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Abstract
Referring resolution is the task of identify-
ing the referent of a natural language expres-
sion, for example “the woman behind the other
woman getting a massage”. In this paper we
investigate which are the kinds of referring ex-
pressions on which current transformer based
models fail. Motivated by this analysis we
identify the weakening of the spatial natural
constraints as one of its causes and propose
a model that aims to restore it. We evaluate
our proposed model on different datasets for
the task showing improved performance on
the most challenging kinds of referring expres-
sions. Finally we present a thorough analysis
of the kinds errors that are improved by the new
model and those that are not and remain future
challenges for the task.

1 Introduction

In the context of vision and language modelling,
reference resolution can be understood as the task
of identifying a region in an image referred by a nat-
ural language expression. This task is also known
as referring expression comprehension (REC). It
is closely related to the visual grounding problem
in the sense that in both cases the goal is to iden-
tify the parts of the image that support or “ground”
a given linguistic expression into the real world.
The difference lies in that the referred region in
REC is expected to be unique, while there may
be multiple support regions in the case of visual
grounding, e.g. the expression “a person” might re-
fer to multiple instances of the person class, all of
which can be seen as grounding candidates for the
natural language phrase. Also note that, in the case
of REC, the referred region may correspond to an
actual physical object (or groups of objects) or to
an abstract visual element that can be perceptually
grouped into a meaningful entity, e.g. “the patch
of grass at the bottom”. REC aims at identifying
a specific object or region unambiguously (Mao
et al., 2016; Hu et al., 2016; Qiao et al., 2020).

Although the use of natural language queries to
guide localization (Bansal et al., 2018; Rahman
et al., 2018) has been explored in the computer vi-
sion literature in the past, it has mainly focused
on the use of rather simple expressions involv-
ing class names and intrinsic visual attributes (e.g.
colors). Humans use more complex expressions
that include spatial and order relations, relative at-
tributes, meronimy, etc. Compared to other recog-
nition problems, REC goes beyond simple visual-
linguistic matching and requires some (primitive,
implicit) form of visual-linguistic reasoning, e.g.
an expression like “the person to the left of the
tree” requires that in order to locate the target ob-
ject (“the person”) one has to look at its relative
position (“to the left of”) with respect to a different
element in the scene (“the tree”). REC and visual
grounding are particularly relevant to other visual-
linguistic problems like visual question answering
(Antol et al., 2015) and visual dialog (Das et al.,
2017a; De Vries et al., 2017), where being able to
link different linguistic elements (words, phrases
and syntactic relations) in a sentence to actual re-
gions in an image helps establishing a “common
ground” between the agents that take part in the
communication process (Mazuecos et al., 2021).

Our research question is what kinds of errors do
reference resolution models make and what can we
learn from them?. This paper makes the following
contributions1.

• We propose a method for classifying referring
expressions into linguistically motivated groups
that allow for a disaggregated analysis.

• We identify expressions that define an spatial re-
lation between two or more regions of the image
as the main source of errors.

• We compare two strategies for accounting for the
spatial dimension that improve on the state of the

1Code and models available at https://github.
com/jadrs/rec
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art for REC on different datasets.

• We perform a systematic analysis of the errors
and the strengths of the best proposed model.

The paper is structured as follows. In Section 2
we discuss related work from both psycholinguis-
tics and machine learning, Section 3 digs into the
particularities of the REC and visual grounding
problems and analyzes the types of errors made
by current models for the REC task. In Section 4
we propose a model that takes the observed errors
into account and Section 5 evaluates the new model
on different datasets. Section 6 presents a meticu-
lous analysis of the errors that are improved by the
new model and those that are not and remain future
challenges.

2 Related work

The automatic processing of referring expressions
(REs) has been studied for a long time (Winograd,
1972). Back then their semantic representation was
a logical form and REs were classified into intrinsic
(e.g. “the big red car”) and relational (e.g. “the car
by the pedestrian”) corresponding to unary and
binary logical predicates, respectively (Dale and
Haddock, 1991).

In the psycholinguistics community, reference
were studied as a collaborative process and focused
on the construction of shared knowledge (Clark and
Wilkes-Gibbs, 1986; Clark, 1996) through the use
of language. Hawkins (1978) proposed a theory
in which an speaker 1) introduces a referent, 2)
collaborates with the hearer to locate the referred
object in some shared set of objects and 3) refers to
the totality of objects that satisfy the RE. Viewed
as a collaborative process, reference becomes a
fundamental phenomena underlying all kinds of
grounded dialogs (Dale and Reiter, 1995; de Vries
et al., 2017).

REs are a linguistically rich constructs. Phe-
nomena like overspecification, that is when an RE
has more attributes than actually needed, has been
shown to help identification when the redundant
attribute is easy to recognize (Paraboni et al., 2017).
Vagueness and the use of gradable attributes em-
phasize the context dependance when using REs
(Quirk et al., 1980; DeVault and Stone, 2004);
something called “big” in one scene may be seen
as “small” in another. REs with syntactic ambi-
guities were also shown to be used in human di-
alogs (Chantree et al., 2005; Khan et al., 2008).

