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Abstract

Large-scale multilingual pre-trained language
models have achieved remarkable performance
in zero-shot cross-lingual tasks. A recent
study has demonstrated the effectiveness of
self-learning-based approach on cross-lingual
transfer, where only unlabeled data of tar-
get languages are required, without any ef-
forts to annotate gold labels for target lan-
guages. However, it suffers from noisy train-
ing due to the incorrectly pseudo-labeled sam-
ples. In this work, we propose an uncertainty-
aware Cross-Lingual Transfer framework with
Pseudo-Partial-Label (CLTP)1 to maximize the
utilization of unlabeled data by reducing the
noise introduced in the training phase. To es-
timate pseudo-partial-label for each unlabeled
data, we propose a novel estimation method,
considering both prediction confidence and
the limitation to the number of similar la-
bels. Extensive experiments are conducted on
two cross-lingual tasks, including Named En-
tity Recognition (NER) and Natural Language
Inference (NLI) across 40 languages, which
shows our method can outperform the base-
lines on both high-resource and low-resource
languages, such as 6.9 on Kazakh (kk) and 5.2
Marathi (mr) for NER.

1 Introduction

The multilingual pre-trained language models such
as mBERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020) and mT5 (Xue et al., 2021) are
able to support zero-shot transfer from a source
language to target languages. Despite the remark-
able performance on direct zero-shot cross-lingual
transfer tasks, one would apply semi-supervised
learning on target languages to obtain more robust
and accurate predictions in a practical scenario. Re-
cent studies (Dong and de Melo, 2019; Xu et al.,
2021) validate the effectiveness of self-learning in

∗Corresponding author.
1We release our code at: github.com/slei109/CLTP.
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Figure 1: For an unlabeled sample with ambiguous
predictions, the standard one-hot-labeling takes the class
with the highest confidence as the pseudo-one-hot-label,
introducing the noise in the training phase due to the
wrong prediction. Instead of choosing one among the
predictions that all have low confidence, the proposed
partial-labeling method takes both ambiguous classes
as candidate labels, allowing the ground-truth label to
be presented in the training phase.

cross-lingual transfer tasks, utilizing predictions of
unlabeled data of target languages as silver labels.
Dong and de Melo (2019) iteratively grow the train-
ing set by selecting top-k percent of unlabeled data
and Xu et al. (2021) boost the performance by con-
sidering prediction confidence in the pseudo-label
selection. Although their self-learning frameworks
significantly improve the transferring performance,
it still lags far behind supervised learning. The
main reason is that the model suffers from the large
number of incorrectly pseudo-labeled samples used
in the training phase. Even though they adopt the
selection mechanism where those easy and high-
confidence predictions will be firstly added into the
training set, it cannot guarantee the accurate predic-
tion for all unlabeled data. In fact, the accuracy of
the predictions drops quickly in the later iterations
(see A.1), since most of the remaining unlabeled
data are more difficult to be classified. To avoid
the false positive pseudo labels, the most naive way
is to select pseudo-labels with extremely high con-
fidence. However, in this way, a large amount of
unlabeled data will be discarded due to strictly high
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confidence bars. However, the discarded data are
still valuable for learning a classifier, especially in
the zero-shot task. So, how to maximize the uti-
lization of the unlabeled data while minimizing the
ratio of noisy pseudo labels in the training set?

Intuitively, if we are confident that the unlabeled
data belong to a candidate class set but unable to
assign one-hot pseudo labels, it is more efficient to
present all potential labels comparing to discard-
ing them directly. Thus, we propose to present
pseudo-partial-labels for those data to the model.
As illustrated in Figure 1, for an ambiguous sam-
ple, the model believes that it belongs to one of
two categories with high confidence but has dif-
ficulty determining which category it belongs to.
In this case, the standard one-hot-labeling takes
the class with the highest confidence as the pseudo
label, increasing the ratio of noisy pseudo labels
in the training phase due to the wrong prediction.
By contrast, the proposed partial-labeling method
takes both ambiguous classes as candidate labels,
allowing the ground-truth label presented in the
training phase. In this way, the model can continue
to learn on the pseudo-partial-labeled data by dis-
ambiguating the candidate labels and finding the
latent ground-truth.

In this work, we propose an uncertainty-aware
Cross-Lingual Transfer framework with Pseudo-
Partial-Label (CLTP) that employs partial label
learning to boost cross-lingual zero-shot transfer.
Specifically, our framework utilizes any multilin-
gual pre-trained models as the backbone, and it-
eratively grows the training set by adding pre-
dictions of target language data as silver labels.
For those difficult data samples with low predic-
tion confidence, different from discarding them
directly or introducing a single-hypothetical but
incorrect pseudo-label, we associate them with
pseudo-partial-labels to better maximize the data
utilization. To estimate the pseudo-partial-label,
we propose a novel uncertainty-aware estimation
method that considers both prediction confidence
and the limitation to the number of candidate labels.
The model continues to learn on the pseudo-partial-
labeled data by disambiguating the candidate labels
and finding the latent ground-truth.

