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Abstract
Knowing the reasoning chains from knowledge
to the predicted answers can help construct an
explainable question answering (QA) system.
Advances on QA explanation propose to ex-
plain the answers with entailment trees com-
posed of multiple entailment steps. While cur-
rent work proposes to generate entailment trees
with end-to-end generative models, the steps
in the generated trees are not constrained and
could be unreliable. In this paper, we propose
METGEN, a Module-based Entailment Tree
GENeration framework that has multiple mod-
ules and a reasoning controller. Given a ques-
tion and several supporting knowledge, MET-
GEN can iteratively generate the entailment tree
by conducting single-step entailment with sep-
arate modules and selecting the reasoning flow
with the controller. As each module is guided
to perform a specific type of entailment rea-
soning, the steps generated by METGEN are
more reliable and valid. Experiment results on
the standard benchmark show that METGEN
can outperform previous state-of-the-art mod-
els with only 9% of the parameters.

1 Introduction

Explanation is recognized as a key factor toward
responsible AI systems (Arrieta et al., 2020). In
the context of question answering (QA), provid-
ing an explanation of the predicted answers can
help improve the understandability, debuggability,
and trustworthiness of QA models. Great efforts
have been devoted to revealing how the models
predict the answers and give explanations in var-
ious forms, including showing an attention map
over passages (Seo et al., 2017), giving a snippet
of textual evidence (DeYoung et al., 2020), and
selecting answer-supporting sentences (Xie et al.,
2020; Jansen and Ustalov, 2019). Among all ex-
planation forms, the entailment trees (Dalvi et al.,
2021) provide the most detailed and informative
explanation by exposing the chains of reasoning
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Figure 1: Given facts related to the question+answer,
METGEN iteratively generates an entailment tree that
contains the hypothesis (green), used facts (orange), and
intermediate conclusions (blue) with several separate
entailment modules and a reasoning controller.

from the knowledge to the predictions. As shown
in Figure 1(a) and (c), given a hypothesis (sum-
marizing a question+answer pair) and supporting
facts (retrieved from a corpus), the goal is to gen-
erate an entailment tree where each non-leaf node
is an entailment of its children. Providing a valid
entailment tree would help users to understand how
the hypothesis is proved, obtain novel intermediate
conclusions from the basic knowledge, and gain
detailed information to support decision making.

To generate the entailment trees, Dalvi et al.
(2021) propose EntailmentWriter, an end-to-end
sequence-to-sequence generative model, trained
by maximizing the generation likelihood of the
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linearized gold trees. However, they do not have
an explicit strategy to constrain the validity of ev-
ery single step and the tree structure. Thus, the
steps are not guaranteed to satisfy the reasoning
rules and could be incorrect and unreliable. For
example, the step conclusion may not be entailed
by the input premises or simply repeat one of the
input premises (Dalvi et al., 2021). Furthermore,
although their outputs are trees that can indicate the
reasoning chains, the mapping mechanisms from
the inputs to the trees remain implicit and invisible.

To tackle the above problems, we propose MET-
GEN, a module-based framework to generate en-
tailment trees in a more explicit approach and con-
strain the entailment steps with reasoning rules. As
shown in Figure 1(b), given the target hypothesis
and known facts, METGEN first uses the reasoning
controller to select some steps that can help get
closer to the hypothesis. Subsequently, METGEN

executes the selected steps with single-step entail-
ment modules and adds the generated intermediate
facts into the known facts for the next round of rea-
soning. Through this iterative approach, METGEN

proves the hypothesis step by step and generates
the overall entailment tree.

Each module in METGEN is a generative model
that can perform a specific type of entailment
reasoning (e.g., making a substitution inference).
To guide the modules to generate correct and
sound conclusions, we train the modules with well-
formed synthetic data containing the corresponding
logical regularities of the reasoning types (Bostrom
et al., 2021). Inspired by the forward chaining and
backward chaining algorithms in logic program-
ming (Chein and Mugnier, 2008), we adopt both
deductive and abductive modules to execute for-
ward and backward reasoning steps, respectively.

Experiments on the standard benchmark Entail-
mentBank (Dalvi et al., 2021) show that METGEN

can outperform the previous best model with 9.0%
of the model parameters. Manual evaluation re-
sults demonstrate that METGEN can generate more
reliable steps. Further experiments under the data-
scarce setting and cross-dataset setting (on eQASC
and eOBQA (Jhamtani and Clark, 2020)) show that
METGEN is more data-efficient and has better gen-
eralization capability compared with the baselines.

2 Related Works

Explainability in Question Answering. Recent
works have explored the explainability of QA in

various forms (Seo et al., 2017; Ye et al., 2020;
Dalvi et al., 2021; Lamm et al., 2021; Wiegreffe
and Marasovic, 2021; Thayaparan et al., 2020;
Rosenthal et al., 2021). One way is to retrieve
multiple supporting facts related to the question
or answer (Xie et al., 2020; Jansen and Ustalov,
2019; Jhamtani and Clark, 2020; Inoue et al., 2020;
Yadav et al., 2019, 2020; Valentino et al., 2021;
Cartuyvels et al., 2020; Zhang et al., 2020). These
“rationales” (DeYoung et al., 2020) provide insights
about what are used by the model to inform its
predictions, but do not show how the facts are
combined to generate novel intermediate conclu-
sions. Some other works explain QA systems in a
generative way, including generating explanation
sentences that directly link a question to an an-
swer (Camburu et al., 2018; Rajani et al., 2019)
and thus expose the relevant knowledge used by
models (Latcinnik and Berant, 2020; Shwartz et al.,
2020). However, as these models generate expla-
nations in a free form, the generated facts may not
be necessarily sound (Bostrom et al., 2021). Re-
cently, Bostrom et al. (2021) propose ParaPattern,
an automated pipeline for building two kinds of
single-step deductions. Different from the above
work, our method generates the explanations in a
multi-step tree structure (Dalvi et al., 2021), show-
ing what and how facts are combined to draw novel
intermediate conclusions and reach the final answer.
The intermediate conclusions are generated by de-
ductive and abductive entailment modules that are
constrained to perform specific types of reasoning.

Multi-Hop Proof Generation. Recently, several
works propose to use the transformers for multi-
hop logical reasoning and generate reliable formal
proofs (Clark et al., 2020; Talmor et al., 2020; Saha
et al., 2020, 2021; Tafjord et al., 2021). However,
they mainly focus on synthetic sentences, which
have low linguistic variation and struggle to repre-
sent the flexible sentences in real QA scenarios.

Neural Module Networks. Decomposing the
reasoning process into several pre-defined oper-
ations overlaps with the idea of neural module net-
works (Andreas et al., 2016; Hu et al., 2017; Gupta
and Lewis, 2018; Gupta et al., 2020; Jiang et al.,
2019). They typically assume that the question
could be parsed into an executable program, i.e.,
the question explicitly describes the process to ar-
rive at the answer. In our work, we tackle the ques-
tions/hypotheses that do not trivially describe the
reasoning process and could be more challenging.
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Figure 2: Reasoning process of METGEN framework. The goal is to prove the hypothesis with the given facts
through reasoning iterations (the upper part). In the first reasoning iteration (the lower part), the initial state is
denoted as H ⇐ {s1, s2, s3, s4, s5}. First, the controller selects promising steps, such as the backward abductive
step H − s5 and the forward deductive one s4 + s5. Then, single-step entailment modules perform the reasoning
steps and generate novel intermediate facts including i1, i2, i3. After that, the controller verifies that the states
i2 ⇐ {s1, s2, s3, s4} and H ⇐ {s1, s2, s3, i1} are closer to the completion of reasoning and thus selects them for
the next reasoning iteration.