Viethen and Dale (2008) showed that even with
fairly simple scenes human speakers frequently use
relational descriptions to identify objects.

In this paper we adapt the classification of refer-
ring expressions (REs) proposed in (Krahmer and
van Deemter, 2012) to the domain of 2D photos
of the world. Krahmer and van Deemter typifica-
tion includes the types: instrinsic (that they call
unary predicates), relational (that they call binary
predicates), set (that refer to a group of objects),
and gradable (that we described above). Intrinsic
and relational REs differ in the number of objects
that are involved in the description. Intrinsic REs
only involve the referent while relational REs use
one or more additional objects to identify the tar-
get. Referring expressions that identify sets use
properties that are shared by the elements in the set.
For example the referents of “the white cats” are
all cats and white. In general references to set use
plural definite descriptions to identify them. The
datasets used in this paper are supposed to refer
to a single referent and not to a set of referents so
we restrict our classification in this paper to singu-
lar REs. Finally, Krahmer and van Deemter last
type corresponds to gradable REs. REs referring
to objects in 2D photos of the world frequently use
spatial properties that are gradable. For example,
the attribute to the right of is gradable in that “the
empty sky to the right of the statue” might refer to
the sky touching the statue on the right or the sky
further to the right. In this paper we restrict our
analysis of gradable properties to spatial properties.

We agree with Cirik et al. (2018) that careful
analysis of datasets and proposed models is cru-
cial to make progress in REC. They performed
an analysis of REC models by modifying or com-
pletely removing the REs and showed that the mod-
els could exploit biases on particular datasets to
achieve competitive performance. In our work we
do a disaggregated performance analysis and metic-
ulous error analysis and not only rely on automatic
performance metrics.

The introduction of the transformer architecture
by Vaswani et al. (2017) enabled interesting and
novel ways of fusing visual and linguistic informa-
tion (Tan and Bansal, 2019; Lu et al., 2019, 2020).
Besides differences on the way both modalities
are merged (single- vs two-branch models, cross-
modal attention layer design, etc.), these models
also differ on the tasks they are (pre-)trained for,
ranging from masked token prediction and text-
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image matching (Li et al., 2020a; Sun et al., 2019)
to more elaborated strategies such as label-region
alignments (Li et al., 2020b; Guo et al., 2020) or
scene-graph prediction (Yu et al., 2020). Most of
these tasks can be seen as local (word-to-region)
or global (text-to-image) matching tasks and, al-
though effective for pre-training, they do not con-
template other phenomena such as composition and
indirection that can be observed in grounding prob-
lems. Although large-scale pre-training has been
shown to be effective for grounding (Kamath et al.,
2021; Li and Sigal, 2021), such methods require
the availability of large collections of image-text
pairs with explicit alignments between image re-
gions and phrases in text. Because of the scale
of such data and the cost of extensive annotations,
these approaches have not gone beyond image-text
matching phenomena.

In this work, we take inspiration from a recently
proposed family of transformer-based architectures
that tackle the REC problem as a regression prob-
lem, i.e. given an image and a query expression,
directly predict the bounding box coordinates of
the object or image region referred by it (Deng
et al., 2021; Du et al., 2021).

3 Problem definition and motivation

Given an image and a natural language expression,
the goal of REC is to predict the location of the
referred object or region, e.g. by predicting the
coordinates of the bounding box that encloses it
more tightly. The expression may include diverse
linguistic constructs such as ellipsis, prepositional
phrases, conjunctions, etc.

In what follows, we first introduce a simplified
yet performant version of the model proposed by
Deng et al. (2021). This model will serve as a
strong baseline in our experiments because it al-
low us to evaluate the differences in performance
between the baseline and the proposed extensions.
Next, we propose a linguistically motivated classi-
fication scheme which allows for a disaggregated
analysis that will guide the rest of the paper. Fi-
nally, we discuss some motivating results in light
of our baseline and different types of expressions.

3.1 A strong baseline model

As in (Deng et al., 2021), the input to our model is
an image I and a RE e. Its output are the bounding
box coordinates of the referred object or region.
The model consists on the following blocks: a im-

age encoder, a language encoder, a transformer-
based cross-modal encoder and a box prediction
head. An outline of the architecture is shown in
Fig. 1.

Image encoder. We feed the image to a pre-
trained convolutional backbone. We use a ResNet-
50 (He et al., 2016) pre-trained on ImageNet with
the classification head removed. The output of this
network is a feature map of size H ⇥ W and d
channels, that we further project to D dimensions
using 1⇥1 convolutions. Different from Deng et al.
(2021), we do not add any additional transformer
layer on top of the convolutional encoder. We flat-
ten the resulting tensor along the spatial dimension
and obtain a sequence of HW visual embeddings
of dimensionality D.

Language encoder. We first map e into a se-
quence of T tokens and encode it using a pre-
trained language model. We use a pre-trained
BERT (Devlin et al., 2019) as the default en-
coder. The output sequence of (sub-) word em-
beddings is projected onto D dimensions using a
fully-connected layer.