Our key contributions can be summarized as fol-
lows. 1) We design an uncertainty-aware cross-
lingual transfer framework with pseudo-partial-
labels. 2) We propose a novel pseudo-partial-label
estimation method that considers prediction confi-

dences and the limitation to the number of candi-
date classes. 3) We evaluate the proposed frame-
work on both NER and NLI tasks across 40 lan-
guages in total. Comprehensive experiments show
that our framework achieves a strong performance
of both high-resource and low-resource languages
on both tasks by a sizable margin, such as 6.9 on
Kazakh (kk), 5.2 Marathi (mr) for NER and 1% on
Arabic (ar), 0.8% on Bulgarian (bg) for NLI.

2 Related Work

Cross-Lingual Representation Learning. Pre-
trained transformer-based models have proven
effective in learning cross-lingual information.
mBERT (Devlin et al., 2019) is pre-trained on raw
Wikipedia texts in languages using masked lan-
guage modeling and next sentence prediction tasks
with no explicit cross-lingual objective. XLM-
R (Conneau et al., 2020) improves over mBERT
by training longer with more data from Common-
Crawl, and without the NSP objective. Recently,
two self-learning based methods were proposed for
cross-lingual transfer. Dong and de Melo (2019)
proposed a self-learning framework to incorporate
the predictions of mBERT for the cross-lingual text
classification task. Xu et al. (2021) improved over
the XLM-R by jointly training multiple languages
together and considering prediction confidence in
the silver labels selection process. However, these
two methods still suffer from noisy training be-
cause of the incorrect pseudo-labels.

Pseudo-Labeling. Pseudo-labeling (Lee et al.,
2013; Shi et al., 2018; Iscen et al., 2019) belongs
to the self-learning scenario, and it is often used in
semi-supervised learning to generate pseudo-labels
for unlabeled samples with a model trained on la-
beled data. Inspired by noise correction work (Yi
and Wu, 2019), Wang and Wu (2020) attempted to
update the pseudo-labels through an optimization
framework. Recently, Rizve et al. (2021) selected
pseudo-labels with both prediction uncertainty and
calibration, allowing for negative pseudo-labels
generations. However, most existing methods in-
volve learning from noisy data and cannot general-
ize to partial label learning.

Partial Label Learning. Partial label learning
(Cour et al., 2011), also called ambiguously label
learning (Chen et al., 2017) and superset label prob-
lem (Gong et al., 2017), has subsequently attracted
a lot of attention (Feng et al., 2020; Wang and
Zhang, 2020; Yao et al., 2020; Yan and Guo, 2020;
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Wang et al., 2021). It refers to the task where each
training sample is associated with a set of candidate
labels, while only one of them is assumed to be true.
Existing studies on the partial label learning can be
divided into two groups: average-based methods
and identification-based methods. The average-
based methods (Cour et al., 2011; Zhang and Yu,
2015; Zhang et al., 2016) consider each candidate
label as equally important during model training,
and average the outputs of all candidate labels for
predictions. The identification-based methods aim
at directly maximizing the output of exactly one
candidate label, chosen as the truth label. Yan and
Guo (2020) studied the utilization of batch label
correction; Yao et al. (2020) managed to improve
the performance by combining different networks.
Wen et al. (2021) proposed the Leveraged Weighted
(LW) loss, considering the trade-off between losses
on partial labels and non-partial ones. In this work,
we adopt the idea of LW loss function for partial
label learning due to its effectiveness and general-
ization.

Uncertainty Estimation. Recently, estimating
the uncertainty of deep learning models has at-
tracted increasing attention and have been validated
the effectiveness in NLP tasks (Zhang et al., 2019;
He et al., 2020). There are two main uncertainty
types in Bayesian modeling (Kendall and Gal,
2017; Depeweg et al., 2018): epistemic uncertainty
(EU) that captures the model uncertainty itself,
which can be explained with more data; aleatoric
uncertainty (AU) that captures the intrinsic data
uncertainty regardless of models. Another group
of uncertainty estimation methods are based on be-
lief/evidence theory through Fuzzy Logic (De Silva,
2018), Dempster-Shafer Theory (Sentz et al., 2002),
and Subjective Logic (Sensoy et al., 2018). Belief
theorists focus on the reasoning of the inherent
uncertainty in information resulting from unreli-
able, incomplete, deceptive, and/or conflicting evi-
dences. Subjective Logic considers uncertainty in
subjective opinions in terms of vacuity (i.e., lack
of evidence) (Sensoy et al., 2018), dissonance (i.e.,
conflicting evidence), and consonance (i.e., com-
posite subsets of state values) (Shi et al., 2020).