3 Task Definition

As shown in Figure 1, the inputs are a hypothesis
H and some fact sentences S = {s1, s2, . . . , sn}
(including both relevant and irrelevant ones) ex-
pressing knowledge. H is a declarative sentence
derived from a question+answer pair and can be
proved by the knowledge in S. The desired output
is a valid entailment tree T with the root node be-
ing H , the leaves being facts selected from S, and
the intermediate nodes being novel intermediate
facts (e.g., i1, i2). T is considered valid if each
non-leaf node is a valid entailment (a conclusion
that “a person would typically infer” (Dagan et al.,
2013)) of its immediate children. We denote the
annotated gold tree as Tgold and its leaf facts as
Sgold. Following Dalvi et al. (2021), we consider
three increasingly difficult tasks with different S:
Task1(no-distractor): S =Sgold,
Task2(distractor): S =Sgold +15-20distractors,
Task3(full-corpus): S =acorpusC.

4 METGEN

Figure 2 illustrates the reasoning process of MET-
GEN. We reason one step at a time and itera-
tively generate the entailment trees. In each itera-
tion, given a reasoning state (e.g., the initial state
R0 : H ⇐ S, where we aim to prove H using S),

the reasoning controller selects promising steps,
including forward deductive steps and backward
abductive ones. We then use the corresponding
modules to perform single-step entailment on the
selected steps and generate novel intermediate facts.
Finally, we use the controller to verify the gener-
ated facts and select the correct states to perform
further reasoning. We introduce details about the
module design, reasoning controller, and reasoning
algorithm in Sec 4.1, 4.2, and 4.3, respectively.

4.1 Single-step Entailment Modules

4.1.1 Module Definition
We propose to divide the single-step entailment
reasoning ability into a set of well-defined basic
logical operations. Such a design could help im-
prove the generalization capability (Bostrom et al.,
2021; Rudin, 2019). As shown in Table 1, we adopt
three common reasoning types, covering over 90%
of the steps in EntailmentBank according to the
analysis by Dalvi et al. (2021). Note that the en-
tailment module types could be adjusted according
to the specific tasks or domains, which allows our
method to be flexibly applied to other problems.

We adopt both the deductive and abductive ver-
sions of the reasoning types. Take a gold step
s1 + s2 → i1 as an example. Deduction is the
process of reasoning from the premises to reach
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Type Definition Logical Regularity Example

Substitution

performing taxonomic, merynomic

or other kinds of reasoning that 

substitute one entity for another

𝑠1: ∀𝑥 ∈ 𝑋 𝑃 𝑥
𝑠2: 𝑎 ∈ 𝑋
𝑖1: 𝑃(𝑎)

𝑠1: the mass of a planet causes the pull of gravity on that planet. 

𝑠2: earth is a kind of planet.

𝑖1: the mass of earth causes the pull of gravity on earth.

Conjunction

combining the details of both input 

sentences into a single output 

sentence

𝑠1: 𝑃 𝑥
𝑠2: 𝑄 𝑥
𝑖1: 𝑃 ∧ 𝑄 𝑥

𝑠1: chemical splashing can cause harm to humans / to the eyes.

𝑠2: chemical splashing sometimes occurs during experiments.

𝑖1: chemical splashing during experiments can cause harm to the eyes.

If-then

applying a conditional claim or a 

specific rule (one of the input 

sentences) to the other input 

sentences

𝑠1: 𝑃 𝑥 → 𝑄 𝑥
𝑠2: 𝑃 𝑥
𝑖1: 𝑄 𝑥

𝑠1: if something requires something else then that something  

else is important to that something.

𝑠2: nuclear fusion is required for star formation.

𝑖1: nuclear fusion is important to star formation.

substitution
an animal is a kind of organism.</s>an example of camouflage is organism having the same 
color as its environment.</s>an example of camouflage is an animal having the same color 
as its environment.
substitution
nuts are a kind of fruit.</s>fruit contains seeds.</s>nuts contain seeds.
substitution
xylem transports materials through the plant.</s>water is a kind of material that is required 
for plants' survival.</s>xylem transports water that is required by plants.

the mass of a planet causes the pull of gravity on that planet. earth is a kind of planet.
the mass of earth causes the pull of gravity on earth.

conjunction
grass is a kind of green plant.</s>a tree is a kind of plant.</s>a tree and grass are both kinds of plants.
conjunction
chemical splashing can cause harm to humans / to the eyes.</s>chemical splashing sometimes occurs during 
experiments.</s>chemical splashing during experiments can cause harm to the eyes.
conjunction
planets orbit stars.</s>gravity causes orbits.</s>gravity causes planets to orbit stars.

if-then
feeders by a road may cause animals to be killed by a car.</s>if something kills an animal 
then that something is not protecting that animal.</s>feeders by a road do not protect 
animals.
if-then
a forest contains a large amount of wood.</s>if something contains something else then 
that something else can be found in that something.</s>large amounts of wood can be 
found in a forest.

{"int4": "if a cell converts something into something else then that cell is a source of that 
something else", "sent4": "solar cells convert solar energy into electrical energy", "int5": 
"solar cells are a source of electrical energy"}, "inference_type": "if-then"}
{"int2": "it is summer in southern hemisphere", "sent6": "the winter in the northern 
hemisphere is during the summer in the southern hemisphere", "int3": "it is winter in the 

Table 1: The used reasoning types. Here, s1 and s2 denote input premises for deductive modules, while i1 denotes
the entailed conclusion. For logical regularity, P (x) means that the predicate P is true for the entity x.

a logical conclusion. A deductive module takes
the two premises s1 and s2 as inputs and outputs
a conclusion î1 according to its reasoning types
(denoted as s1 + s2 → î1). Abduction is to find
the best explanation given complete/incomplete
observations (Harman, 1965). In the context of
the entailment steps, given a conclusion i1 and
a premise fact s2 as observations, the abductive
module yields a plausible premise ŝ1 (denoted as
i1− s2 → ŝ1), where the generated premise ŝ1 and
the observed premise s2 would most likely infer
the conclusion i1. Although the steps in the En-
tailmentBank may have more than two premises,
we only consider the case of two premises. The
reason is that the n-premise step (n > 2) could be
further decomposed into several valid 2-premise
steps (Dalvi et al., 2021) (See Appendix Figure 8
for a specific example).

4.1.2 Module Training
Training the entailment modules with data that con-
tains the corresponding logical regularities would
guide them to perform correct inferences and en-
sure soundness (Bostrom et al., 2021). We first
train the modules with synthetic sentences to learn
the logical transformations and then further fine-
tune them with the end task.