Cross-modal encoder. We concatenate both vi-
sual and language embeddings into a multimodal
sequence and feed it to a cross-modal encoder con-
sisting of a transformer architecture with L layers.
Each layer in the encoder corresponds to a multi-
head self-attention layer with skip connections
(Vaswani et al., 2017). As in (Deng et al., 2021), we
add learnable position embeddings to the input of
each transformer encoder layer. The output of the
cross-modal encoder is a sequence of embeddings
of the same length as the input and whose elements
can be seen as a re-encoding of the corresponding
input embeddings. This re-encoding mechanism is
based on the “similarity” between other elements of
the same sequence (visual and/or linguistic) as in-
duced by the multi-head self-attention layers within
the cross-modal encoder.

Prediction head. The box prediction head is a
single fully connected layer followed by a sigmoid.
The output of this head corresponds to the nor-
malized coordinates of the target bounding box.
Instead of adding a specialized output token as in
(Deng et al., 2021), we take as input the average of
the first HW embeddings after the cross-modal en-
coder, i.e. those corresponding to the visual block.
Given a training set of image-expression-box tu-

1973



CNN
backbone fla

tt
en

pr
oj

ec
t

language
model

pr
oj

ec
t

cr
os

s-
m

od
al

 e
nc

od
er

[CLS]

[SEP]
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Figure 1: Our baseline model for referring expression comprehension showing its main processing blocks: image
and language encoders (in blue and green respectively), cross-modal fusion (in orange) and box prediction head (in
gray). The input is an image and a referring expression and the output is a bounding box.

ples D = {(In, en, bn), i = 1, ..., N}, we adopt
a loss formulation based on a combination of the
generalized IoU of Rezatofighi et al. (2019) and
the soft L1 loss as in Deng et al. (2021).

3.2 Types of referring expressions and errors

One of the challenges posed by the REC problem is
that natural language expressions exhibit different
degrees of grounding complexity. In order to better
understand the limitations of current models, and
motivated by previous work described in Section 2,
we propose to classify them into a non-disjoint set
of types as follows.

• Spatial. Expressions that include spatial lan-
guage e.g. “the doorway on the far right”. They
include prepositions that signals a spatial relation
(e.g. behind) or adjectives (e.g. left) and nouns
(e.g. foreground) that give spatial cues.2

• Ordinal. Expressions that include ordinal ad-
jectives that determine the position of an object
inside a group, e.g. “2nd set of jewels”.

• Relational. Expressions that use another object,
which is related to the referent, in the RE; e.g.
“the instrument right behind the guy with yellow
hat”. Relational expressions are spatial when the
relation is spatial.3

• Intrinsic: Expressions that do not fall into any
of the above types. They do not use the position
of the object to describe it, instead they use only
properties that are intrinsic to the referent no
matter its position; e.g. “the tall metal fence”.

2A complete list of spatial words used in this paper is in
Appendix A.

3We say an expression is relational if it contains a preposi-
tion with one or more nouns to the left and to the right.

Type # test expr len acc

All 65193 3.5 (2.6) 66.76
Intrinsic 22779 1.5 (1.0) 81.81
Spatial 42277 4.6 (2.6) 58.73
Ordinal 1173 5.9 (2.8) 28.47
Relational 13154 6.7 (3.0) 44.59

Table 1: Accuracy disaggregated by expression type for
the RefItGame dataset. The expr len column shows the
average expression length and its standard deviation (be-
tween parentheses). The last column of the table shows
the accuracy for the baseline model on the ReferItGame
test set. An RE may fall in more than one type, in that
case it is counted in all the types.

Table 1 shows the frequency and lengths
of the different types of REs in the Refer-
ItGame (Kazemzadeh et al., 2014) dataset as well
as the performance of the baseline model intro-
duced in Sec. 3.1. The performance reported is
the accuracy of the predicted bounding box. It is
considered that the bounding box is correct if it
overlaps with more than 50% of the ground truth
one. The table shows that the accuracy on the spa-
tial class is considerably lower than the accuracy
for the intrinsic class although spatial expressions
are more frequent. The accuracy is even lower for
the relational and ordinal expressions. After per-
forming this disaggregated analysis our intuition is
that the position embeddings used in the state of the
art models are not enough for capturing the spatial
and relational information required to handle this
type of expressions.

The Fig. 2 shows the cardinality of the intersec-
tions of the types as a matrix. Each row at the
bottom corresponds to a type. Each column corre-
sponds to a non empty set, and the bars at the top
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show the size of the respective intersections. The
filled dots show which type is part of an intersec-
tion. The first four columns represent those REs
that fall in only one type. The last three columns
show combinations of types.

The intrinsic type is disjoint from all others by
definition. Almost all ordinal REs are also spatial
or relational. There are very few relational REs
that are not spatial (an example of such rare RE
is “the girl sleeping with the teddy bear”). Most
relational REs use an spatial preposition in the the
ReferItGame dataset.

4 Restoring referential spatiality

The types of expressions that have the worst accu-
racy, relational and ordinal, can be associated to
limitations of the model in capturing richer spatial
relations that go beyond simple matching (names
to image and absolute locations to image). In what
follows, we propose two generic strategies to in-
ject stronger visual priors into the model after the
cross-modal fusion block. In Fig. 3 we illustrate
how we reformulate the prediction head of the orig-
inal model in Fig. 1. We describe the modified
architecture below.