Summary Current works on self-learning based
cross-lingual transfer methods suffer from noisy
training and poor generalization due to the incor-
rectly pseudo-labeled samples. In this work, we
adopt the idea of partial label learning to maximize
unlabeled data utilization while reducing the ef-

fect of ambiguously pseudo-label estimations in
the self-learning framework. To the best of our
knowledge, it is the first time pseudo-partial-label
employed in the self-learning framework for the
cross-lingual transfer and estimating the pseudo-
partial-label with the prediction uncertainty.

3 Model

In this section, we propose a partial-label based
self-learning framework to boost cross-lingual
transfer performance. The overview of the pro-
posed framework is presented in Section 3.2. The
technical details for the uncertainty-aware pseudo-
partial-label estimation and partial label learning
are described in Sections 3.3 and 3.4, respectively.

3.1 Preliminary

Partial label learning refers to the task where each
training sample is associated with a set of candi-
date labels, while only one of them is assumed to
be true. The goal is to find the latent ground-truth
for the input through observing the partial label
set. Formally, given a non-empty feature space (in-
put space) X ⊂ Rd and a supervised label space
Y∗ = [C] := {1, . . . , C}, where C is the number
of classes and the partial label space is denoted as
Y := {y|y ⊂ Y∗}. For the rest of this paper, let
y(i) = [y

(i)
1 , . . . , y

(i)
C ] ⊆ {0, 1}C be the binary vec-

tor representing the partial-labels of the instance
i , where y(i)c = 1 if class c is selected as the can-
didate class and y(i)c = 0 if c is not selected. For
convenience, we use k-hot partial labels to repre-
sent the number of candidate classes in the partial
label. For example, the partial label in Figure 1 is a
two-hot partial label and has two candidate classes.

3.2 Partial-Label based Self-Learning
Framework

Our approach aims to improve the overall perfor-
mance by maximizing the utilization of unlabeled
data while reducing the noise introduced in the
training phase. This can be accomplished by apply-
ing partial label learning on those highly uncertain
predictions. The intuition is that if the data appears
ambiguous to be classified, it will be more effec-
tive to present potential labels instead of discarding
them directly or introducing a single-hypothetical
but incorrect pseudo-label in the training phase.

The complete training procedure of our proposed
task-agnostic framework for cross-lingual transfer
is shown in Figure 2. In our proposed CLTP frame-
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Figure 2: Illustration of the uncertainty-aware cross-
lingual transfer framework with pseudo-partial-labels.

work, we first train a pre-trained multilingual model
on the gold labels of the source language. Then the
model makes predictions on the unlabeled dataset
of the target languages. The proposed uncertainty-
aware estimation component generates the pseudo-
partial-labels based on the model predictions and
their corresponding uncertainty estimations. After
that, we adopt a selection mechanism to incorpo-
rate the unlabeled data with high confidence scores
into the training phase.

The whole training process for our method is
described in Algorithm 1, where Du denotes the
set of tuples combining unlabeled data with corre-
sponding pseudo-partial-labels and prediction un-
certainty γdiss. First, a model f(·) is trained on
the gold labels of the source language in the first
iteration. Once trained, the model can make predic-
tions and estimate the pseudo-partial-labels for all
unlabeled data of target languages in Du based on
the method introduced in Section 3.3. Note that the
inputs of different languages are mixed together.
Next, a subset of the pseudo-partial-labels Su is
selected with the uncertainty estimation. After se-
lection, the model goes back to the training phase
using the selected pseudo-partial-labels as well as
the gold labels. We repeat the process iteratively
until max iteration is reached. The early stop cri-
teria are implemented on the dev set of the source
language only since the gold labels are not avail-
able for the other languages. Note that the model
is trained only on the one-hot pseudo-label in the
first three iterations to accelerate the convergence.

3.3 Pseudo-Partial-Label Estimation

The key point of pseudo-partial-label estimation
is to guarantee that the ground-truth class of an
instance resides in the candidate label set, which is
the basic definition for partially supervised learning.
Intuitively, if the model classifies an instance with
lower confidence, the instance may be hard to dis-

Algorithm 1 Self-Learning on Cross-Lingual Tasks

Input: A gold label datasetDL of source language,
an unlabeled dataset of target languages U .

