (355M) 69.7 69.1 93.7 94.2

ALBERT-base (11M) 56.6 58.1 81.5 84.0
ALBERT-large (17M) 54.7 56.6 86.9 88.0

ELECTRA-small (13M) 64.1 63.9 80.2 80.9
ELECTRA-base (109M) 67.9 70.6 93.3 92.9
ELECTRA-large (334M) 69.4 72.7 95.9 95.4

Table 3: Results of the SAR experiment. Aval and
Atest are the accuracy of the validation and test dataset,
respectively. We record the average of five repetitions.

First, large models produce a higher hit rate than
their corresponding base-size models in all three
PLMs, recording an average of about 1.5 times
higher values. This implies that large-size models
are more likely to generate wrong predictions for
negated queries, even though they perform better
than small-size models in many benchmark tests.
The results suggest that evaluating a model’s per-
formance solely based on the accuracy metric is
unwise.

Second, the hit rate decreases as k increases,
which implies that the majority of PLMs’ top pre-
dictions (e.g., k=1 or k=2) are incorrect. Finally,
the weighted hit rate is much higher than the vanilla
hit rate, suggesting that PLMs generate wrong pre-
dictions with high confidence.

3.2 Results for MWR

The results of the MWR task are summarised in
Table 1. The three characteristics found in the

MKR-NQ task are also observed in the MWR task.
Also, we found the following additional patterns.

PLMs lack knowledge of antonyms. In gen-
eral, the hit rates are extremely high compared to
the MKR-NQ task in all the PLMs. Analysing their
predictions, we find that PLMs generate incorrect
predictions primarily in antonym-asking queries.
Specifically, the average HR@1 of the antonym-
asking queries is 41.9%, while that of the synonym-
asking queries is only 1.4%. A leading cause is that
PLMs simply replicate the word presented in the
input query. Table 2 shows the ratio of instances
where each PLM reproduces the same word in a
question. While the values are quite high for both
synonym-asking and antonym-asking queries, the
problem is more severe in the latter case, because
the generated predictions are definitely incorrect.
Based on our results, we conclude that PLMs’ con-
textualised representations lack lexical semantic
information. Our conclusion is in line with the
findings of Liu et al. (2019a) showing that encoder-
fixed PLMs are not suitable to deal with tasks that
require fine-grained linguistic knowledge.

Issues are more severe with nouns. We ob-
serve that the hit rates are higher when a word
in a question is a noun. Specifically, the average
HR@1 values of nouns, adjectives, and adverbs are
35.1%, 27.4%, and 11.8%, respectively. Interest-
ingly, PLMs have a high error rate when dealing
with nouns even though they are trained with a large
written English corpus, where nouns form the great-
est portion (at least 37%) of all POS tags (Hudson,
1994; Liang and Liu, 2013).

3.3 Results for SAR

As part of the comparison, we fine-tune each PLM
on the SAR task, i.e., train the entire set of pa-
rameters. The results are summarised in Table 3.
We observe a huge gap between the performance of
fine-tuned models and that of encoder-fixed models.
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In contrast to the fine-tuned models that produce
a high accuracy, encoder-fixed models fall short
of expectations, even recording almost a random
guess performance in BERT models. Also, just
as a common belief, large models’ performance is
greatly improved when fine-tuned. However, the
difference between the large and small encoder-
fixed models is insignificant, except for the ELEC-
TRA models that exhibit only a marginal improve-
ment. The two phenomenons suggest that PLMs’
outstanding performance is predicated on updat-
ing many parameters to learn syntactic associations
presented in training data (Niven and Kao, 2019;
McCoy et al., 2019), but their contextualised repre-
sentations do not carry abundant lexical meaning
information.

4 Intermediate Training on Meaning
Matching Task: IM2

4.1 Issue of PLMs

Through the previous experiments, we observe that
PLMs contain little information about negation and
especially lexical semantics. We hypothesise a
leading cause lies in the training objective of PLMs:
the language modelling (LM) objective, which is a
backbone pre-training task of almost all PLMs.