First, due to the one-to-one alignment of the
embedding sequence at the input and output of the
transformer, we can identify the first block of HW
elements as a re-encoding of the original visual
embeddings, modulated by the input expression
e. We can rearrange this block as a tensor of size
H ⇥ W ⇥ D so as to restore the spatial structure
lost after the flattening operation. This operation is

Figure 2: The RE types proposed in this paper are not
disjoint. Their distribution and intersections on the
ReferItGame dataset are shown in the columns. The
first four columns correspond to REs that belong to only
one type.
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Figure 3: Prediction head for the extended model. This
new prediction head replaces the one from Fig. 1 with
an “unflatten” operation and a block of convolutions fol-
lowed by the regression and segmentation heads. The re-
gression head outputs a bounding box (in yellow) while
the segmentation head outputs a mask (in black and
white).

represented as the unflatten block in Fig. 3.
We next add a small convolutional network with

M layers (convolution layer with a 3⇥3 kernel and
stride of 1, batch normalization and a ReLU non-
linearity), on top of which we attach two different
heads: a target regression head as before and a box
segmentation head, as shown in Fig. 3.

The box regression head is the same as the base
model but applied to the average pooled features
after the convolutional block, while the additional
segmentation head consists of a simple convolu-
tional layer whose output is normalized to the inter-
val [0, 1] by a sigmoid activation. The goal of this
head is to provide a spatial consistency constraint
while avoiding the need of requiring additional data.
Supervisory signal for this branch is obtained triv-
ially from the existing annotations, i.e. by creating
a binary mask from the bounding box coordinates
of the target. Learning is formulated by adding an
auxiliary pixel-wise binary classification term to
the main loss.

The intuition behind adding M convolutional
blocks after the cross-modal transformer as well
as the mask prediction head is to ensure that the
spatial consistency of the representation that has
been broken is restored. The locality and hierar-
chical nature of the (stacked) convolutions as well
as the complementarity of the segmentation and
regression heads proves to be an effective approach
to improve the accuracy of some kinds of spatial
expressions as we will see in the next two sections.

5 Experiments

In the following we describe the datasets and ex-
perimental setup we use in our experiments. A
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detailed description can be found in Appendix C.

5.1 Datasets

We conduct experiments on four different datasets.

ReferItGame. We use this dataset as a set
for validation and error analysis. ReferItGame
(Kazemzadeh et al., 2014) was collected based on
a two-player game where one of the players has to
write a RE based on a given object while the second
player has to guess its identity by looking only at
the image and the generated expression. If guessed
correctly, both players receive a game point and
swap their roles for the next image.

Images in this dataset are from the IAPR TC-
12 corpus (Escalante et al., 2010). The dataset
consists of 130121 expressions referring to 96654
different objects across 19894 images. We use
a cleaned version of the dataset provided by Hu
et al. (2016) and standard splits, i.e. 54127, 5842
and 60103 expressions for training, validation and
testing, respectively.

RefCOCO and RefCOCO+. These datasets
(Nagaraja et al., 2016) were collected by following
the same procedure as in ReferItGame, but using
images from MS COCO (Lin et al., 2014). Ref-
COCO contains 50000 referred objects in 19994
images. Each object is referred by an average
of three expressions, for a total of 142210 REs
split across 120624 expressions for training, 10834
for validation and two additional splits (testA and
testB) with 5657 and 5095 expressions for testing,
respectively. The testA split contains multiple peo-
ple while the testB split contain multiple instances
of all other objects.

RefCOCOg. RefCOCOg (Mao et al., 2016) was
collected non-interactively using Amazon Mechani-
cal Turk. This dataset contains 104560 expressions
for 54822 objects in 26711 images. Compared with
RefCOCO and RefCOCO+, expressions in the Re-
fCOCOg dataset are considerably longer (an aver-
age of 8.43 vs. 3.61 and 3.53 words, respectively).
We use the split proposed by (Nagaraja et al., 2016)
for meaningful comparisons with other methods.

We report REC performance using average accu-
racy. We consider a region prediction as correct if
it has an overlap (as measured by the IoU metric)
of at least 0.5 with the ground truth box.

SH M=0 2 4 8

All 7 71.66 72.64 73.00 73.46
3 71.89 73.03 73.16 73.61

Intrinsic 7 84.76 84.63 84.93 84.10
3 83.79 84.93 84.14 84.27

Spatial 7 64.28 65.91 66.53 67.36
3 65.18 66.27 66.74 67.73

Ordinal 7 34.44 42.22 42.22 46.67
3 36.67 45.56 41.11 45.56

Relational 7 51.29 51.70 52.70 53.57
3 51.74 52.99 52.99 54.11

Table 2: REC performance on the validation set of the
ReferItGame datset for different expression types and
model configurations. M denotes the number of convo-
lutional blocks while “SH” denotes whether we use the
segmentation head or not. M = 0, SH = 7 corresponds
to the baseline model outlined in Sec. 3.1.