1: repeat
2: Training f(·) on DL with LEV I

3: for each target language do
4: Du ← ∅
5: for xu in U do
6: (ỹ, γdiss)← fθ(xu)
7: Du ← Du ∪ {(xu, ỹ, γdiss)}
8: end for
9: Su ← argmin

S⊂Du,|S|≤N

∑
(xu,γdiss)∈S γdiss

10: U ← U \ Su
11: Us ← Us ∪ Su
12: DL ← DL ∪ Us
13: end for
14: until max iteration arrives.
15: Training f(·) on DL with Lφ until converge

tinguish from several classes or cannot be identified
due to the lack of knowledge. Hence, we consider
prediction confidence in the pseudo-partial-label
estimation to better determine the most uncertain
classes for each ambiguous instance.

We define the prediction uncertainty of the
instance x belonging to the partial-label y as
the partial-label uncertainty, which is denoted as
γdiss(x, y). The decomposed entropy dissonance
proposed by Shi et al. (2020) is adapted to calcu-
late the partial-label uncertainty, as it can indicate
the contradiction among certain classes. Specifi-
cally, dissonance is an evidence-based uncertainty
(Sensoy et al., 2018) where the softmax probability
is replaced by Dirichlet distribution, and each pre-
dicted logit for class c is regarded as the evidence
ec. The expected probability pc for class c under
Dirichlet distribution is defined as follows.

pc =
ec + 1

S
,with S =

∑

c

ec + C (1)

where S is referred to as the Dirichlet strength. We
adopt the cross-entropy loss as the training loss
LEVI, and its Bayes risk under the Dirichlet distri-
bution can be defined as

LEVI =

∫ [∑

c

−yclog(pc)
] 1

Beta(α)

∏

c

pαc−1
c dpc

=
∑

c

−yc
∫

log(pc)
1

Beta(α)

∏

c

pαc−1
c dpc

=
∑

c

yc(ψ(S)− ψ(ec + 1))

(2)
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where Beta(α) is the multinomial beta func-
tion (Kotz et al., 2004) and ψ(·) is the digamma
function. α is the parameters of the Dirichlet den-
sity on the predictors. As shown in Equation (2),
training the model with LEVI is to make the posi-
tive evidence close to the total evidence when the
ground-truth is positive. If there are conflicts of
strong evidence among certain classes, dissonance
will become high to indicate the contradiction. The
following describes the dissonance for each in-
stance:

Bal(bj , bk) =




1− |bj−bk|

bj+bk
, if bjbk ̸= 0

0, elsewise
(3)

diss =
∑

c

bc
∑

c′ ̸=c bc′Bal(bc, bc′)∑
c′ ̸=c bc′

(4)

where bc = ec/S represents the belief mass for
class c. Recall that each predicted logit for class c
is regarded as the evidence ec.

In the pseudo-partial-label estimation, the belief
mass for the instance belongs to a candidate class
set can be calculated via Binomial Comultiplication
operator in subjective logic, which is denoted as
’∨’. Let bc and bh be the belief mass for class c
and class h, respectively. The belief mass for the
instance belongs to class c or class h is defined as:

bc∨h = bc + bh − bcbh (5)

Thus, we can calculate the partial-label uncertainty
γdiss(x, y) via Equation (4) and (5).

However, if we simply estimate the pseudo-
partial-label only based on the lowest partial-label
uncertainty, it will lead to an invalid partial label
like (1, 1, 1, 1), as containing all classes in the can-
didate set must have the highest confidence. Fur-
thermore, in the partial label learning, the accuracy
of the model decreases with the increased num-
ber of similar labels to the true label (Lv et al.,
2020; Wen et al., 2021) because it increases the
learning difficulty. To remedy this problem, we
leverage a penalty ratio to balance the prediction
uncertainty and the number of candidate classes.
Specifically, from Figure.3, we observe that as the
number of candidate classes increases, the improve-
ment in prediction recall tends to decrease. That
means containing too many candidate classes in
the pseudo-partial-label has limited improvement
to the model. Only the most confusing candidate
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Figure 3: Recall of k-hot pseudo-partial-labels in the
last iteration with various uncertainty methods.

classes are important for those ambiguous samples.
Motivated by this, we employ a penalty ratio to
punish a larger number of candidate classes. Thus,
a pseudo-partial-label ỹ is obtained as follows:

ỹ = argmin
y⊂Y

((λ∥y∥1−1 + τ)τ∥y∥1−2γdiss(x, y))

(6)

where Y is the collection of all subsets in the par-
tial label space and ||y||1 calculates the number of
candidate classes in the partial label y. λ and τ are
penalty ratios to punish a larger number of candi-
date classes, which determine the penalty strength
and the preference for candidate class number, re-
spectively.