In the LM objective, words are generated based
on given contexts. The distributional hypothesis
(Harris, 1954), which assumes that semantically
related or similar words will appear in similar con-
texts (Mrkšić et al., 2016), is the underpinning as-
sumption of the LM objective (Sinha et al., 2021a).
Under this assumption, a model learns the meaning
of texts based on their correlation to others. This is
a great benefit, because a model can learn the mean-
ing of texts using only the text form, allowing unsu-
pervised training. Based on this advantage, many
unsupervised representations, such as Word2Vec
(Mikolov et al., 2013), Glove (Pennington et al.,
2014), and current PLMs, have been developed.

However, the problem is that the distributional
hypothesis has limitations in reflecting a word’s se-
mantic meanings, because words having different
or even opposite semantic meanings can appear in
similar or the same contexts. For instance, consider
the two words “boy” and “girl”. We can readily
imagine sentences in which the two words appear
in the same context, e.g., “the little boy/girl cud-
dled the teddy bear closely”. As a result, a model
can learn their common functional meanings, i.e.,
young human beings, and the vector representa-

tions would be very similar if they were trained
based on the distributional hypothesis. However,
the representation hardly captures their semantic
antonomy, e.g., gender. Similarly, negated sen-
tences have almost identical contexts to their orig-
inal forms. As a result, models cannot effectively
learn the semantic meaning of words and nega-
tion expressions, provided they leverage only the
text forms.

4.2 Meaning-Matching Task

In the light of meaning-text theory, there is a cor-
respondence between linguistic expressions (text)
and semantic contents (meaning) (Mel’čuk and
Žolkovskij, 1970; Milićević, 2006). Instead of
solely relying on the distributional hypothesis, we
propose the new meaning-matching task, which
can directly learn the correspondence. Specifi-
cally, meaning-matching is a classification that
takes a word and a sentence as input and deter-
mines whether the sentence defines the word cor-
rectly. Through this task, a model can learn both
meaning-text correspondences and correlations be-
tween a word and other words in a definition, which
is rarely found in general corpora.

For training PLMs on our new task, we apply
the intermediate-training technique (Phang et al.,
2018; Wang et al., 2019a; Liu et al., 2019a; Pruk-
sachatkun et al., 2020; Vu et al., 2020), which first
fine-tunes PLMs on an intermediate task, and then
fine-tunes the model again on target tasks. It has
been shown that training on intermediate tasks that
require high-level linguistic knowledge and infer-
ence ability could improve performance (Liu et al.,
2019a; Pruksachatkun et al., 2020). Furthermore,
it is more efficient in time and resources than pre-
training models on large corpora (e.g., BERTNOT
model (Hosseini et al., 2021)).

Dataset. We collect about 150K free-text defini-
tions that depict the meaning of English words from
WordNet (Miller, 1995) and the English Word,
Meaning, and Usage Examples dataset.3 In cases
when a word appears in both datasets, we concate-
nate the word’s definitions. Several examples of
our data are presented in Table 12 in Appendix A.
We use publicly available English datasets for con-
venience, but our approach is easily adaptable to
other languages, since most of them have their own
dictionaries.

3https://data.world/idrismunir/english-word-meaning-
and-usage-examples/
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Model MKR-NQ MWR
HR@1 HR@3 WHR@3 HR@5 WHR@5 HR@1 HR@3 WHR@3 HR@5 WHR@5

BERT-large 13.33 7.70 11.17 6.03 10.51 36.66 20.45 29.68 14.60 26.56
BERT-large (IM2) 11.41 7.01 9.86 5.57 9.14 18.92 13.07 15.78 10.30 14.14
RoBERTa-large 15.72 9.25 13.31 6.86 12.24 27.92 17.07 23.06 12.84 20.82

RoBERTa-large (IM2) 6.56 4.97 6.05 3.99 5.67 22.08 12.68 18.94 9.20 17.63

Table 4: Results of BERT-large and RoBERTa-large after applying the IM2 approach. We multiply 100 to each
value for a better readability. Note that the lower the values the better.

