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Abstract

The energy requirements of current natural lan-
guage processing models continue to grow at
a rapid, unsustainable pace. Recent works
highlighting this problem conclude there is
an urgent need for methods that reduce the
energy needs of NLP and machine learning
more broadly. In this article, we investigate
techniques that can be used to reduce the en-
ergy consumption of common NLP applica-
tions. In particular, we focus on techniques
to measure energy usage and different hard-
ware and datacenter-oriented settings that can
be tuned to reduce energy consumption for
training and inference for language models.
We characterize the impact of these settings
on metrics such as computational performance
and energy consumption through experiments
conducted on a high performance computing
system as well as popular cloud computing
platforms. These techniques can lead to signif-
icant reduction in energy consumption when
training language models or their use for in-
ference. For example, power-capping, which
limits the maximum power a GPU can con-
sume, can enable a 15% decrease in energy us-
age with marginal increase in overall compu-
tation time when training a transformer-based
language model.1

1 Introduction

Artificial intelligence and machine learning (ML)
are increasingly used in diverse areas ranging from
NLP to autonomous driving. Broadly, larger and

1This material is based upon work supported by the As-
sistant Secretary of Defense for Research and Engineering
under Air Force Contract No. FA8702-15-D-0001, and United
States Air Force Research Laboratory Cooperative Agreement
Number FA8750-19-2-1000. Any opinions, findings, conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the
Assistant Secretary of Defense for Research and Engineering,
or the United States Air Force. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

deeper models are found to be more accurate. How-
ever, as models and datasets increase in size, the
computational demands of AI/ML have increased
correspondingly (Amodei et al., 2018; Thompson
et al., 2020). In particular Thompson et al. (2020)
estimates that achieving a 10-fold improvement in
model performance comes at a cost of at least a
10,000-fold increase in computation and a corre-
sponding increase in the energy required to perform
these computations. The growth in computational
and energy requirements is particularly glaring in
NLP with the introduction of transformer-based lan-
guage models (Vaswani et al., 2017; Devlin et al.,
2019; Radford et al., 2018). For example, training
GPT-3 is estimated to consume almost 1300MWh
(Patterson et al., 2021). Given the considerable
compute requirements and the associated carbon
footprint of training models with increasing accu-
racy, there is growing interest and research into the
energy demands and carbon footprint of AI (Patter-
son et al., 2021; Toews, 2020).

However, estimating energy usage for a particu-
lar AI application depends on a number of parame-
ters such as model architecture, hardware details,
environmental parameters, and implementation de-
tails. For this reason, important works such as
Patterson et al. (2021) and Strubell et al. (2019)
rely on estimates extrapolated from industry aver-
ages for some language models in some of their
analysis of large neural net training, including to-
tal floating point operations per second (FLOPS)
and hardware estimates, rather than values that oth-
erwise might have been measured. Further, these
articles call for new research that identifies mitiga-
tion techniques that can reduce the energy usage of
NLP applications.

This paper proposes and characterizes potential
ways to reduce the energy impact of NLP applica-
tions. To our knowledge this is the first presentation
of power-capping as a useful tool for reducing GPU
energy consumption. Particularly in the context of
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deep learning and NLP, this work provides an ap-
proach alongside estimates for possible energy sav-
ings for training large, energy-intensive language
models. Moreover this method does not affect the
predictions of trained models or consequently their
performance accuracy on tasks. That is, if two net-
works with the same structure, initial values and
batched data are trained for the same number of
batches under different power-caps, their resulting
parameters will be identical and only the energy
required to produce them may differ. Section 2
presents related work on tracking energy usage of
NLP applications and their environmental impact.
Section 3 introduces different techniques, including
power-capping and energy-aware scheduling, that
can be used to reduce the energy usage, including
experiments and other relevant data to characterize
their effectiveness. In Section 4, we discuss these
approaches with broader recommendations before
concluding with future avenues of research.