3.4 Learning with Pseudo-Partial-Labels
The target of partial-label learning is to learn a clas-
sifier with access to the candidate label set (partial
label set) by disambiguating the candidate labels
and finding the latent ground-truth for the input
during the training phase. We adopt Leveraged
Weighted (LW) loss function (Wen et al., 2021) for
partial label learning due to its effectiveness and
generalization. The LW loss is a multiclass loss
and searches for the latent ground-truth by assign-
ing more weights to the loss of classes more likely
to be the true and lessening weights to the confus-
ing ones. To be specific, the LW loss function is
defined as:

Lφ(ỹ, f(x)) =
∑

ỹc=1

ωcφ(fc(x)) + β
∑

ỹc=0

ωcφ(−fc(x)),

(7)

where φ(·) : R → R+ denotes a binary loss and
we adopt the Sigmoid loss function. We use param-
eter β to distinguish the effects between candidate
classes and non-candidate ones. fc(x) represents
the predicted logit of instance x for class c, while
wc is the weighting parameters to assign weights
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to the loss of classes. Since the key point is to dis-
ambiguate the candidate classes, the model is sup-
posed to assign more weights to the loss of classes
that are more likely to be the ground-truth. Thus,
instead of assigning fixed values, the weighting pa-
rameters are updated by normalizing the prediction
score through an iterative learning process. Specifi-
cally, at the t-th learning step, w(t)

c is calculated as
follows:

ω(t)
c =





exp(f
(t)
c (x))∑

ỹc=1 exp(f
(t)
c (x))

, if ỹc = 1

exp(f
(t)
c (x))∑

ỹc=1 exp(f
(t)
c (x))

, if ỹc = 0

(8)

Note that w(t)
c varies with sample instances. In this

way, as the training epochs grow, the model focuses
on the true class and rules out the untrue classes by
penalizing large value of φ(−fc(x)).

4 Experiments

4.1 Evaluation Tasks & Datasets

NLI XNLI (Conneau et al., 2018) is an evaluation
benchmark for the cross-lingual NLI task across 15
languages. Given a sentence pair of premise and
hypothesis, the task is to classify their relationship
as “neutral”, “entailment”, or “contradiction”.

NER Wikiann (Pan et al., 2017) is an evaluation
benchmark for the cross-lingual NER task covering
40 languages. There are three entity types: “LOC”,
“PER” and “ORG”, and each token is tagged in the
BIO2 format with 7 label types.

We follow the same train/dev/test split and same
evaluation protocol as XTREME (Hu et al., 2020).
English is the source language with gold labels
for both datasets, and we use the dev set of target
languages as the source of unlabeled data. Gold
labels of target languages cannot be accessed in the
self-learning process.

4.2 Implementation Details

Model Details. We keep the same model ar-
chitecture throughout our experiments: XLM-
RLarge (Conneau et al., 2020) is used as the multi-
lingual pre-trained model to encode input sequence,
followed by a linear layer to classify on the hid-
den state, which is the same model setting from
XTREME. We set the penalty ratios λ = 4 and
τ = 10 for all experiments. For LW loss, we set
β = 2 as suggested by Wen et al. (2021).

Training Details. For both NER and NLI tasks,
we use the AdamW (Loshchilov and Hutter, 2018)
optimizer with a linear learning rate scheduler for
all experiments. We use a batch size of 32 and
a max sequence length of 128. We first train the
model by 10 epochs on English training set with
gold labels for the NER task and 5 epochs for the
NLI task with a 2× 10−5 learning rate. In the self-
learning process, we keep the same learning rate
for the NER task and set a 5× 10−6 learning rate
to train the model for the NLI task. The model is
trained for 3 epochs in each iteration. Experiments
are run on a single 24GB NVIDIA 3090 GPU.

4.3 Baselines.
We compare our CLTP framework with three dif-
ferent settings for the baselines: BL-Direct is
equivalent to Hu et al. (2020), which is the di-
rect zero-shot transfer without utilizing unlabeled
data of target languages. BL-Single takes silver
labels of only one target language as the training
set in the self-learning process and simply uses
model predictions as silver labels without consid-
ering prediction confidences. BL-Joint is similar
to BL-Single but instead takes silver labels of all
target languages jointly. We also compare our
method with uncertainty-aware self-learning frame-
work (Xu et al., 2021): SL-LEU trains the model
with silver labels and selects them by considering
Language Heteroscedastic Uncertainty (LEU) and
SL-EVI takes Evidential Uncertainty (EVI) to esti-
mate the prediction uncertainty, following the same
training settings as Xu et al. (2021) utilized.