Model Encoder-fixed Fine-tune
∆Aval ∆Atest ∆Aval ∆Atest

BERT-base (108M) +5.5* +5.1* +3.9* +3.0*
BERT-large (333M) +3.1* +6.3* +1.0 +0.2

RoBERTa-base (124M) +4.5* +5.9* +1.3* +1.6*
RoBERTa-large (355M) +15.0* +17.1* +0.6 +0.5

ALBERT-base (11M) -2.6 +2.5 +4.7* +3.3*
ALBERT-large (17M) +1.3 +1.4 +1.2 +1.6

ELECTRA-small (13M) -4.1* -2.7* +1.1 +1.1
ELECTRA-base (109M) +3.8* +3.2* -0.2 +0.7
ELECTRA-large (334M) +14.0* +10.2* +0.4 +0.5

Table 5: PLMs’ accuracy change in the SAR task when
we apply IM2. We record the average across 5 runs. Our
models show a statistically significant difference with
p-value < 0.05 (*) compared to the baseline results in
Table 3.

Figure 2: The performance of the RoBERTa-base (IM2)
model with different k values. We repeat each experi-
ments for five times and record their average.

Training details. It is necessary to generate
false word-definition pairs to train PLMs on the
meaning-matching task. To achieve this, we use a
negative sampling technique. We investigate the
proper k in the range of 3, 5, 10, and 20. For
a hyperparameter search, the performance of the
RoBERTa-base model on the SAR task is used as a
criterion. Figure 2 illustrates the SAR performance
of the RoBERTa-base model with different k val-
ues. Intuitively, a large k value will lead the model
to a better performance by investigating more word-
meaning combinations. However, we observe that

QUERY: demand is an antonym of [MASK]

ROBERTA-LARGE ROBERTA-LARGE (IM2)
demand supply

QUERY: tomorrow is the opposite of [MASK]

BERT-LARGE BERT-LARGE (IM2)
tomorrow today

QUERY: question is an antonym of [MASK]

BERT-LARGE BERT-LARGE (IM2)
question answer

Table 6: Examples of top-1 predictions on MWR
queries. Unlike the original PLMs, our models do not
reproduce a word in a query and make quite accurate
predictions.

the model performs the best when k is 10, and the
performance decreases if k is too large. We conjec-
ture that a leading cause is that the dataset contains
many words with similar meanings, mostly derived
from the same stem. As a result, large k values can
increase the possibility of recognising the meaning
of such similar words as different.

To avoid the class-imbalance issue in a batch, we
duplicate the correct word-definition pairs k times
when we construct the training data. For training,
the AdamW optimiser is used with a learning rate
of 5e−6. We use 5% of data points for validation
and train the models for 15 epochs with a batch
size of 32. The early stopping technique is used to
prevent overfitting.

5 Experiments and Results

We conduct the same probing tasks after the inter-
mediate training on the meaning-matching task.4

5.1 SAR Results

We first focus on the SAR task. After the intermedi-
ate training, all models are fine-tuned on the SAR
task with the same hyperparameters described in
Section 3. The results are summarised in Table 5.

4Our models trained with the meaning-match task can be
downloaded from the following repositories: ELECTRA-large,
BERT-large, RoBERTa-large.
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Figure 3: Frobenius norm box plots of PLMs’ layer after
intermediate training on the meaning-matching task.

Improved lexical semantic information. We
generally observe marginal or no significant im-
provements when fine-tuning the whole parame-
ters, especially for large-size PLMs. However, with
fixed encoder, the performance is significantly im-
proved for PLMs with more than 100M parame-
ters, and the improvements are more significant for
large PLMs. Our results show that the proposed
approach assists PLMs to learn enhanced repre-
sentations with more abundant lexical semantic
information.

Catastrophic forgetting. We find that small
PLMs, such as ELECTRA-small and ALBERT
models, show no significant increase in perfor-
mance or are negatively impacted. Because all
PLMs achieve a comparable performance on the
meaning-matching task, we hypothesise that a lead-
ing cause is catastrophic forgetting (Pruksachatkun
et al., 2020; Wallat et al., 2020), where the model
forgets previous knowledge learned through pre-
training to accept new information from the inter-
mediate task. To verify this, we measure the change
of parameter values after IM2. Concretely, let Mi

and Mmm
i denote the parameter of i-th layer before

and after IM2. We calculate the average Frobenius
norm for each layer:

Fi =
1

|Mi|
|Mi −Mmm

i |F .