5.2 Architecture selection

In this section we evaluate the impact on perfor-
mance of the changes proposed in Sec. 4 for the
different types of REs discussed in Sec. 3.2. For
these experiments, we set the maximum number
of epochs to E = 60. Table 2 shows compre-
hension performance on the validation set of the
ReferItGame dataset for different model configura-
tions and expression types. M denotes the number
of convolutional blocks and “SH” denotes whether
we use the segmentation head or not. In this case,
M = 0 and no segmentation head (SH=7) corre-
sponds to the baseline model outlined in Sec. 3.1.
First, consider the case M = 0, i.e. no convolu-
tional blocks after the cross-modal encoder. From
the table, we see that adding a segmentation head
improves performance overall, specially for the
expressions that involve some degree of spatial
reasoning. For the intrinsic type, improvement is
marginal as the model is already able to solve the
region-(class)target alignment problem. For more
complex expressions, adding a segmentation head
constraints the model to focus on the target location
(and scale) and helps disambiguate references to
objects/regions from its context. If we now con-
sider M > 1, we observe the following. First,
performance improves for all expression types, spe-
cially for ordinal and relational w.r.t. the model
with M = 0. Second, for M > 1, adding a seg-
mentation head seems to have no impact on perfor-
mance. This can be attributed to a greater flexibility
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of the stack of convolutions in capturing spatial and
relational information.

5.3 Comparison with the state-of-the-art

Next, we compare the performance of our mod-
els against four different methods proposed re-
cently in the literature, namely: LBYL-Net (Huang
et al., 2021), VGTR (Du et al., 2021), TransVG
(Deng et al., 2021) and the Referring Transformer
(Ref. Tr.) (Li and Sigal, 2021). LBYL-Net is
a one-stage grounding model based on modeling
spatial relations between the referent and its con-
text via a suitable convolution operator. VGTR
is a transformer-based one-stage model following
an encoder-decoder design and custom grounding
modules. TransVG is similar to our baseline model
with an additional transformer after the visual back-
bone and a specific output embedding that feeds
the prediction head. Finally, the referring trans-
former model follows a similar design as DETR
(Carion et al., 2020) while tackling simultaneously
the RE comprehension and segmentation problems.
We show performance for each model and relative
improvement of the extended model with respect
to the baseline in Table 3. All these models rely
on a ResNet-101 as visual backbone, except LBYL
which uses darknet-53.

In this paper, we presented two different models:
a baseline described in Sec. 3 and a extended model
that incorporates M = 8 convolutional layers and
the segmentation head explained in Sec. 4. We use
a ResNet-50 as visual backbone and the same set
of hyper-parameters and training procedure as
before, explicitly avoiding dataset specific fine-
tunings. We disaggregate the performance accord-
ing to the different types of expressions for both
the baseline and the extended model.

First, we see that our baseline model is a strong
baseline for REC. If we compare average perfor-
mance (rows “All” in Table 3), we see that our
baseline model performs comparably to the best
performant methods in the first group. It shows the
second best performance on both RefCOCO testA
and testB subsets, second and third best perfor-
mace in RefCOCO+ testA and testB, respectively;
and achieves top performance on the RefCOCOg
test set. If we consider the extended model, we
observe a consistent overall improvement on all
datasets. Although our goal is not to get the best
possible performance but to highlight the impor-
tance of the different expression types when eval-

uating RE models, results in the table show that
our design is on pair with the state of the art. This
is important since both our models follow a sim-
ple design and rely on the same training protocol,
which is compared to the more complex backbones
and per-dataset tuning of hyperparameters of the
methods in the first group.

If we compare disaggregated performance for
the baseline and extended models, we observe the
following. From Table 3, performance improves
on all subsets and expression types, with the only
exception of the intrinsic and ordinal types in
the testA and testB subsets of RefCOCO and Ref-
COCO+ datasets, respectively. For RefCOCO, this
accounts for a �0.2% decrease on performace w.r.t.
to the baseline. For RefCOCO+, the difference is
greater (�15% w.r.t. to the baseline). Note how-
ever that for this dataset, the number of ordinal
expressions is 34, 4 and 32 for the val, testA and
testB subsets. The observed decrease corresponds
to a difference of only 2 examples.

In general, we observe a greater improvement
for expressions that involve spatial (spatial and re-
lational) and grouping (ordinal).

A detailed summary of these results, including
performance on the validation sets and sample car-
dinalities for all subsets and expression types can
be found in Appendix D.

6 Error Analysis

In this section we analyze the predicted output of
the extended and baseline models for the image-
expression pairs of the ReferItGame validation set.
The figures in this section show the extended model
prediction in green and the baseline model predic-
tion in orange. The comparative error analysis
goal is to shed light over the kinds of linguistic
and visual phenomena that the models are able to
handle and those they are not. The analysis was
divided into two parts and was carried out on a
total of 351 examples. First, we explored refer-
ring expressions where the green model correctly
predicted the ground truth and improved over the
baseline depicted in orange. Two such examples
are in Fig. 4. Second, we analysed cases where
both models failed, exemplified in Fig. 5. More
examples are shown in in Appendix B.