4.4 Comparisons
The results of NER task and NLI task are shown
in Tables 1 and 2, respectively. Self-learning based
methods outperform the direct zero-shot transfer
with XLM-Rlarge by a large margin in NER, achiev-
ing 11.1 gain in F1 on average. The trend of im-
provement can also be observed in NLI, validating
the self-learning strategy on cross-lingual trans-
fer tasks. Furthermore, our method surpasses SL-
LEU on NER by 2.2 in F1 on average, demonstrat-
ing the effectiveness of utilizing pseudo-partial-
label for those ambiguous data. Remarkably, our
method achieves a sizeable gain, 5+ in F1 on both
low-resource languages like Malayalam (ml) and
Marathi (mr), and high-resource languages such as
Russian (ru) and Tegulu (te). This shows that our
method can further boost the model performance
of the self-learning framework. As shown in Ta-
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en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv
mBERT 85.2 77.4 41.1 77.0 70.0 78.0 72.5 77.4 75.4 66.3 46.2 77.2 79.6 56.6 65.0 76.4 53.5 81.5 29 66.4

XLM 82.6 74.9 44.8 76.7 70.0 78.1 73.5 74.8 74.8 62.3 49.2 79.6 78.5 57.7 66.1 76.5 53.1 80.7 23.6 63.0
MMTE 77.9 74.9 41.8 75.1 64.9 71.9 68.3 71.8 74.9 62.6 45.6 75.2 73.9 54.2 66.2 73.8 47.9 74.1 31.2 63.9
VECO 83.8 77.5 48.2 83.9 77.2 79.4 79.3 75.4 80.4 68.3 68.2 80.6 80.1 55.0 71.0 80.9 52.9 81.7 19.4 63.2

BL-Direct* 84.0 79.3 45.5 81.4 77.4 78.8 78.9 71.4 79.0 61.0 52.0 78.7 79.3 54.6 70.8 79.4 52.9 81.0 25.0 62.6
BL-Single* 84.0 78.9 56.9 84.5 79.3 80.9 81.6 72.9 80.7 63.2 54.8 80.5 81.9 63.0 73.9 81.7 54.3 82.1 36.5 60.9
BL-Joint* 84.7 79.5 56.7 84.9 80.5 80.5 81.5 73.3 81.2 64.0 55.1 81.2 82.1 62.6 76.6 81.6 54.5 83.0 37.2 63.5
SL-EVI 85.0 84.3 69.2 85.5 78.9 82.4 82.4 79.0 85.0 76.7 73.8 84.6 81.5 57.3 79.4 83.6 58.5 83.9 47.7 70.0
SL-LEU 84.4 83.3 62.3 86.9 81.5 83.4 83.9 82.6 85.3 75.1 82.7 85.3 84.3 67.5 77.7 84.1 57.2 84.4 44.9 73.6

Ours 85.0 86.0 71.7 85.5 83.4 83.7 85.1 86.5 86.5 75.6 83.1 85.7 84.4 68.5 80.8 87.3 57.2 84.9 47.4 71.1
ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh avg

mBERT 64.6 45.8 59.6 52.3 58.2 72.7 45.2 81.8 80.8 64.0 67.5 50.7 48.5 3.6 71.7 71.8 36.9 71.8 44.9 42.7 62.2
XLM 67.7 57.2 26.3 59.4 62.4 69.6 47.6 81.2 77.9 63.5 68.4 53.6 49.6 0.3 78.6 71.0 43.0 70.1 26.5 32.4 61.2

MMTE 60.9 43.9 58.2 44.8 58.5 68.3 42.9 74.8 72.9 58.2 66.3 48.1 46.9 3.9 64.1 61.9 37.2 68.1 32.1 28.9 58.3
VECO 67.1 51.2 59.9 63.4 65.0 70.0 56.1 83.4 83.1 71.3 70.5 60.5 56.2 1.4 71.3 80.4 69.3 76.0 37.4 29.1 65.7

BL-Direct* 69.3 51.9 57.9 63.6 62.4 69.6 60.1 83.7 80.9 70.2 69.2 58.2 51.3 1.8 71.0 76.7 55.8 76.2 41.4 33.0 64.4
BL-Single* 73.6 52.5 63.6 66.0 66.8 62.6 54.3 84.8 82.6 72.9 67.7 63.2 57.2 3.1 74.7 81.8 69.9 80.9 46.2 43.6 67.5
BL-Joint* 73.6 53.4 63.6 67.5 67.9 64.3 53.0 84.8 83.2 73.5 69.7 63.1 57.4 3.6 76.1 81.8 71.5 81.4 54.8 43.7 68.3
SL-EVI 74.2 60.7 63.3 61.8 75.0 73.9 67.2 86.4 84.0 80.3 73.1 64.7 63.2 8.0 81.4 81.6 74.6 84.1 49.6 54.0 72.3
SL-LEU 74.7 56.6 69.4 73.9 74.7 73.6 68.0 86.1 86.0 75.9 71.5 68.1 63.9 6.8 79.4 88.0 84.2 85.0 45.9 53.0 73.3