2 Prior work

Energy efficiency considerations for deep learning
have trailed model developments targeted at im-
proving accuracy among other metrics with new,
often growing architectures. Highlighting this fo-
cus, the growth of neural network architecture sizes
is considered in Canziani et al. (2016). That study
offers a comparison of state-of-the-art image recog-
nition models where their computational perfor-
mance is analyzed including inference time and
power utilization. Techniques for model compres-
sion have been widely studied including knowledge
distillation and pruning (Hinton et al., 2015; Fran-
kle and Carbin, 2019). In NLP, distillation has been
used to reduce the size of large language models
(Sanh et al., 2019), and other methods of compres-
sion have been effective at shrinking model param-
eters such as embedding layers (Mu and Viswanath,
2018; McDonald et al., 2021).

Recent attention has focused on the size of NLP
models alongside their extensive training times and
environmental impact (Strubell et al., 2019; Pat-
terson et al., 2021; Schwartz et al., 2020). These
works illustrate efforts to place greater considera-
tion on the efficiency or inefficiencies of large neu-
ral network architectures. For instance, Schwartz
et al. (2020) weighs the advantages of different met-
rics to evaluate efficiency while advocating for the
use of floating point operations as a way to objec-
tively compare models. Another area of focus has

been on the dependence of model test accuracies on
the amount of computation expended on hyperpa-
rameter tuning (Dodge et al., 2019). Some of these
works propose considering efficiency alongside ac-
curacy as a metric for evaluating ML models, and
at the very least to require reporting energy con-
sumption and carbon impact used in research for
conference and journal submissions.

While calls to prioritize more efficient methods
of training NLP models are made in the previously
cited papers among other works, to the best of our
knowledge this is not reflected in publicly avail-
able academic or industry research. In fact, in
Henderson et al. (2020) a random sampling of 100
NeurIPS papers showed that few papers tracked
and reported these statistics – and none reported
carbon impact. This and the previous works point
out that tracking energy usage is not yet a standard
practice, in part because of the difficulty in imple-
menting a framework for collecting these statistics
from hardware. An implementation for accurately
capturing this data on common hardware (specif-
ically Intel and NVIDIA hardware) is presented
in Henderson et al. (2020) which relies on query-
ing device software tools. We describe another,
similar approach for gathering power expenditure
and energy usage in this work, in order to present
a straightforward process for obtaining accurate
measurements of energy consumption.

Compared to these works, this paper presents
steps that can be taken to reduce the energy re-
quired for training and inference with language
models. There is limited prior research investi-
gating power-capping as a method for reducing
energy consumption (Haidar et al., 2019), and it
has focused on CPUs for scientific computing ap-
plications. Our focus is specifically on widely-used
AI/ML frameworks used with available commodity
hardware. This approach is described with experi-
ments showcasing its effectiveness for a range of
settings. Additionally our findings for GPU energy
reduction when training neural networks are com-
parable and consistent with the outcomes for CPU
consumption presented in Haidar et al. (2019).

Similar recent work investigates distributed
DNN training fitting power law models that de-
scribe how training time scales with available com-
pute resources and energy constraints (Frey et al.,
2022). Additionally we address other approaches
towards reducing energy footprints by considering
shifting habits in training. Utilizing datacenters
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and climate-aware workload scheduling can pro-
vide considerable savings, and we share statistics
from our institutional datacenter to support this
(Reuther et al., 2018; Samsi et al., 2021).

3 Reducing the Energy Impact of NLP

This section outlines various approaches that can
be used to reduce the energy consumption of NLP
workloads. We focus primarily on a simple yet
effective method – power-capping – that yields sig-
nificant benefit with minimal cost and translates
across different computing platforms. Experiments
measuring the effect of power-caps on energy con-
sumption are presented. For completeness, we
discuss other potential avenues for reducing the
carbon impact of NLP applications. Data is pre-
sented for the monthly and daily variation in energy
efficiency of our institution’s datacenter. This il-
lustrates in detail how much energy usage can be
reduced by simple approaches like timing work-
loads to certain hours or seasons if possible. While
factors like efficiency and daily variation depend
heavily on characteristics unique to each organi-
zation’s datacenter, we share general insights that
will hold true for most cases.
Measuring Energy Usage: Currently, there are
two vendor-provided utilities to monitor resource
consumption on NVIDIA GPUs. The NVIDIA
Data Center GPU Manager (DCGM) is a suite of
tools for managing and monitoring NVIDIA GPUs
in cluster environments (NVIDIA, 2021a) and the
NVIDIA System Management Interface (NVIDIA,
2021b) (or nvidia-smi) utility, which can also
perform similar monitoring. Broadly, these tools
enable monitoring of GPU usage on a node and the
collection of metrics on Streaming Multi-processor
(SM) utilization, GPU memory footprint, power
draw, GPU temperatures, PCI Express (PCIe) band-
width, and several other hardware settings. On
our system, this data is collected on every node
and every GPU assigned to a job. The data is col-
lected every 100ms and data collection is started
and stopped automatically using the scheduler that
manages resources on the system.