We follow ParePattern (Bostrom et al., 2021),
a pipeline based on syntactic retrieval, rule-based
example construction, and automatic paraphras-
ing, to collect synthetic sentences from Wikipedia.
Since Bostrom et al. (2021) only consider the sub-
stitution and contraposition deductions, we extend
the method to conjunction and if-then deductions
by designing the specific syntactic templates and
construction rules (See Appendix A.1). In addition,
we also considered the abductive form of these
modules. We then fine-tune the modules with cor-
responding steps in EntailmentBank to adapt the
modules to the science domain. Since the original

steps in EntailmentBank are not annotated with rea-
soning types, we manually label 400 steps of the
training split and train a classifier with these steps.
The remaining steps are labeled with the pseudo
labels predicted by the classifier. We freeze the pa-
rameters of modules once the training is complete.

4.2 Reasoning Controller

In addition to single-step reasoning modules, we
need to search for the correct path to reach the tar-
get hypothesis. The entire reasoning search space
would grow rapidly as the number of input facts in-
creases and there would also be complex branching
in the trees. We introduce a reasoning controller
to filter out incorrect facts, steps, and states to re-
duce the search space and complete the reasoning
accurately and efficiently.

Figure 2 shows how the controller is used in
each reasoning iteration. At the beginning of the
iteration, the controller scores all possible steps
and selects the most promising ones for single-step
entailment. After the entailment modules generate
intermediate facts, the controller estimates which
state with a generated fact gets closer to the com-
pletion of reasoning and selects the best states for
the next iteration. Besides the usage within each
iteration, the controller also rates all facts at the
start of the whole reasoning process and keeps only
the relevant facts for the initial state when fact dis-
tractors exist.

4.2.1 Controller Model
The controller model scores steps, facts, and states
based on a transformer, and its structure is shown
in Figure 3.
Encoding. We first encode the target hypothesis
and facts of state with a pre-trained transformer:
[CLS]H[SEP]s1[SEP] . . . [SEP]sn[SEP]. We obtain
the contextualized representation h for H and fi
for si using the average contextualized representa-
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Figure 3: Reasoning controller illustration. Given a
state, the controller predicts a score for the whole state,
scores for facts, and scores for all possible steps.

tion of all tokens within the sentence.
Steps. We introduce feed forward networks
FFNded and FFNabd for deductive steps and ab-
ductive steps, respectively. Each combination of
two facts is a possible deductive step (si, sj). Each
combination of the target hypothesis and a fact is a
possible abductive step (H, sk). We score them by
a score function Gstep,

Gstep(si, sj) = FFNded([fi,fj ]),

Gstep(H, sk) = FFNabd([h,fk]),
(1)

where [·] is the concatenate operation. We normal-
ize the step scores by applying Softmax over all
possible deductive and abductive steps.
Facts. The fact score indicates whether the fact is
useful by how similar the fact is to the state’s target
hypothesis. We assume that if a fact has a smaller
depth in the gold entailment tree (i.e., closer to the
root), it would be more similar to the target hy-
pothesis than those facts with a larger depth. We
introduce FFNfact as a learnable similarity func-
tion and determine the fact score by comparing it
with the target,

Gfact(si) = σ(FFNfact([h,fi])), (2)

where σ is the Sigmoid function.
State. The state score reflects the quality of the
current state and indicates whether this state should
be used for further reasoning. We assign the state
score using the following two parts:

Gstate(R) =
λ

n

∑

si∈S

Gfact(si)+(1−λ)σ(FFNcls(f[CLS])),

(3)

where λ is a learnable weight, f[CLS] is the represen-
tation of [CLS], FFNcls is a feed forward network.
The first part helps choose states that contain more
relevant facts and fewer distractors. The second
part comprehensively considers the whole state and
gives the promising one a higher score.

4.2.2 Controller Training
Training State Construction. We decompose
the gold entailment trees into several intermedi-
ate states for training. We add disturbances to the
trees to make positive and negative states. For each
gold deductive step (e.g., s1 + s2 → i1), we use
the deductive module to predict a conclusion î1. If
the predicted î1 is correct, we replace i1 in the state
with î1 to make new positive states. Otherwise,
we replace i1 with î1 to make negative states. The
abductive modules are also used in a similar way.
Loss Function. We train the controller with corre-
sponding margin ranking losses Lstep,Lfact, and
Lstate to learn to rank the correct steps, facts, and
states ahead of incorrect ones, respectively. Specif-
ically, the loss for scoring steps is

Lstep =
1

N1

∑

(p+,p−)

φ(Gstep(p
+), Gstep(p

−),mstep),

(4)

where p+ and p− are the positive and negative step,
N1 is the number of (p+,p−) pairs, φ(x1, x2,m) =
max(0, x2−x1+m) is the margin loss, and mstep

is the margin for steps.
For facts, we have

Lfact =
1

N2

∑

s+1 ,s+2 ∈Sgold

φ(Gfact(s
+
1 ), Gfact(s

+
2 ),mfact)

+
1

N3

∑

s− /∈Sgold

− log(1−Gfact(s
−)), (5)

where s+1 is a fact which has smaller depth in the
gold tree than s+2 , s− is the distractor, N2 is the
number of (s+1 ,s+2 ) pairs, N3 is the number of dis-
tractors, and mfact is the margin for facts.

For states, we sample a positive state R+ and
a negative state R− from a tree and train the con-
troller with

Lstate = φ(Gstate(R
+), Gstate(R

−),mstate), (6)

where mstate is the margin for states.
Finally, we average the above losses over all

trees in the training split and train the controller
with

L = Lstep + Lfact + Lstate. (7)

Appendix B gives more controller training details.

4.3 Reasoning Algorithm
Since the entailment trees are generated iteratively
and the search space for reasoning could be large
for each iteration, we adopt beam search for effi-
cient reasoning. Given the initial state H ⇐ S, we
first remove si with a low fact score to filter distrac-
tors. Subsequently, we perform several reasoning
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Train Dev Test All

Questions / Trees 1,131 187 340 1,840
Entailment steps 4,175 597 1,109 5,881

Table 2: EntailmentBank statistics.

iterations until the target hypothesis is proved or
the maximum reasoning depth is reached. In each
iteration, we select the steps with the highest step
scores, execute the steps with all types of deductive
or abductive modules, and construct novel states
with the generated intermediate facts. We remain
the top-K states ranked with state scores for the
next iteration, where K is the beam size. More
algorithm details are in Appendix Algorithm 1.

5 Experiments

We conduct experiments on EntailmentBank (Dalvi
et al., 2021), the first dataset supporting QA expla-
nations in the form of the entailment tree. Entail-
mentBank contains 1,840 entailment trees, each
of which corresponds to a question from the ARC
dataset (Clark et al., 2018). On average, each tree
contains 7.6 nodes across 3.2 steps. Summary
statistics are shown in Table 2.