Figure 3 shows the boxplots of Fi for each
PLMs. We observe that the parameters of the
ELECTRA-small model, which is negatively im-
pacted, are changed considerably compared to
other PLMs having parameters more than 100M.
The results suggest that the size of PLMs is an

important property to prevent the catastrophic for-
getting issue.

5.2 MKR-NQ and MWR Results
Next, we perform the MKR-NQ and MWR tasks
after applying the IM2 method. Since our models
are not trained with the MLM objective, we replace
the encoder of original PLMs with that of the mod-
els after fine-tuning on the meaning-matching task
and reuse the MLM classifier. For the experiments,
we use BERT-large and RoBERTa-large, because
they are pre-trained based on the MLM objective,
and parameters are hardly changed after applying
the IM2 method. The results are summarised in
Table 4.

We observe substantial decreases in the hit rates
of incorrect predictions in both PLMs. For the
MWR task, we find that the issue of regenerating
a word in a given query is greatly relieved after
applying the IM2 method. Specifically, the per-
centage of such instances drops from 40.3% to
19.6% and from 33.8% to 25.2% for BERT-large
and RoBERTa-large, respectively. Several exam-
ples of the predicted results are presented in Ta-
ble 6. The results lend support to our claim that
the IM2 approach is of benefit to learning lexical
semantic information and the meaning of negated
expressions.

5.3 Fine-Tuning on the GLUE Benchmark
A critical drawback of intermediate training is that
the target task performance could be negatively im-
pacted if the intermediate task is not related to the
target task (Liu et al., 2019a; Pruksachatkun et al.,
2020). To confirm whether the issue occurs, we
compare the performance of BERT, RoBERTa, and
ELECTRA-large on 7 GLUE benchmark datasets
(Wang et al., 2018) with their IM2 counterparts.
We train the models for 10 epochs for each dataset
and apply the early stopping technique where the
patience number is set to 3. It is observed that
the training is generally finished within 8 epochs
for all the models. The batch size per GPU and
learning rates used for each dataset are described
in Table 8. Datasets with large training set (e.g.,
MNLI, QNLI, and QQP) were not sensitive to the
hyperparameters.

The results are presented in Table 7. We find no
significant difference in performance for tasks with
large datasets, such as MNLI, QNLI, QQP, and
SST2. On the contrary, tasks with small datasets,
like MRPC and RTE, are slightly improved. The
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Model COLA MNLI-m MNLI-mm QNLI RTE QQP MRPC SST2
BERT-large 59.6±1.1 85.5±0.4 85.3±0.5 91.7±0.1 65.5±2.6 89.9±0.2 80.9±2.0 92.3±0.3

BERT-large (IM2) 61.5±1.0 85.7±0.1 85.5±0.1 91.6±0.2 66.8±1.0 90.0±0.1 82.8±1.1 92.4±0.3
RoBERTa-large 62.9±1.9 90.2±0.1 90.0±0.2 94.5±0.1 81.7±1.8 90.9±0.4 87.2±1.1 95.7±0.1

RoBERTa-large (IM2) 64.8±2.1 90.3±0.1 89.9±0.1 94.4±0.1 83.1±1.4 91.0±0.0 88.2±1.5 95.4±0.3
ELECTRA-large 68.4±2.3 90.9±0.1 90.7±0.2 94.5±0.3 86.9±2.2 91.6±0.5 88.9±1.5 96.7±0.1

ELECTRA-large (IM2) 69.1±0.7 90.8±0.1 90.7±0.1 94.3±0.2 87.0±1.3 91.7±0.3 89.5±0.5 96.4±0.4

Table 7: GLUE benchmark validation performance of PLMs before and after intermediate training on the meaning-
matching task. Matthew’s correlation for the COLA and accuracy for the other tasks are used as an evaluation
metric. We report the mean and standard deviation across 5 runs. The best values for each PLM are in bold.

COLA MNLI QNLI RTE QQP MRPC SST2
b-size 16 64 64 8 64 8 64

lr 2e−5 1e−5 1e−5 2e−5 1e−5 1e−5 1e−5

Table 8: Batch size and learning rates used for the
GLUE benchmark experiments.