3.1 Limiting Hardware Power

Most modern computing platforms allow users to
adjust hardware settings for processors and GPUs.
This can be done via command line tools that are
generally not visible to users of a shared comput-
ing system. Over the duration of an NLP task,

the power consumed by hardware components can
vary significantly based on the operation being per-
formed, environmental conditions, and hardware
limits. Power-capping allows users to limit the max-
imum power available to hardware devices through
these tools. On our cluster, this is implemented
using the nvidia-smi command line utility.

A series of experiments is presented here that
use energy tracking tools to measure the reduc-
tion in energy consumption provided by power-
capping GPUs. Power-capping requires no changes
to user code and is done at a hardware level. Be-
low, we validate these savings for various scenarios
such as how these savings translate across different
models for masked language modeling (MLM) or
how these savings work across different sets of re-
sources and hardware platforms. From our observa-
tions, this method provides a noticeable difference
in all scenarios with very little incurred effect on
computation time. For these experiments we use
a popular PyTorch implementation for MLM from
Hugging Face2.
Power-capping works across different models:
We train different transformer-based networks –
BERT, DistilBERT, and Big Bird (Devlin et al.,
2019; Sanh et al., 2019; Zaheer et al., 2020) – with
MLM and observe that power-capping is beneficial
to energy usage regardless of architecture. Each
model was trained on 16 V100 GPUs using four
different power caps: 100 watts (W), 150W, 200W
and 250W (the default power limit for an NVIDIA
V100 GPU on our system). Models were trained

2https://github.com/huggingface/trans
formers/blob/master/examples/pytorch/lan
guage-modeling/run_mlm.py

Figure 1: Time and energy usage comparison of
training three language modeling network architectures
with different maximum power limits. Values given are
percentage relative to performance of default 250W set-
ting (100% indicated by black line). For example, train-
ing BERT with a 150W limit required 108.5% of the
time and only 87.7% the energy needed to train with
default settings.
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Figure 2: Time and energy required for training with varying number of GPUs at different power thresholds.
Values are the percent relative to time or energy required for the default setting of 250W. Average relative time
for 150W is indicated by blue line, and average relative energy consumption for 150W is indicated by orange line.
For 32, 64, 128, 256, 384 and 424 GPUs, training was performed for 6, 10, 15, 25, 40, and 40 epochs respectively
to ensure similar job durations. In most cases, power-capping required additional time to complete training but
resulted in less overall energy consumption.

with the WikiText-103 (Merity et al., 2017) dataset
for 4 epochs and batches of 8 samples per GPU.
Network parameters were trained from scratch with
randomly initialized values, and random number
seeds fixed for consistency across runs with differ-
ent power thresholds.

Figure 1 depicts training performance with
power-capping at 100W, 150W and 200W. Results
are plotted as a percent relative to the default limit
of 250W. Our experiments indicate that implement-
ing power caps can significantly reduce energy us-
age at the cost of training time.

Energy savings at larger scales: We performed
a similar test training BERT with MLM on dis-
tributed configurations of varying numbers of
GPUs. Energy measurements were gathered for
each training run on different node configurations
equipped with between 2 and 400+ GPUs and the
same choices for power limits as before. Models
were trained on WikiText-103 with a batch size of
8 samples per GPU.

The time and energy required for training at dif-
ferent power thresholds is given in Figure 2, where
values are the percent relative to time or energy
required for the default setting of 250W. Averag-
ing across each choice of configuration, a 150W
bound on power utilization led to an average 13.7%
decrease in energy usage and 6.8% increase in train-
ing time compared to the default maximum. Note
from Figure 2 that the 100W setting has signifi-
cantly longer training times (31.4% longer on av-
erage). A 200W limit corresponds with almost the
same training time as a 250W limit but more mod-
est energy savings than a 150W limit. These out-
comes support the use of power-capping at 150W
for this GPU architectures and this application. We

expect that different applications may require dif-
ferent settings for optimal efficiency which could
be identified empirically.