5.1 Evaluation Metrics

Following Dalvi et al. (2021), we first align nodes
in the predicted tree Tpred with nodes in the gold
tree Tgold and then evaluate with three dimensions:
• Leaves: To evaluate whether Tpred uses the cor-
rect leaf facts, we compute F1 score by comparing
the predicted leaf facts Spred to Sgold.
• Steps: To evaluate whether the individual steps
are structurally correct, we compare all steps in two
trees and compute F1. A predicted step is consid-
ered structurally correct if its children’s identifiers
(e.g., s1, i2) perfectly match the gold ones.
• Intermediates: To evaluate whether the inter-
mediate conclusions are correct, we report the F1
of comparing the aligned intermediate conclusions.
A predicted intermediate sentence î is considered
correct if the BLEURT-Large-512 score of the
aligned intermediate pair (̂i, i) is larger than 0.281.

The AllCorrect score is 1 if F1 is 1, 0 otherwise2.
Given the above scores, we comprehensively eval-
uate Tpred with Overall AllCorrect whose value

1The threshold was picked using 300 manually labeled
pairs (Dalvi et al., 2021).

2We repair a bug in the official evaluation code, which
makes the Intermediate AllCorrect = 1 if the precision = 1
(rather than if F1 = 1), which leads to an overestimation on
the Intermediate AllCorrect.

is 1 if and only if all the leaves, steps and interme-
diates are all correct. This is a strict metric since
any error in Tpred will lead to a score of 0.

5.2 Baselines
We compare with the SOTA entailment tree genera-
tion method EntialmentWriter (Dalvi et al., 2021),
which directly generates the linearized trees (e.g.,
s2+s5 → i1 : eruptions block sunlight; s4+i1 →
H) given H+QA+S with an end-to-end encoder-
decoder framework. We also follow the “Itera-
tive” ProofWriter (Tafjord et al., 2021), which is
one of the SOTA proof generation methods for
logical reasoning, to extend EntialmentWriter to
EntialmentWriter-Iter. EntialmentWriter-Iter it-
eratively generates a part of the linearized tree in
one forward process (e.g., s2+ s5 → i1 : eruptions
block sunlight;) and concatenates all parts to make
the final tree. It completes the step selection and
entailment reasoning in a seq2seq model and does
not provide the reasoning types of steps.

5.3 Implementation Details
Modules. We implement the entailment modules
on top of T5-large (Raffel et al., 2020) with the fol-
lowing two implementations. (1) Separated. We
implement each module separately. We have six
models in total, corresponding to the three reason-
ing types of deductive and abductive versions. (2)
Prefixed. We implement all modules with a single
model. To specify which reasoning type the model
should perform, we follow Raffel et al. (2020) to
add a type-specific prefix (e.g., “deductive substitu-
tion:”) to the input before feeding it to the model.
To evaluate the modules, we annotate the types of
275 steps in the dev split. We train the modules
with a batch size of 20 for 100 epochs.
Controller. The controller is implemented with
albert-xxlarge-v2 (Lan et al., 2019). We train two
individual controllers for Task1 and Task2. For
Task3, we reuse the Task2 model without additional
training. The controllers are trained with a batch
size of 10 for 1,000 epochs. The margins mstep,
mfact, and mstate are tuned on the development
split and all set to 0.1.
Algorithm. For Task1, we iterate until all facts in
S are used. For Task2, we use a fact score thresh-
old of 0.001 to filter distractors and a maximum
reasoning depth of 5. We select the top 10% steps
for each state and set the beam size to 10. All
hyper-parameters are selected using the dev split
(Appendix C). For Task3, we follow Dalvi et al.
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Task Method npara
Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Task1
(no-distractor)

EntialmentWriter (T5-11B)† 11.00 99.0 89.4 51.5 38.2 71.2 52.9† 35.6
EntialmentWriter (T5-large) 0.77 98.4 84.1 50.0 38.5 67.0 35.9 34.4
EntialmentWriter-Iter (T5-large) 0.77 99.8 97.6 51.6 38.5 68.3 36.5 35.0

METGEN-separated (Ours) 0.22+6×0.77 100.0 100.0 57.9 42.1 71.3 39.2 37.0
METGEN-prefixed (Ours) 0.22+0.77 100.0 100.0 57.7 41.9 70.8 39.2 36.5

Task2
(distractor)

EntialmentWriter (T5-11B)† 11.00 89.1 48.8 41.4 27.7 66.2 53.2† 25.6
EntialmentWriter (T5-large) 0.77 83.2 35.0 39.5 24.7 62.2 28.2 23.2
EntialmentWriter-Iter (T5-large) 0.77 85.2 40.9 38.9 26.8 63.5 29.1 25.0

METGEN-separated (Ours) 0.22+6×0.77 83.7 48.6 41.7 30.4 62.7 32.7 28.0
METGEN-prefixed (Ours) 0.22+0.77 82.7 46.1 41.3 29.6 61.4 32.4 27.7

Task3
(full-corpus)

EntialmentWriter (T5-11B)† 11.00 39.7 3.8 7.8 2.9 36.4 13.2† 2.9
EntialmentWriter (T5-large) 0.77 30.9 1.2 4.4 1.2 28.8 5.6 1.2
EntialmentWriter-Iter (T5-large) 0.77 32.4 1.8 4.4 1.5 29.7 6.5 1.5

METGEN-separated (Ours) 0.22+6×0.77 34.8 8.7 9.8 8.6 36.7 20.4 8.6
METGEN-prefixed (Ours) 0.22+0.77 34.8 8.7 9.8 8.6 36.6 20.4 8.6

Table 3: Automatic evaluation results on the EntailmentBank test split. † indicates results from the published paper2.
npara denotes the number of model parameters (B).

Task1 Task2
Method Automatic Manual Automatic Manual

EntialmentWriter (T5-large) 35 46 21 26
EntialmentWriter-Iter (T5-large) 35 47 25 35

METGEN-prefixed (Ours) 36 53 27 39

Table 4: Entailment tree evaluation results on 100 uni-
formly sampled questions from the test split. We report
the proportion (%) of the predicted trees that are rated
as valid, following automatic and manual evaluation.

(2021) to retrieve 25 sentences from the corpus C
using the H as the query. We use the same retrieval
results as EntailmentWriter for a fair comparison.
Model checkpoints are selected using the dev split.
More implementation details can be found in the
Appendix.

6 Result Analysis

6.1 Automatic Evaluation

As shown in Table 3, our methods outperform all
baseline methods on the strictest metric Overall
AllCorrect for all three tasks. Notice that the trees
generated by our methods only contain 2-premise
steps, which would lead to a 0 Overall AllCor-
rect score on 26% of test samples whose annota-
tions contain n-premise (n > 2) steps. Even so,
our METGEN-separated still obtains an absolute
improvement of 1.4%/2.4%/5.7% on Task1/2/3 in
comparison to the strongest baseline. With only
9.0% of the model parameters, METGEN-prefixed
can outperform the EntialmentWriter (T5-11B) by
absolute 0.9%/2.1%/5.7% on Task1/2/3. In the
case of using a comparable amount of model pa-
rameters, METGEN-prefixed also outperforms the
EntialmentWriter-Iter (T5-large) by a large mar-
gin. For Task3, we note that all methods perform

Figure 4: Manual evaluation results of 100 single-step
entailments uniformly sampled from the predicted trees
of Task2 test spilt. EW denotes EntailmentWriter.

poorly. The main reason is that the retrieved facts
may not contain all the required facts Sgold (68% of
the cases). We note that METGEN underperforms
the baselines on some metrics, probably due to the
inaccuracy of the tree alignment algorithm in the
automatic evaluation (Appendix G).