We identified different abilities a model should
have in order correctly solve a broader set of ex-
pressions. They are listed below. Fig. 4 and Fig. 5
illustrate each of the skills.
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Model Type RefCOCO RefCOCO+ RefCOCOg

testA testB testA testB test

LBYL All 82.91 74.15 73.38 59.49 -
VGTR All 82.32 73.78 70.09 56.61 67.23
TransVG All 82.72 78.35 70.70 56.94 67.73
Ref. Tr All 85.59 76.57 75.96 62.16 69.40

Baseline All 84.85 74.72 75.95 59.36 69.40
(M=0, SH=7) Intrinsic 84.11 71.24 80.33 65.85 73.92

Spatial 85.22 75.42 70.55 53.32 68.44
Ordinal 75.91 48.67 50.00 40.62 46.25
Relational 77.03 57.39 67.11 48.02 67.87

Extended All 86.00 (+1.4%) 77.96 (+4.3%) 77.09 (+1.5%) 61.16 (+3.0%) 71.31 (+2.8%)

(M=8, SH=3) Intrinsic 83.94 (-0.2%) 72.32 (+1.5%) 81.18 (+1.1%) 68.25 (+3.6%) 75.25 (+1.8%)

Spatial 86.96 (+2.0%) 79.06 (+4.8%) 72.14 (+2.3%) 54.62 (+2.4%) 70.51 (+3.0%)

Ordinal 85.40 (+12.5%) 56.33 (+15.7%) 50.00 (+0.0%) 34.38 (-15.4%) 48.75 (+5.4%)

Relational 79.56 (+3.3%) 60.22 (+4.9%) 68.50 (+2.1%) 49.80 (+3.7%) 70.09 (+3.3%)

Table 3: Comparison with other methods from the literature on the RefCOCO, RefCOCO+ and RefCOCOg
datasets. For the baseline and the extended model, we consider performance for different expression types. Relative
improvement percentage of the extended model with respect to the baseline are shown in parentheses.

(a) Sky near clouds (b) Water near man’s back

Figure 4: Examples where our proposed model (green)
improves over the baseline (orange). The ground truth
is shown as a blue box. The first example is classified
as fuzzy objects. The second as meronimy.

(a) The empty ski to the right
of the statue

(b) Grass directly above and
behind little boy on bike

Figure 5: Examples that remain a challenge for both
models (ours in green, baseline in orange, ground truth
in blue). The first example is classified as fuzzy objects,
typo and directional. The second is classified as fuzzy
objects, viewpoint, and implicit.

• Meronimy: Reference parts of objects, such as
peoples’ clothes, parts of the body (e.g. “the
man’s back”) or parts of inanimate objects.

• Viewpoint: In order to resolve the reference, the
hearer needs to assume the point of view of an
object such as “behind the little boy”.

• Directional: the expressions contains the direc-
tion in which we can find the referent relative to
the location of the landmark, e.g. “to the right of
the statue”.

• Fuzzy objects: Reference to regions of objects
without prototypical shapes and borders, like
“ground”, “water” or “sky”.

• Occlusion: Reference to an object that is only
partly visible because it is hidden by another
object or does not fit completely in the image.

• Typo: the expression contains a typo that can con-
fuse the understanding of the referring expression
(e.g. “ski” instead of “sky”).

• Implicit: the RE contains an ellipsis such as
“grass directly above” meaning “grass directly
above the path”.

The first three types of errors require the RE to
be relational. Meronimic errors require a relation
between an object and a part of it. Viewpoint errors
occur in REs that are not only relational, but also
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spatial in general. They use a landmark, related
to the referent, to change the point of view of the
interpreter. Directional errors can occur when the
direction of the relation in the RE is misinterpreted.
Frequently this relation is spatial but not necessar-
ily, it could correspond to an order established by
other property, such as size (e.g. “from the small-
est to the biggest). The last four types of errors
may happen for all kinds of REs. Although im-
plicit errors are more frequent in long REs such as
relational REs.

6.1 Errors that are improved
During our analysis we identified that most of the
cases in which the green model improves over the
orange one contain meronimy, fuzzy objects or both.
Fig. 4a is an example of fuzzy object because the
sky is a kind of object that does not have a proto-
typical shape and borders (such as a person) and
whose parts can be spread in different areas of the
image. Our model is not only able to select a region
near the clouds but it is also able to constrain its
prediction using the natural boundary that is the
tree on the left. The model is able to reconstruct
the relative spatial position of the different parts of
the sky.

Fig. 4b shows an example of meronimy. The
“man’s back” refers to a part of the man. Correctly
predicting the referred region in this expression
requires both identifying the back of the man (not
the whole man) and the appropriate region of water
(another instance of fuzzy objects). As the water
and the sky, the man’s back does not have a clear
border wrt the rest of his body.

6.2 Errors that remain a challenge.
We analyzed 220 examples in which both mod-
els failed. The first observation that we found is
that over 66% of the errors require more than one
skill. This is only 38% for the 131 examples we
annotated where the green model improves over
the orange. Fig. 5 illustrates cases that require mul-
tiple skills, Fig. 5a not only has a typo (ski should
be sky) but it also includes a directional relation
(to the right). We can see how a tiny error in a
character of the word sky, confuses the models and
both predict the section of fences located below
in the image, probably because they look like a
set of ‘ski’s. Fig. 5b not only has fuzzy objects
because of the grass but it also requires the inter-
pretation of the viewpoint and implicit language
for resolution. In order to identify the referent, the

interpreter needs to take the viewpoint of the boy in
the picture to correctly interpret the relation behind
as referring to the blue box. The interpreter also
needs to realize that the relation above implicitly
means above the bike path.