Model SNLI MNLI
dev w/neg dev w/neg

BERTNOT 89.0±0.1 46.0±0.4 84.3±2.3 60.9±0.3
BERT-IM2 90.3±0.2 48.00±0.5 83.1±0.3 61.8±0.6

Table 9: Accuracies on the original development dataset
(dev) and the NegNLI (w/neg) dataset for SNLI and
MNLI tasks. The results of our approach are averaged
across 5 runs. The best values are in bold.

result is consistent with Pruksachatkun et al. (2020)
and Vu et al. (2020), which showed that smaller
tasks benefit much more from the intermediate
training. Furthermore, unlike the previous studies
that observed a negative transfer with the COLA
dataset (Phang et al., 2018; Pruksachatkun et al.,
2020), the performance is improved in our ap-
proach. The result suggests that meaning-matching
is a safe intermediate task that ensures a positive
transfer with target downstream tasks.

5.4 Experiments on the NegNLI Dataset

Finally, we conduct experiments on the NegNLI
benchmark dataset (Hossain et al., 2020), where
negation plays an important role for NLI tasks. As
a baseline, we compare the reported performance
of BERTNOT (Hosseini et al., 2021), which is a
recently proposed remedy to improve PLMs’ abil-
ity to understand negation. Since Hosseini et al.
(2021) used BERT-base as a backbone model, we
also apply the IM2 method to BERT-base. The
results are summarised in Table 9.

For both SNLI and MNLI, we observe that our
approach outperforms BERTNOT in the NegNLI
datasets, while yielding a comparable performance
in the original development datasets. It is interest-

ing that our approach improves the understanding
of negation in both MKR-NQ and NegNLI tasks.
We conjecture that a leading cause is that the def-
initions of the meaning-matching dataset contain
many negation expressions, which enables a model
to learn their proposed meaning (see Table 12). The
results suggest that our proposed approach is more
efficient than BERTNOT, because the IM2 method
leverages less time and resources for training.

6 Related Work

PLMs are at the core of many success stories in
natural language processing (NLP). However, it
remains unclear to what extent PLMs understand
the syntactic and semantic properties of the human
language. A series of probing tasks have been con-
ducted on PLMs and have found them lacking or
falling short on some language properties. Among
the many findings of these probing tasks, PLMs
have been found to be insensitive to the order of
sentences when generating representations (Pham
et al., 2021; Gupta et al., 2021; Sinha et al., 2021a),
struggle to comprehend number-related represen-
tations (Wallace et al., 2019; Lin et al., 2020;
Nogueira et al., 2021), and display a lack of se-
mantic content understanding (Ravichander et al.,
2020; Elazar et al., 2021).

In addition to the above faulty behaviours, Et-
tinger (2020) and Kassner and Schütze (2020) show
that PLMs fail to comprehend negation, which is
an important property of language in many natu-
ral language understanding (NLU) tasks. Ettinger
(2020) check the ability of PLMs to understand the
meaning of negation in given contexts. In their
work, they check whether models are sensitive in
their completions of sentences that either include
negation or not. Under normal circumstances, the
completions are expected to vary in truth depend-
ing on the presence or absence of negation in given
sentences. Their results show that PLMs are insen-
sitive to the impacts of negations when completing
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sentences. Kassner and Schütze (2020) construct
the negated LAMA dataset by inserting negation
elements (e.g., “not”) in the LAMA cloze questions
(Petroni et al., 2019). They use negated and orig-
inal question pairs to query PLMs and establish
that models are equally prone to make the same
predictions for both the original and negated ques-
tions. In a well-informed setting, it is expected
that PLMs should make different predictions for
the original and negated questions. This shows that
PLMs struggle to comprehend negation.

In light of the highlighted faulty behaviours of
PLMs, especially their struggle to comprehend
negation, Hosseini et al. (2021) propose a rem-
edy to alleviate the problem. In their remedy, they
augment the language modelling objective with
an unlikelihood objective (Welleck et al., 2020)
based on negated sentences from the training cor-
pus. They use a syntactic augmentation method
to generate negated sentences. In this method, the
dependency parse of the sentences, POS tags, and
morphological information of each word are taken
as input, and the negation of sentences is done
using sets of dependency tree regular expression
patterns, such as Semgrex (Chambers et al., 2007).
During training, they replace objects in negated
sentences with [MASK] tokens and use unlikeli-
hood training to make the masked-out tokens un-
likely under the PLM distribution. To ensure that
negated sentences are factually false, they use the
corresponding positive sentences as context for the
unlikelihood prediction task.