Energy savings translate across hardware plat-
forms: We performed additional experiments
across several different GPUs used widely in ML
research to check this method’s effectiveness. This
was tested on NVIDIA’s K80, T4 and A100 GPUs,
available through our institution’s HPC resources
as well as Amazon Web Services. Figure 3 presents
these results. While there is not a single obvious
choice for optimal settings, we confirm that the
effect of power-capping is not limited to one type
of hardware platform. In each of the platforms,
modifying the maximum power limit affected the
efficiency of the device. For A100s the effect is
similar to the V100s discussed previously, if more
pronounced with greater energy savings for both
the 150W and 200W settings. However for T4
processors the default 70W settings perform opti-
mally, and the effect for K80s is less clear. Many
factors affect how much power is needed for ef-
ficient GPU computation, and memory intensive
batch training required by language models as well
as hardware specific behaviors could lead to poorer
performance on these older NVIDIA architectures.

Energy savings apply to inference: Different es-
timates from NVIDIA and Amazon suggest that
inference tasks account for 80% or more of AI com-
putational demand (Barr, 2019; Leopold, 2019)
while training new models is responsible for a
much smaller fraction. Thus, methods for reduc-
ing energy on inference tasks can have a greater
impact in reducing AI’s carbon footprint compared
to training.

We measure the effect of power-capping applied
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Figure 3: Performance impact of power-caps on differ-
ent NVIDIA GPUs relative to default limits, 250W on
A100, 150W on K80, and 70W on T4. Limiting max-
imum power has a significant effect on each platform.
For A100s the effect is similar to the V100s we test
in other cases, if more pronounced with greater energy
savings for both the 150W and 200W settings. How-
ever for T4 architectures the default 70W settings per-
form optimally, and the effect for K80s is less clear.

to hardware when performing inference with a
trained BERT model. This test was limited to a sin-
gle node with two V100 GPUs as inference is natu-
rally parallelizable across multiple devices. Mea-
surements show that power-capping has a more pro-
nounced effect for inference tasks on running time
and energy usage. Compared to 250W, a 100W
setting required double the inference time (a 114%
increase) and consumed 11.0% less energy, 150W
required 22.7% more time and saved 24.2% the
energy, and 200W required 8.2% more time with
12.0% less energy. For language modeling with
BERT, energy gains through power-capping are no-
ticeably greater when performing inference than
for training. If this is consistent for other AI ap-
plications, this could have significant ramifications
in terms of energy consumption for large-scale or
cloud computing platforms serving inference appli-
cations for research and industry.

3.2 Energy-aware Scheduling
AI and NLP researchers often rely on HPC data-
centers managed by cloud computing providers or
their institutions if available. The efficiency of a
datacenter varies through the day as well as through
the year. A common metric used across the data-
center community to measure datacenter efficiency
is Power Usage Effectiveness (PUE) defined as

PUE =
FE + IT

IT
(1)

where IT is the information technology energy and
FE is the facility energy. Facility energy includes
energy consumed by the datacenter to perform cli-
mate control and any additional energy required for

Figure 4: PUE measurements averaged for each day
throughout 2020. Hotter summer temperatures corre-
spond to more energy required for cooling compute re-
sources and greater PUE values.

Figure 5: Average hourly variation in PUE for our dat-
acenter over one week in July 2020. Measurements
tend to peak during hot afternoon hours and decrease
throughout cooler night temperatures. For example the
hourly minimum on July 27 is 1.48 from 12–1 a.m.
while the maximum is 1.63 between 2–3 p.m., trans-
lating to a daily variation of 10.4%.

operating the computing equipment. IT energy in-
cludes the energy used by computing hardware. A
highly efficient datacenter will have a PUE close to
1, such that the facility energy overhead is minimal,
while the global average for PUE is 1.59 (Ascierto
and Lawrence, 2020). A PUE of 1.59 indicates
that nearly 40% of a datacenter’s energy usage is
consumed by facility energy.