6.2 Manual Evaluation

As analysed by Dalvi et al. (2021), the automated
metrics might misjudge some valid trees and thus
underestimate the performance. To make a more
accurate comparison, we perform the manual eval-
uation. We compare three methods with a compara-
ble amount of model parameters, EntialmentWriter
(T5-large), EntialmentWriter-Iter (T5-large), and
METGEN-prefixed. For each step and tree, we in-
vite three students as experts to evaluate the valid-
ity. The inter-annotator agreement (Cohen’s kappa
statistic) is 0.85/0.76 for the step/tree, indicating
the substantial agreement between annotators.
Validity of Full Entailment Trees. As shown in
Table 4, under the manual evaluation, METGEN

outperforms the baselines with large margins.
Validity of Individual Entailment Steps. We re-
view the validity of the single-step entailment and
annotate each step with one of the four categories:
• Valid: The step conclusion can be inferred from
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Implem-
entation Models Reasoning

Type
Training

Data
Overall

AllCorrect
Single-step
Accuracy

(a) Sep 6×T5-large ✓ S+E 28.0 81.0
(b) Sep 6×BART-large ✓ S+E 26.2 77.0
(c) Sep 6×T5-base ✓ S+E 27.3 78.0
(d) Sep 6×T5-large ✓ E 27.8 79.5
(e) Sep 6×T5-large ✓ S 23.5 43.6
(f) Pre 1×T5-large ✓ S+E 27.7 78.4
(g) Pre 1×T5-large ✓ E 27.4 78.1
(h) Pre 1×T5-large × E 25.9 76.0

Table 5: Ablation results on entailment modules.
Sep/Pre indicates seperated/prefixed. S/E denotes the
synthesis/EntailmentBank step training data.

Task Method Leaves Steps Intermediate Overall

Task1
controller 100.0 42.1 39.2 37.0

w/o abduction 100.0 41.4 38.4 36.2
heuristic 100.0 31.2 31.2 28.8

Task2
controller 48.6 30.4 32.7 28.0

w/o abduction 44.5 28.3 31.6 27.0
heuristic 3.2 3.2 12.1 3.2

Table 6: Ablation results on the reasoning controller.
We report the AllCorrect scores on the test split.

the premises and does not trivially repeat them.
• Unsupported: The conclusion is in conflict with,
irrelevant with, or not followed from the premises.
• Repeat premises: The conclusion trivially re-
peats one or more of the premises.
•Missing premises: The conclusion uses knowl-
edge unstated in the premises. The step would be
correct if one additional premise from S is added.

As shown in Figure 4, METGEN achieves con-
siderable improvement in the validity of steps com-
pared to the baseline methods. We note that 17%
of the steps of EntialmentWriter belong to missing
premises. METGEN constrains the reasoning types
of steps and uses the premise-related and context-
independent entailment modules to perform every
single step. This can reduce the cases of missing
premises (from 17% to 2%) and improve the valid-
ity of the conclusions (from 38% to 70%).

6.3 Ablation Study

Entailment Modules Analysis. Table 5 reports the
ablation results on modules. We report the Overall
AllCorrect on test spilt and the single-step entail-
ment accuracy on the labeled dev steps, and can
make the following observations. (1) Separated
vs. Prefixed. We can see that METGEN-prefixed
achieves slightly worse performance than MET-
GEN-separated ((a) vs. (f) and (d) vs. (g)). This is
mainly because separate modules could better learn
different types of reasoning. However, in our final
system, we still choose to use METGEN-prefixed

Figure 5: Results on different ratios (0.01, 0.05, 0.10,
0.20, 0.50, 1.00) of EntailmentBank training data.

due to the consideration of model size. (2) Clarify-
ing Reasoning Types. We train a module to infer
without distinguishing or assigning specific reason-
ing types. We find that the performance drops from
27.4% to 25.9% ((g) vs. (h)), suggesting that clari-
fying the reasoning types of the entailment steps is
crucial for generating entailment trees. (3) Train-
ing Data. Comparing (a) and (d), we find that
training with the synthesis data could improve the
accuracy. Without tuning on EntailmentBank (set-
ting (e)), the modules might not adapt to the science
domain and obtain low step accuracy. However,
the well-trained controller would verify and filter
the error conclusions, thus our method can still
achieve 23.5% on Overall AllCorrect. (4) Gener-
ative Model. A stronger generative model, which
achieves higher single-step accuracy, could achieve
higher tree generation performance (comparing (a),
(b) and (c)), indicating that our method can be fur-
ther improved with stronger entailment modules.
Controller and Algorithm Analysis. (1) Is the
reasoning controller necessary? To answer this
question, we design a heuristic generation algo-
rithm without the controller (Appendix D). It uses
the BLEURT scores as heuristic information to
guide the reasoning. As shown in Table 6, the
heuristic method achieves observable lower perfor-
mance. The controller could aid in eliminating the
error steps and states, so as to find the valid trees
efficiently and accurately. Without the controller,
we find it difficult to find effective heuristic infor-
mation. (2) Effect of Abductive Steps. The gen-
eration performance drops when abductive steps
are not used. This suggests that abductive steps, as
a way of backward searching, could help improve
the quality of generated trees.

6.4 Data-scarce Setting

Figure 5 reports the results in the data-scarce set-
ting. Our method is more data-efficient. With
only 1% of the EntailmentBank training data, our
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eQASC eOBQA
Method P@1 NDCG P@1 NDCG

EntialmentWriter (T5-large) 52.48 73.14 69.07 89.05
EntialmentWriter-Iter (T5-large) 52.56 73.28 72.15 90.19

METGEN-prefixed (Ours) 55.81 74.19 74.89 90.50

Table 7: Cross-dataset results on the eQASC and
eOBQA test split.

method obtains 14.7% on Task2 Overall AllCorrect,
in comparison to 10.0% of the strongest baseline.
When the data is scarce, the advantage of training
our modules with synthetic data becomes more sig-
nificant. It can help alleviate the overfitting on few
EntailmentBank sentences.

6.5 Cross-dataset Setting

To test the generalization capability of our method,
we conduct cross-dataset experiments on datasets
eQASC and eOBQA (Jhamtani and Clark, 2020),
which collect one-step entailment trees for ques-
tions from QASC (Khot et al., 2020) and Open-
BookQA (Mihaylov et al., 2018), respectively.
Given H and S, their task requires selecting the
valid one-step trees (e.g., s1 + s2 → H) from a
candidate set. We apply the Task2 models (without
fine-tuning on eQASC or eOBQA) to select from
the candidate trees (Appendix E). Following Jham-
tani and Clark (2020), we evaluate models with the
P@1 and NDCG metrics. Questions with no valid
tree are filtered. As shown in Table 7, our method
achieves better generalization performance. Instead
of training a seq2seq model with a single genera-
tion loss, our method explicitly models the step
and state selection ability (equation (1) and (3))
and guides the controller with specific losses to
rank the correct ones ahead of incorrect ones. Such
a manner could aid in alleviating the overfitting on
training data and improve the generality.