Ours 81.6 65.0 71.7 78.8 80.2 73.5 71.6 87.5 85.9 81.8 72.2 71.4 69.1 7.4 81.0 87.1 86.3 86.0 48.8 53.0 75.5

Table 1: NER Results in F1 scores for 40 languages. *Results are reported by Xu et al. (2021).

ble 2, our model outperforms the baselines on NLI
across almost all 15 test languages. Comparing to
the direct zero-shot, our method achieves an im-
provement of 2.4% on average. Our method also
gives an average increase of 1.2% and 0.5% on
SL-EVI and SL-LEU, respectively. Specifically,
we observe over 1% gain for Arabic (ar), Bulgarian
(bg), Greek (el), and Turkish (tr) when we compare
CLTP framework with the best performance of SL.

4.5 Result Analyses

To better understand the key components and set-
tings of CLTP framework, we perform some analy-
ses on the NER task.

Uncertainty Estimation. To assess different
uncertainty estimations for pseudo-partial-label es-
timation, we evaluate the recall score of the pseudo-
partial-labels in the last iteration, such that recall
is high when the pseudo-partial-label contains the
true class. Here, we adopt the two-hot partial la-
bel setting where the two classes with the highest
prediction confidence were set as candidate classes,
as it is the best setting to directly measure the con-
tradiction among certain classes. We compare ev-
idential uncertainty with two commonly used un-
certainty metrics for classification (Depeweg et al.,
2018; Dong and de Melo, 2019; Xiao and Wang,

2019): the max probability of label classes (i.e.,
max_prob) and the entropy of the class probability
distribution (i.e., entropy). As shown in Figure 4,
dissonance achieves the best performance among
all uncertainty estimations on average, demonstrat-
ing its capability of ambiguous class selection.

Figure 4: Recall of different uncertainty estimations in
pseudo-partial-label estimation (two-hot partial-labels).

Hyperparameter Analyses. We introduce new
hyperparameters λ and τ to control the penalty
ratio. Table 3 shows the evaluation accuracy in
different penalty ratio settings. We find that us-
ing λ = 4, τ = 10 leads to the best performance,
and further reduction/increase in the ratio lead to
performance degradation. The penalty ratio does
affect the performance of the model as it adjusts
the proportion of various pseudo-partial-labels. In
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en ar bg de el es fr hi ru sw th tr ur vi zh avg
mBERT 80.8 64.3 68 70 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4

XLM 82.8 66.0 71.9 72.7 70.4 75.5 74.3 62.5 69.9 58.1 65.5 66.4 59.8 70.7 70.2 69.1
MMTE 79.6 64.9 70.4 68.2 67.3 71.6 69.5 63.5 66.2 61.9 66.2 63.6 60.0 69.7 69.2 67.5
VECO 88.2 79.2 83.1 82.9 81.2 84.2 82.8 76.2 80.3 74.3 77.0 78.4 71.3 80.4 79.1 79.9

BL-Direct* 88.5 78.0 82.5 81.8 80.5 83.8 82.9 74.8 78.7 67.5 76.7 78.1 71.5 79.4 78.2 78.9
BL-Single* 88.5 77.6 82.4 82.0 79.6 82.5 82.1 76.1 79.1 69.1 76.6 77.9 71.5 77.9 78.2 78.7
BL-Joint* 88.2 78.8 82.0 82.2 80.4 83.1 82.2 76.1 79.6 68.8 76.2 78.0 71.4 79.1 78.5 79.0
SL-EVI 88.1 79.6 83.3 82.9 81.6 83.7 81.7 77.5 80.1 72.3 78.2 78.9 74.1 79.7 79.8 80.1
SL-LEU 88.5 79.5 83.7 83.4 82.4 84.1 83.8 78.3 80.9 73.2 79.4 79.1 74.4 80.4 81.1 80.8

Our 88.6 80.6 84.5 83.8 83.5 84.9 83.9 78.2 81.4 73.5 79.7 80.2 74.4 80.8 81.3 81.3

Table 2: XNLI accuracy score for English (en), French (fr), Spanish (es), German (de), Greek (el), Bulgarian (bg),
Russian (ru), Turkish (tr), Arabic (ar), Vietnamese (vi), Thai (th), Chinese (zh), Hindi (hi), Swahili (sw) and Urdu
(ur).*Results are reported by Xu et al. (2021).