In Figure 4 the average daily PUE measurements
from our institutional datacenter are plotted for the
entirety of 2020, showing how seasonal changes
in temperature can affect the energy consumption
of any individual computational workload. For in-
stance the average PUE in January is 1.05 while
in July it is 1.49, a 42% difference. Evidently,
heavy NLP workloads are typically much less ef-
ficient in the summer than those executed during
winter. Given the large seasonal variation, if there
are computationally expensive experiments that can
be timed to cooler months this timing can signifi-
cantly reduce the carbon footprint.

To show how resource efficiency can vary even
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Month PUE Variation (%)
January 1.30
February 0.69
March 0.77
April 2.15
May 11.51
June 21.70
July 7.76
August 17.37
September 12.41
October 8.07
November 2.88
December 1.07
Annual 7.30

Table 1: Average daily variation in PUE for each
month at our institution’s datacenter in 2020. A sin-
gle day’s PUE variation is the percent difference of the
hour with the greatest average PUE and the hour with
the minimum PUE average. The monthly variation is
the average of this value over days in the month. The
annual variation is the average over all days in the year,
and not the average among the months.

over relatively short periods of time, our datacen-
ter’s average hourly PUE across the last week of
July 2020 is plotted in Figure 5. Each point in
the curve is the average of the several PUE mea-
surements taken each hour, so that the swings in
efficiency between daytime and night hours can be
readily observed. Daytime peaks result from extra
energy required for cooling while outside temper-
atures are high. For instance, on July 27 the PUE
peaks at 2 p.m. at an average of 1.63 while ten
hours later the average measurement is 1.46, a 12%
difference.

We consider the variation in PUE over the course
of a day, where the variation is the percent differ-
ence of the day’s maximum hourly average com-
pared to the minimum hourly average. The monthly
variation is the average of this percent difference
over every day of the month and is listed in Table 1.
The annual variation is the average over all days in
the year, not the average among the months. Daily
variation of PUE is 7.3% on average – with larger
daily swings in the summer months and smaller
swings in the winter months.

Significant energy savings can be obtained if
workloads can be scheduled at times when a lower
PUE is expected. For example, moving a short-
running job from daytime to nighttime may provide
a roughly 10% reduction, and moving a longer, ex-
pensive job (e.g. a language model taking weeks to

Figure 6: Examples of sampled power measurements
for four identical jobs at different power-cap thresholds
are presented, where points in each curve give averages
over one minute intervals. Note that average power re-
mains consistent for the duration of each job.

complete) from summer to winter may see a 33%
reduction. While it is difficult to predict the savings
that an individual researcher may achieve, the infor-
mation presented here highlights the importance of
environmental factors affecting the overall energy
consumed by their workloads.

3.3 Relaxing Training Duration

In training different models we tracked energy con-
sumption throughout each run and observed that
the rate of energy consumption (power) is roughly
constant after averaging over short intervals (one
minute in this case). This is depicted in Figure 6
for four jobs with identical parameters but different
power-cap limits. It can be expected that cutting
training time by X percent will correspond to an
X percent reduction in energy. We highlight this in
consideration of common practices of significantly
extending training times for marginal performance
gains. For instance in (Devlin et al., 2019) doubling
the number of training batches provided an addi-
tional 1% increase in performance on a particular
benchmark test set. For certain applications or do-
mains this additional training may make sense, but
in cases where evaluation metrics include energy
considerations, longer training for marginal perfor-
mance improvements would be counterproductive
and could incur significant energy expenditure.

3.4 Utilizing Efficient Datacenters

One last practice we address that can help re-
searchers reduce their environmental impact is uti-
lizing institutional shared datacenters and cloud
computing resources for energy-intensive NLP ap-
plications. By considering this approach for ap-
plications as opposed to building and managing
smaller, private HPC workstations or clusters, re-
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searchers can save money on equipment purchases
and potentially energy bills depending on where re-
sources are housed, as well as reducing the carbon
footprint of their workloads. While there is conve-
nience in having private computing resources that
are accessible, this convenience comes at a cost.
Generally speaking energy savings and impact is
more easily obtained at larger scales. Datacenters
and cloud computing providers make significant
investments in the efficiency of their facilities. For
instance, Google publishes data on its PUE, reach-
ing a 12 month average of 1.10 in 20213, and the
National Renewable Energy Laboratory sets an an-
nual goal of running their computing facility at a
PUE of less than 1.06 4, recently achieving a record
of 1.036.