Our second finding is that some kinds of meron-
imy remain a challenge and constitute 12% of the
examples we annotated. We find that the most chal-
lenging meronimic relations are those that are not
frequent in the training data (e.g. “the eyebrows
of the person”). Similarly, some directional rela-
tions (that amount to 17% of the errors) are more
challenging than others: those relations that are nor-
mally in the z-axis (e.g. “behind”) lead to more er-
rors that those in the y-axis (e.g. “above”). A com-
plete distribution of the annotations can be found in
Appendix B. Summing up, there is a lot of room for
improving the grounding skills of REC models. We
have identified that the main challenges present in
the ReferItGame dataset are those that we defined
as rare meronimic relations, viewpoint, directional,
occlusion, implicit language and typos.

7 Discussion and conclusions

In this work we studied the kinds of errors that
reference resolution models make. In particular,
relational expressions caused a lot of errors in REC
and that motivated the proposal of a model that
improves over the previous SOTA for the task by
restoring the referential spaciality. We used a new
training objective which is segmentation prediction
and added convolutional layers to a transformer.

Looking at accuracy only can obscure and hide
common errors these model might have. We per-
formed an error analysis and identified which skills
the model would need in order to perform correctly.
We found that our proposed model improves in
dealing with fuzzy objects and meronimy, but still
finds it difficult with other skills. By performing
this error analysis we learnt there is yet a lot of
work to do in making models consider viewpoint
or being able to deal with implicit information (con-
veyed by the common visual context).

Our findings can help have a finer grained look
at the predictions of models. This can be relevant
for different areas of NLP like grounding, situated
dialog systems and human-computer interaction as
referring is a crucial skill in communication.
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8 Ethical considerations

REC models predict bounding boxes instead of seg-
mentation masks. Bounding boxes can include a lot
of background information for some kinds of ob-
jects (imagine a broom at a 45 degrees angle). Such
segmentation masks ground truths are expensive to
annotate.

As in previous work, we count a prediction as
correct if its IoU with the ground truth is above
50%. This binarization can obscure the quantitative
analysis in border cases (49% vs 51% IoU).

Regarding datasets, we did not collect the
datasets but used available ones for the task.
Crowdsourcing raises ethical concerns including
fair wage for crowdworkers, work load and ex-
haustion. In our qualitative analysis we could find
examples of exhaustion in the linguistic production
of crowdworkers.

Previous work, coming from the field of collabo-
rative reference resolution, state that one of the “de-
sired” applications was helping with surveillance
systems (Li et al., 2017; Das et al., 2017b). We
do not agree with this use of the technology. De-
spite every work in referring expressions inevitably
helping towards that goal it would need retraining
with specific domain data for that. Our proposed
model and formulation is not aimed at surveillance
nor the datasets used and should perform poorly in
such setting.

We are reporting results over 30 experiments in
total. Each experiment was running for 2.5 days on
a single 1080ti GPU. We estimate 6.48kgCO2eq.
for each experiment according to local emissions
factor. Debugging, code refactoring and validation
runs took around a couple of hundred additional
runs.
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A Spatial prepositions and keywords

For the spatial prepositions, we rely on the Pat-
tern Dictionary of English Prepositions (PDEP)
(Litkowski, 2014), a publicly available lexical re-
source collected as a part of The Preposition Project
(TPP). There are 78 prepositions in the spatial class.
We removed prepositions with less than 10 sam-
ples, archaic and/or literary (e.g. ’pon, betwixt) and
those used in a more technical context (e.g. aslant).
The final list of prepositions and spatial keywords
is as follows:

• Prepositions: aboard, about, above, across,
after, against, ahead of, all over, along, along-
side, amid, among, around, as far as, at, atop,
before, behind, below, beneath, beside, be-
sides, between, beyond, by, by way of, down,
for, from, in, in front of, in line with, in sight
of, in the midst of, inside, inside of, into, near,
near to, neath, of, off, on, on a level with,
on top of, onto, opposite, out of, outboard
of, outside, outside of, outwith, over, over
against, past, round about, short of, this side
of, through, throughout, to, toward, towards,
under, underneath, unto, up, up against, up
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and down, up before, up to, upon, with, within,
within sight of.

• Keywords: background, back, bottom, cen-
ter, corner, close, edge, end, entire, facing,
far, farthest, floor, foreground, front, furthest,
frontmost, ground, hidden, leftmost, left, mid-
dle, nearest, part, rightmost, right, row, side,
top, upper.

B More error analysis

Here we present more examples from the analysis
to further explain the type of error these models
perform and the skills they need to improve.

B.1 Errors that are improved
As mentioned in Sec. 6, the cases where the green
model is better than the orange baseline, mostly
occur when meronimy skills, fuzzy objects, or both
are present. In Fig. 6a, we see how the green model,
correctly predicts the set of steps under the opera
house although this referent does not have clear
borders.