Settings average (F1)
λ = 2, τ = 10 74.6
λ = 4, τ = 5 72.9
λ = 4, τ = 10 75.5
λ = 8, τ = 10 73.4

Table 3: Hyperparameter analyses to the penalty ratio on
the NER task. Different settings adjust the proportion
of pseudo-partial-labels.

specific, when τ stays the same, as λ increases, the
proportion of partial-labels decreases. It indicates
that most pseudo-labels are one-hot labels that are
similar to the self-learning framework proposed
by Xu et al. (2021). Similarly, if we keep λ con-
stant, reducing τ will lead to not only a higher pro-
portion of partial-labels over the unlabeled set but
also more candidate classes in each partial-label.
We observe an over 2.6 gain when we compare
λ = 4, τ = 10 setting with λ = 4, τ = 5 setting,
indicating that if we ignore the limitation on the
number of candidate classes, the model will suffer
from invalid partial labels like (1, 1, 1, 1) because
it cannot provide any information when all classes
are set as candidates.

Effect of pseudo-partial-label length. To an-
alyze the effect of different number of candidate
classes in pseudo-partial-label estimation, we eval-
uate the model trained with various manually de-
signed pseudo-partial-labels. Specifically, we se-
lect the top classes with the prediction confidence
to set pseudo-partial-labels. The results are shown
in Table 4. When we utilize the manually set partial-
labels, we observe an accuracy drop of 0.3, 2.4
and 3.0 in two-hot partial labels, three-hot par-
tial labels and four-hot partial labels, respectively.
This demonstrates the effectiveness of our pseudo-
partial-label estimation scheme. In addition, the
model trained with two-hot partial labels outper-

Settings avg
self-learning + no partial labels 73.3
self-learning + two-hot partial labels 75.2
self-learning + three-hot partial labels 73.1
self-learning + four-hot partial labels 72.5
CLTP (ours) 75.5

Table 4: Effect of pseudo-partial-label length on the
NER task. Note that two-hot partial labels indicates
that the pseudo-partial-labels are directly estimated by
selecting the two classes with the max prediction proba-
bility and no partial-labels is equivalent to SL.

forms the baselines. By contrast, three-hot partial
labels and four-hot partial labels do not surpass
the baselines, partially due to the difficulty of dis-
ambiguating the candidate classes. The trend of im-
proving performance with fewer candidate classes
is consistent with the phenomenon in partial label
learning (Lv et al., 2020; Wen et al., 2021).

5 Conclusion

In this work, we propose an uncertainty-aware
pseudo-partial-label framework for cross-lingual
transfer. With the auxiliary of pseudo-partial-labels,
CLTP framework improves the model by reduc-
ing the noise introduced in training phase while
maximizing unlabeled data utilization. Moreover,
we propose a novel pseudo-partial-label estimation
method that considers both prediction confidence
and the limitation to the number of similar classes.
The proposed framework is evaluated on two tasks
of NER and NLI and improves the performance
of the pre-trained model by a solid margin (11.1
F1 for NER and 2.4% accuracy score for NLI on
average). Compared to other self-learning based
methods, our framework surpasses the baselines
on both high-resource and low-resource languages,
such as 6.9 on Kazakh and 5.2 Marathi for NER.
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A Appendix

A.1 Relationship between pseudo-label
accuracy and the model performance

Figure 5: Existing self-learning method for cross-
lingual transfer suffers from noisy training due to the
incorrectly pseudo-labeled samples. Xu et al. (2021)
select top-k percent of unlabeled data with uncertainty
score. The entire process keeps iterating until there is
no remaining unlabeled data. As the precision of the
pseudo-labels decreases, the performance improvement
of the model decreases.

We empirically analyze the relationship between
pseudo-label accuracy and model performance.
From Figure 5, we find that F1 score of newly se-
lected pseudo-labels in each iteration drops quickly,
especially in the later 5 iterations. Furthermore, as
the precision of the pseudo-labels decreases, the
performance improvement of the model decreases.

A.2 ISO Language
Table 5 introduces the ISO 639-1 Code of target
languages in NER task.

ISO 639-1 Code Name of Language
en English
af Afrikaans
ar Arabic
bg Bulgarian
bn Bengali
de German
el Greek, Modern (1453-)
es Spanish; Castilian
et Estonian
eu Basque
fa Persian
fi Finnish
fr French
he Hebrew
hi Hindi
hu Hungarian
id Indonesian
it Italian
ja Japanese
jv Javanese
ka Georgian
kk Kazakh
ko Korean
ml Malayalam
mr Marathi
ms Malay
my Burmese
nl Dutch; Flemish
pt Portuguese
ru Russian
sw Swahili
ta Tamil
te Telugu
th Thai
tl Tagalog
tr Turkish
ur Urdu
vi Vietnamese
yo Yoruba
zh Chinese

Table 5: ISO 639-1 Code for Representation of Names
of Languages
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