Additionally, many cloud providers are mov-
ing their energy supply towards more environmen-
tally friendly and renewable energy sources in at-
tempts to reduce their carbon output to zero (Barr,
2015). These types of improvements would be
time-consuming and difficult to make for individual
researchers, but by sacrificing some conveniences,
AI researchers can reap these benefits without addi-
tional effort beyond moving their projects to these
platforms.

4 Discussion and Recommendations

We believe the approaches proposed here offer
easy-to-implement solutions for reducing the car-
bon footprint of NLP applications without signifi-
cant algorithmic or software changes. Though they
do not involve new algorithmic methods which are
outside the scope of this article, these represent
early steps towards more efficient NLP. Coupling
them with algorithmic changes would further im-
prove energy consumption. The goal of this arti-
cle is to initiate a conversation between NLP re-
searchers and those in the hardware and datacenter
domains. Below, we list additional recommenda-
tions that may help shape such a conversation.
Understanding your computational environ-
ment’s characteristics: Previous works high-
lighted the carbon footprint of computationally ex-
pensive NLP applications, and their recommenda-
tions of tracking and reporting energy usage was
intended to encourage researchers to be aware of
their individual impact. Similarly we highlight

3https://www.google.com/about/datacen
ters/efficiency/

4https://www.nrel.gov/computational-s
cience/measuring-efficiency-pue.html

the importance of datacenter characteristics and
PUE variation to promote a deeper understanding
of research energy requirements and the factors
that constitute them. We hope this work leads
NLP researchers to question assumptions about
the datacenters where their workloads are running
and what the relative efficiency of those datacen-
ters are. For example, researchers should opt for
energy-efficient datacenters and encourage their or-
ganizations to deploy or leverage energy-efficient
datacenters. If possible, it would also be helpful
for researchers to learn these operating character-
istics of their datacenters or computing providers.
Further we encourage the NLP community to work
with their computing facility or datacenter to imple-
ment frameworks for tracking energy consumption
like that outlined in Section 3 and other works (e.g.
Henderson et al. (2020)).

Promoting better energy usage: In recent years,
top conferences in AI and machine learning have
introduced the requirement that papers include an
ethics statement addressing the potential impact of
their work on the broader society. However, one
area that is currently lacking is the impact of AI
on the environment. It may be difficult to account
for every trial run or hyperparameter tuning when
tracking and reporting estimates of energy usage.
However, we hope that this practice promotes better
awareness of AI energy consumption and fosters a
greater focus on optimization pathways to reduce
energy usage.

Alongside reporting energy consumption statis-
tics, we make the additional recommendation that
conference papers’ statements discussing ethical
considerations also identify steps undertaken to
minimize energy consumption. We give an exam-
ple of such an “energy statement" after conclud-
ing. Additionally, it is critical that energy-efficient
NLP research be promoted in the research commu-
nity, perhaps via specialized tracks or workshops
focused on these problems.

Reducing the environmental impact: The pur-
pose of this research is to educate NLP researchers
on tools that can be used to reduce their energy
usage and empower them to leverage those tools
to minimize their carbon footprint. The methods
discussed fit into a wider research effort to enable
more efficient AI. Lastly, we also echo earlier calls
for promoting more energy-conscious NLP prac-
tices and discourage overtraining or extensive hy-
perparameter searches. Reviews of conference sub-
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missions should consider whether new methodolo-
gies are effective or the result of expensive opti-
mization.

5 Conclusions

This article presents techniques that can improve
the energy efficiency of training and inference
for NLP applications. Importantly, the methods
discussed can be used jointly with each other to
achieve a compounding effect of energy savings.
Future work relevant to these topics would include
a wider survey of AI hardware and power-capping
capabilities. While we focused on NVIDIA GPUs,
evaluation of AI hardware from other vendors and
cloud providers could have a potentially large im-
pact for cloud computing as well as large shared
high performance computing centers.

Energy Statement

The experiments performed in this work consumed
a total of 782 kWh. A majority of the experi-
ments (approximately 760 kWh) were performed
on our institution’s high performance computing
cluster, powered by largely carbon-free, hydroelec-
tric power sources. To minimize energy consump-
tion, much of these experiments were performed
during system downtimes (e.g., when the system is
undergoing scheduled maintenance and less busy)
and when cooling needs are reduced.
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