7 Conclusion

We propose METGEN, a module-based framework
to generate the entailment trees for explaining an-
swers. METGEN reasons with single-step entail-
ment modules and the reasoning controller. Experi-
ments on EntailmentBank benchmark show MET-
GEN can generate valid trees with reliable steps
and achieve SOTA performance.
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A Entailment Modules Training Details

A.1 Synthetic Data
We follow the ParaPattern (Bostrom et al., 2021)
to collect synthetic training data for the entailment
modules. Since they only consider the substitu-
tion and contraposition deductions, we extend the
method to conjunction and if-then deductions by
designing the specific syntactic templates and con-
struction rules. Table 9 shows the used syntactic
patterns. We use Spacy3 to match sentences from
Wikipedia (version “20200501.en”). In total, we
collect about 24k, 443k, and 97k sentences for
substitution, conjunction, and if-then modules, re-
spectively. We follow Bostrom et al. (2021) to train
the modules on the synthetic data with a learning
rate of 3e-5 for 1 epoch.

A.2 Reasoning Type Annotations of
EntailmentBank

The original steps in the EntailmentBank are not
annotated with reasoning types. We manually an-
notated the reasoning types of 400 steps in the
training split (Train-manual) and 275 steps in the
development split (Dev-manual). To label the re-
maining steps in the training split, we train a clas-
sifier with the Train-manual steps. We use the
Roberta-large (Liu et al., 2019) as our classifier.
It achieves an accuracy rate of 88% on the Dev-
manual steps. We use the classifier to predict the
reasoning types of the remaining 2-premise steps
and take the predicted types as the pseudo labels
(Train-pseudo). Table 8 shows the statistics of the
reasoning type annotations.

Split Sub. Conj. If-then All

Train-manual 211 105 84 400
Train-pseudo 2,441 812 535 3,788
Dev-manual 153 71 51 275

Table 8: Statistics of the step reasoning type annotations.

B Controller Training Details

Training Data. We decompose the gold entailment
trees into several intermediate states for training.
For example, the tree in Figure 1(c) can be decom-
posed into the following positive states: R0 : H ⇐
{s1, s2, s3, s4, s5}, R1 : H ⇐ {s1, s3, s4, i1}, and
R2 : i1 ⇐ {s1, s2, s3, s5}. The state R0 has
two distractors s1 and s3, one positive deductive

3https://spacy.io/

step s2 + s5 → i1, and one positive abductive
step H − s4 → i1. We add disturbances to the
trees to make positive and negative states. For the
state R1, the fact i1 is the conclusion of gold step
s2+s5 → i1. We use a deductive module to predict
a conclusion î1 given s2 and s5. If the predicted î1
is correct, we replace i1 with î1 to make new posi-
tive states R+

1 : H ⇐ {s1, s3, s4, î1}. The R+
1 can

be used to perform further reasoning. Otherwise,
we replace i1 with î1 to make negative states R−

1 .
The R−

1 contains an incorrect conclusion î1 and
thus should not be used for further reasoning. The
reasoning controller should be trained to learn to
distinguish between R+

1 and R−
1 and give the R+

1

a higher state score than R−
1 . To judge whether the

generated î1 is correct, we follow the evaluation
metrics (Dalvi et al., 2021) to use BLEURT. The
predicted î1 is considered correct if the BLEURT
score between î1 and the gold i1 is larger than 0.28.

C Reasoning Algorithm and
Hyperparameter Analysis

Algorithm 1 shows the whole reasoning process.
The hyperparameters are selected with the devel-
opment split, as shown in Figure 6. We select a
beam size of 10, a max reasoning depth of 5, a
distractor threshold of 0.001, and a step sampling
rate of 10%. We only consider the steps whose
sentences have word overlap. When constructing
the entailment tree, we use the BLEURT scores to
align the target of a state to the most similar fact.
Note that when making a new reasoning state with
the step p and the novel intermediate fact i, if the
step p is a backward abductive step, we replace the
original target hypothesis with i and treat the i as
the target hypothesis which the new state aims to
prove (as shown in Figure 2). We run our method
three times and report the average performance.

D Heuristic Reasoning Algorithm without
the Controller

To investigate the effect of the reasoning controller
for entailment tree generation, we design a heuristic
generation algorithm that does not use the reason-
ing controller. Since the cost of traversing the entire
search space is unaffordable, we adopt the beam
search. In each reasoning state, we try all possible
steps with entailment modules and make new can-
didate reasoning states. To select the correct states,
we use the BLEURT scores as the heuristic infor-
mation to guide the search process. Specifically,
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Algorithm 1 Reasoning Algorithm
Input: Hypothesis H , fact sentences S, controller,
deductive modules Mded, abductive modules Mabd

Parameter: Beam size K, max reasoning depth
D, distractor threshold θ, step sampling rate
τ

1: // Construct initial reasoning state
2: Remove si with fact score less than θ in S
3: Rinit ← (H ⇐ the filtered sentences S′)
4: Rbeam ← {Rinit},R ← Rbeam

5: // Reasoning with beam search
6: while the depth does not reach D do
7: R′

beam ← {}
8: for R ∈ Rbeam do
9: // Select promising steps

10: for p ∈ steps of R with top τ% step score
do

11: // Single-step entailment reasoning
12: for m ∈Mded or m ∈Mabd do
13: execute step p with module m and

obtain a novel intermediate fact i
14: construct a new state Rnew with the

step p and the fact i
15: R′

beam ← R′
beam ∪ {Rnew}

16: end for
17: end for
18: end for
19: // Verify and select states
20: Rbeam ← K states with the highest state

scores from R′
beam

21: R ← R∪Rbeam

22: end while
23: // Construct the entailment tree
24: for R ∈ R do
25: Align the target of R to the most similar fact

sentence of R to make a tree T
26: end for
27: Select the tree T̂ with highest score
28: Return The entailment tree T̂

given a candidate state R : H ⇐ S, we estimate
the similarity between a fact si ∈ S and the target
H by

G′
fact(si) = BLEURT(H, si), (8)

and then score a candidate state by

G′
state(R) =

1

n

∑

si∈S

G′
fact(si). (9)

The top-K candidate states with the highest state
scores are selected to perform further reasoning,

where K is the beam size. We use the same beam
size as the algorithm with the controller uses.

E Experiment Details on eQASC and
eOBQA

For each question+answer pair, the
eQASC/eOBQA provides the corresponding
hypothesis H , about 10/4 facts as S, and a
candidate set of steps. Each candidate step is a
2-premise single step from two facts to H (e.g.,
s1 + s2 → H) and can be viewed as a one-step
entailment tree with three nodes. The target is to
select the correct trees/steps from the candidate
set. There might be more than one correct tree in
the candidate set. We conduct experiments on the
questions with at least one correct entailment tree
(677 eQASC questions and 79 eOBQA questions).
Since the given S contains distractors, we adopt the
Task2 models trained on EntailmentBank (without
further fine-tuning on eQASC and eOBQA) to
perform cross-dataset experiments.