In the Fig. 6b, the baseline orange model shows
an error when dealing with ordinal referring expres-
sions.

(a) Steps to the opera house. (b) 2nd set of jewels.

Figure 6: Errors that are improved.

The barplot in Fig. 9, shows the distribution of
skill combinations found during the error analysis
described in Section 6. The vertical axis details,
in decreasing order, the combinations of skills that
had the greatest impact in relation to the improve-
ments observed in the green model over the base-
line model. The x-axis expresses the frequency of
occurrences of each of the combinations assigned
to each example, in relation to the total of samples
annotated.

B.2 Errors that remain a challenge
The images presented in Fig. 7, show two examples
that still represent a challenge for the models.

Fig. 7b shows a frequent error found during the
analysis. In this case, we observe that the models

(a) The surfboard of the blond
surfboarder, the one walking
towards the line.

(b) Door closest to right of
painting.

Figure 7: Error that remain a challenge.

detect objects further to the right than the actual
referent. One possible hypothesis is that the models
are not able to understand the implicit proximity
that the speaker is trying to communicate. When
an expression of the form “X is to the right of Y”
is given, a speaker implies that he is speaking of
the closest object “to the right” of the landmark.

Interpreting Fig. 7a involves identifying the
imaginary line formed by the three surfers, rec-
ognizing the blond one, and inferring the direction
of his walk, which is referenced by the directional
preposition ‘towards’.

In a similar way as shown in Fig. 9, the barplot
in Fig. 10 describes the distribution of the 15 most
frequent skills combinations that made both models
fail.

B.3 Errors that are not real errors

Fig. 8 shows how some predictions delivered by
the models, despite not coinciding with the ground
truth (depicted in blue), can in fact be correct.

In particular, Fig. 8a presents an ambiguous
RE. Both the ground truth and the prediction by
the green model are possible interpretations. The
model identifies the face of the woman that is to
the left and outside the group of the three women,
which is a valid interpretation given the ambiguity
of the input referential expression.

For Fig. 8b, the scenario is totally different. Here

(a) Face of woman, on the left
of the group of 3.

(b) Donald duck above girl’s
head.

Figure 8: Error that are not real errors.
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Figure 9: Distribution of the 15 most frequent skills combinations where the extended model improves over the
baseline model.

Figure 10: Distribution of the 15 most frequent skill combinations where both the extended and the baseline model
fail.

the error is more related to the way in which we
consider a prediction to be correct, than to a mis-
take made by the model. Strictly speaking, it is
due to the fact that the predicted area is much
smaller than that indicated as ground truth, giving
an IoU << 50%; note that this decision method
is mentioned as one of the limitations found in
Sec. 8. The model ends up adjusting the Donald
duck sticker more tightly than what is annotated as
ground truth.

In order for our results to be comparable to pre-
vious work we did not modify the ground truth
boxes.

C Detailed experimental setup

Images are first normalized by the mean and stan-
dard deviation of rgb values pre-computed on the
ImageNet training set. We resize the images to
512 ⇥ 512 pixels while keeping the original aspect
ratio by fixing the longest side to 512 and zero-
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padding the shortest side accordingly.
For the visual encoder we use the pre-trained

ResNet-50 (He et al., 2016) model available at the
torchvision package from the PyTorch library
(Paszke et al., 2019). This model has been trained
for a 1000-way classification task on the ImageNet
2012 dataset (Russakovsky et al., 2015). We re-
place the output classification layer by a convolu-
tional + normalization layer with D = 256 output
channels. In this case, given an input image of
512 ⇥ 512 pixels, we obtain an output tensor of
size 16 ⇥ 16 ⇥ 256. We freeze the first convo-
lutional layer of the network as well as the batch
normalization layers. We apply random affine trans-
formations (rotation, translation and scale) as the
only augmentation strategy during training.

For the language encoder we use the bert-base-
uncased pre-trained BERT (Devlin et al., 2019)
model from the HuggingFace’s Transformers li-
brary (Wolf et al., 2020). As with the visual en-
coder, we add a projection and normalization layer
to project the embeddings output by the model to
D = 256 dimensions. We set a maximum expres-
sion length to 32 input tokens.

Our loss function takes the form:

LSoft-L1 + �LGIoU + µLsegm

where the first and second terms act on the output
cast by the box regression head while the third
on the mask predicted by the segmentation head.
We use � = 0.1 in all our experiments. We set
µ = 0 for the baseline model and µ = 0.1 for the
extended one.

We train our models for a maximum of E = 90
epochs using the AdamW (Loshchilov and Hut-
ter, 2018) optimizer with a multi-step decay sched-
ule by a factor of 0.1 at the b0.6Ec and b0.9Ec
epochs. Learning rate is set to 1 ⇥ 10�4 for the
whole model except for the visual and language
backbones (ResNet and BERT) for which we use
1 ⇥ 10�5. Final models are chosen based on vali-
dation accuracy.

D Additional experimental results

Table 4 show an extended view of the results pre-
sented in Table 3, including recognition perfor-
mance on the validation subsets for all the datasets
and the sample cardinality for the different expres-
sion types considered in the paper.
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