Previous studies (e.g., Kassner and Schütze
(2020)) have mostly limited the scope of the logical
negation property only to the negation expressions
(e.g., “no” and “not”). However, the core spirit
of this property is the opposite meaning, which
is not only limited to the negation. Welleck et al.
(2020) consider negating sentences using depen-
dency tree regular expression patterns. This widens
the scope of negation, as it is not only limited to
the negation expressions “no” and “not”. However,
their approach relies on other components, such as
Semgrex, and dependency and POS parsers, which
could impact the quality of the data, hence impact
the models’ performance. In this work, we con-
sider other perturbation methods to generate the
opposite-meaning sentences to investigate whether
PLMs satisfy the logical negation property, and we
propose a remedy, called intermediate-training on
meaning-matching (IM2), which hardly employs

additional linguistic components.

7 Summary and Outlook

In this work, we investigated PLMs’ LNP. Com-
pared to previous works that only examine negation
expressions, we expanded the boundary of LNP
to lexical semantics. We confirmed that PLMs
are likely to violate LNP through extensive experi-
ments.

We hypothesise that the distributional hypothesis
is an insufficient basis for understanding the seman-
tic meaning of texts. To alleviate the issue, we pro-
posed a novel intermediate task: meaning-match-
ing. Via experiments, we verified that meaning-
matching is a stable intermediate task that substan-
tially improves PLMs’ understanding of negation
and lexical semantic information while guarantee-
ing a positive transfer with multiple downstream
tasks. Also, our approach produces a better per-
formance on the negated NLI datasets compared
to the unlikelihood training-based method, which
leverages much more time and resources. Our work
suggests that it is time to move beyond the distri-
butional hypothesis to develop logically consistent
and stable language models.
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A Appendix: Examples

Relation Negated Query Wrong Predictions

IsA Truth isn’t a [MASK]. [“fact”, “statement”, “concept”, “actuality”]
CapableOf A doctor cannot [MASK] you. [“care”]

PartOf England isn’t part of the [MASK]. [“Europe”]
HasA Apples don’t have [MASK] inside them. [“stems”, “seeds”]

UsedFor A map isn’t for [MASK]. [“navigate”, “locating”, “navigating”, “orienteering”, “information”]
MadeOf Air doesn’t have [MASK]. [“molecules”]

NotDesires Soldier does want to be [MASK]. [“die”]

Table 10: ConceptNet relations for constructing the MKR-NQ dataset and their corresponding sample data points.

Template Query Wrong Predictions

X is a synonym of Y boy is a synonym of [MASK]. [“sister”, “girl”]
X is an antonym of Y boy is an antonym of [MASK]. [“boys”, “brat”, “man”, “boy”, “lad”, . . . ]

X is another form of Y learning is another form of [MASK]. [“forgetting”, “teaching”]
X is the opposite of Y learning is the opposite of [MASK]. [“knowledge”, “erudition”, “eruditeness”, “learning”]
X is a rephrasing of Y speaker is a rephrasing of [MASK]. [“microphone”, “listener”, “addressee”]
X is different from Y speaker is different from [MASK]. [“loudspeaker”, “transducer”, “talker”, “speaker”, . . . ]

Table 11: Templates used to construct the MWR dataset and their sample data points.

Word Definition

abnormal not normal; not typical or usual or regular or conforming to a norm; out of ordinary; unusual
afebrile having no fever

barefaced with no effort to conceal

career the particular occupation for which you are trained; a job or occupation that a person does for an
extended period

cargo goods carried by a large vehicle
revise the act of rewriting something; to review, alter and amend, especially of written material

salary something that remunerates; a determined yearly amount of money paid to an employee by an employer
during a job

Table 12: Examples of word-definition pairs that we used for the meaning-matching task.
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