For our method, we follow our Task2 reasoning
algorithm to select from the candidate trees/steps.
Specifically, we first filter out the facts in S with
low fact scores using a threshold (selected using the
development split). Then we predict the step scores
for the candidate steps and select the step with the
highest score. For the EntailmentWriter, we feed
the S and H to the EntailmentWriter and score
each candidate step with the 1

PPL , where PPL is
the perplexity of the sequence segment representing
the step (e.g., sent1 & sent2 for s1 + s2 in the
official EntailmentWriter implementation).

We follow the official evaluation metrics of
eQASC and eOBQA. The P@1 (Precision@1) mea-
sures the fraction of cases where the selected tree
(topmost ranked) is correct. It is equivalent to the
Overall AllCorrect score between the top-1 pre-
dicted one-step tree and the best-matching gold
tree. The NDCG (Normalized Discounted Cumu-
lative Gain) metric measures how well ranked the
candidate trees are when ordered by the predicted
scores. It reflects the model’s ability to distinguish
the validity of trees and rank the correct trees ahead
of the incorrect ones.

F Main Experimental Environments

We deploy all models on a server with 500GB of
memory and one 40G A100 GPU. Specifically,
the configuration environment of the server is
ubuntu 21.04 and our code mainly depends on

1899



Substitution

Conjunction

If-then

Original Sentence:

Slime molds like Physarum polycephalum are useful for 

studying cytoplasmic streaming.

Premises:

Physarum polycephalum are a slime mold.

Slime molds are useful for studying cytoplasmic streaming.

Paraphrased:

The polycephalum is a slime mold.

The slimy molds are useful for studying streaming.

Conclusion:

Physarum polycephalum are useful for studying cytoplasmic 

streaming.

Original Sentence:

Aman is an Indian anti-war movie directed by Mohan Kumar.

Premises:

Aman is an Indian anti-war movie.

Aman is directed by Mohan Kumar.

Paraphrased:

Aman is a Indian film that is anti-war.

Mohan Kumar was the director of Aman.

Conclusion:

Aman is an Indian anti-war movie directed by Mohan Kumar.

Original Sentence:

If the rebels occupy territory, they make a gain.

Premises:

If the rebels occupy territory they make a gain.

The rebels occupy territory

Paraphrased:

The rebels are able to make a gain if they hold on to territory.

The territory was occupied by the rebels.

Conclusion:

The rebels make a gain.

Type Dependency Patterns Example

nsubj:NNS$0 ROOT:VBP$2pobj:$1prep:IN`as’amod:`such’

nsubj:NNS$0 ROOT:VBP$2pobj:$1prep:IN`like’

nsubj:NNS$0 ROOT:VBP$2pobj:$1prep:VBG`include’

1.

2.

3.

nsubj:NN|NNS$0 ROOT:VBP$2conj: NN|NNS $1cc:`and’

acomp:JJ$0 ROOT:VB|VBP|VBZ$2conj:JJ$1cc:`and’

attr:$1ROOT:VB|VBP|VBZ$0 relcl:VB|VBP|VBZ$2nsubj:WDT

attr:$1ROOT:VB|VBP|VBZ$0 acl:$2 nsubj:NN|NNS$3

1.

2.

3.

4.

advcl:$0mark:IN`if’ ROOT:$2nsubj:$1 nsubj:$31.

Table 9: The syntactic patterns used on data scraping and the training examples for deductive entailment modules.
Pattern nodes are donated as dep: POS‘lemma’ $i, where dep contains the dependency relations of the matching
token, POS contains the part-of-speech tags of the matching token, ‘lemma’ contains the lemmatized form of the
matching token, and $i indicates that a matching token and its subtree will be used as a match variable for rule-based
rewriting. | means “or”.

Figure 6: Hyperparameter analysis on the Task2 development spilt.

python 3.8.10 and PyTorch 1.7.1. We use the
pre-trained language models from HuggingFace
Transformers4. We use the Adafactor opti-
mizer (Shazeer and Stern, 2018) implemented by
HuggingFace Transformers.

4https://github.com/huggingface/transformers

G Discussion on the Automatic
Evaluation

As discussed by Dalvi et al. (2021), the automatic
entailment tree evaluation metrics might misjudge
in some cases (e.g., tree structure variation) and
still need to be improved. In fact, how to quanti-
tatively evaluate a predicted tree remains a chal-
lenging problem. In the existing metric, the first
step is the tree alignment algorithm (Dalvi et al.,
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S1 cellular respiration is when cells extract energy from food to produce energy.

S2 cellular respiration is a source of energy for cell activities.

S3 cellular respiration is cellular digestion.

H cellular respiration produces energy for cell activities by extracting energy from food.

I1 : cellular respiration is when cells extract energy from food to produce energy.

(修改) I1 : cellular respiration is when cells extract energy to produce energy for cell activities.

Gold s1+s2=H

Pred s1+s3=i1 i1+s2=H

P/R/F1/AllCorrect

Leaves 0.6 1.0 0.8 0

Step 0 0 0 0 

Inter 1.0 1.0 1.0 1.0

Overall 0

H: cellular respiration produces 

energy for animal activities by 

extracting energy from food

𝑖1: cellular respiration is when 

cells extract energy to produce 

energy for animal activities

𝑠1: cellular respiration is when 

cells extract energy from food 

to produce energy

𝑠3: cellular respiration 

is cellular digestion

𝑠2: cellular respiration 

is a source of energy 

for animal activities

H: cellular respiration produces 

energy for animal activities by 

extracting energy from food

𝑠1: cellular respiration is when 

cells extract energy from food 

to produce energy

𝑠2: cellular respiration 

is a source of energy 

for animal activities

Gold Tree Predicted Tree

Figure 7: An example case illustrating the potential inaccuracy of the automatic evaluation metrics. In the predicted
tree, the fact s3 is a distractor and the step s1 + s3 → i1 is not a valid entailment. Following the official evaluation
code, the nodes i1, H in the predicted tree are aligned to the H , H in the gold tree, respectively (the dotted line). By
comparing the aligned intermediate nodes (i1 vs. H , H vs. H), the predicted tree achieves a Step F1 score of 0.0
and an Intermediate F1 score of 1.0. The Intermediate F1 score being 1.0 should have indicated that the predicted
tree has perfect intermediate conclusions. However, the i1 is not entailed by the s1 and s3.

2021). The nodes in the predicted tree Tpred are
aligned to the nodes in the gold tree Tgold for fur-
ther comparison. Each non-leaf node ipred of Tpred

is aligned to the first non-leaf node igold where the
Jaccard similarity of their respective leaf sentences
is maximum. For any ipred with zero Jaccard sim-
ilarity to all gold nodes, it is aligned to a dummy
gold node with a blank conclusion. In the official
implementation, (1) each igold may correspond to
more than one ipred, while there is no penalty for
duplication when calculating Intermediate F1; (2)
the root node (the given hypothesis sentence which
is identical in Tpred and Tgold) is trivially viewed
as a normal intermediate node (the novel gener-
ated intermediate sentence). Because of these two
reasons, the Intermediate F1 might achieve a high
score (indicating the Tpred can draw correct inter-
mediate conclusions from the premises), even when
the Step F1/AllCorrect is relatively low (indicating
the Tpred does not select the correct premises for
the intermediate nodes). For example, the Entail-
mentWriter (T5-11B) for Task3 achieves an Inter-
mediate F1 of 36.4% while the Step F1/AllCorrect
is only 7.8%/2.9% (Dalvi et al., 2021). Figure 7
shows a specific case.

To alleviate the inaccuracy caused by the above
reasons, we mainly use the more strict metrics (i.e.,
Leaves/Steps/Intermediates/Overall AllCorrect) for
comparison. Furthermore, we adopt manual evalu-
ation on the full trees and individual steps to make
a more accurate comparison (Sec. 6.2).

H Case Study

We show some entailment trees generated by our
METGEN-separated on the Task2 questions in Fig-
ure 8, 9, 10, 11. METGEN can generate a valid en-
tailment tree which may have a different structure
with the gold one (Figure 8). METGEN can han-
dle medium-complexity questions, generate valid
entailment trees and provide the reasoning types
of steps (Figure 9 and 10). The questions which
require more complex reasoning (e.g., the gold tree
in Figure 11 requires 11 leaf facts and 8 entailment
steps) remain challenging. Although the full tree
generated by our method for such complex ques-
tion can be not entirely correct, the intermediate
conclusions (e.g., i1, i2 in Figure 11) are still reli-
able.
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/home/hongruixin/Reasoning/ETree/exp/Controller_task2/2021-12-03_23-13-19
12-27_13-08-18.details.json

Mercury_180443

Predicted tree:
H: a full moon is the moon phase that occurs after a waxing gibbous. (substitution_abd
gibbous.) 

|- pred_int76: a full moon and a waxing gibbous moon are kinds of phases of the moon. (conjunction) 
| |- sent12: a waxing gibbous is a kind of phase of the moon. ([]) 
| |- sent20: a full moon is a kind of phase of the moon. ([]) 
|- sent15: a full moon occurs after a waxing gibbous moon. ([]) 

Gold tree
int1: a full moon is the moon phase that occurs after a waxing gibbous.

|- sent12: a waxing gibbous is a kind of phase of the moon.
|- sent15: a full moon occurs after a waxing gibbous moon.
|- sent20: a full moon is a kind of phase of the moon.

Question Q: Which phase of the Moon occurs after a waxing gibbous?

Answer A: full moon

Hypothesis H: a full moon is the moon phase that occurs after a waxing gibbous

Facts S:

s1: state of matter is a property of matter and includes ordered values of 

solid / liquid / gas

s2: the moon is earth 's moon

s3: usually means most of the time

s4: phase means state

s5: occur is similar to appear

s6: the moon orbits the earth

s7: to be found in means to be contained in

s8: revolving around something means orbiting that something

s9: the moon orbiting the earth occurs once per month

s10: a complete revolution / orbit of the moon around the earth takes 1 / one 

month

s11: amount is a property of something and includes ordered values of none 

/ least / little / some / half / much / many / most / all

s12: a waxing gibbous is a kind of phase of the moon

s13: warm / becoming warm means heat is added

s14: a phase change is when matter / a substance changes from one state of 

matter into another state of matter

s15: a full moon occurs after a waxing gibbous moon

s16: the moon reflects sunlight towards the earth

s17: generally means usually

s18: to happen means to occur

s19: type of moon / kind of moon means moon phase

s20: a full moon is a kind of phase of the moon

s21: visible means able to be seen

s22: motion / movement means moving / to move

s23: the moon completes a lunar cycle over a period of 29 days

s24: the moon rising occurs once per day

s25: lunar phase is synonymous with moon phase

Gold Tree

H: a full moon is the moon phase 

that occurs after a waxing gibbous

𝑠12: a waxing gibbous is a 

kind of phase of the moon

𝑠15:a full moon occurs after a 

waxing gibbous moon

𝑠20: a full moon is a kind of 

phase of the moon

Predicted Tree

𝑖1: a full moon and a waxing gibbous 

moon are kinds of phases of the moon

H: a full moon is the moon phase 

that occurs after a waxing gibbous

𝑠12: a waxing gibbous is a 

kind of phase of the moon

𝑠15:a full moon occurs after a 

waxing gibbous moon

𝑠20: a full moon is a kind of 

phase of the moon

Figure 8: Case 1. The predicted entailment tree consists of two 2-premise steps, while the gold tree consists of
one 3-premise step. Under the automatic evaluation metric, the predicted tree would be rated as invalid (Overall
AllCorrect = 0), since the predicted steps do not match the gold step. However, the predicted tree should be valid
because each step in the tree is a valid entailment (i.e., the 3-premise step can be decomposed into two valid
2-premise steps). It would be rated as valid under manual evaluation.
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Question Q: According to the Periodic Table of the Elements, which set of elements has similar properties?

Answer A: He, Ne, Ar

Hypothesis H: he, ne, ar have similar properties

Facts S:

s1: cannot is the opposite of can

s2: helium / neon / argon belong to noble gases family , group 18 on the 

periodic table

s3: a periodic table is a kind of scientific model

s4: charge is a property of an object / a material / a substance and includes 

ordered values of negatively-charged / neutral / positively-charged

s5: including means containing

s6: similar means in common

s7: magnetism is a property of materials / objects and includes ordered 

values of nonmagnetic / magnetic

s8: a proton has a positive 1 electric charge

s9: the chemical symbol for helium is he

s10: similarity means the same property

s11: identical means copy

s12: chemical reactivity is a property of elements and includes ordered 

values of reactive / unreactive

s13: the chemical symbol for argon is ar

s14: amount is a property of something and includes ordered values of none 

/ least / little / some / half / much / many / most / all

s15: an element is identified by its number of protons

s16: according to is similar to be determined by

s17: a group / family in the periodic table means a column in the periodic 

table

s18: characteristic means property

s19: the chemical symbol for neon is ne

s20: same means identical / equal in value / amount / number / quantity

s21: made of is similar to contains

s22: elements in the same group on the periodic table of elements have 

similar properties

s23: in common is similar to the same

s24: positive charge is the opposite of negative charge

s25: identical is the opposite of different

H: he, ne, ar have similar properties

𝑖1: he, ne, ar belong to noble 

gases family, group 18 on the 

periodic table

𝑠13:  the chemical 

symbol for argon 

is ar

𝑠19: the chemical 

symbol for neon 

is ne

𝑠22: elements in the same group on 

the periodic table of elements have 

similar properties

𝑠2:  helium / neon / argon 

belong to noble gases family , 

group 18 on the periodic table

𝑠9:  the chemical 

symbol for helium 

is he

H: he, ne, ar have similar properties

𝑖3: helium, neon, 

and argon have 

similar properties

𝑠13:  the chemical 

symbol for argon 

is ar

𝑠19: the chemical 

symbol for neon 

is ne

𝑠22: elements in the same 

group on the periodic table 

of elements have similar 

properties

𝑠2:  helium / neon / argon 

belong to noble gases 

family , group 18 on the 

periodic table

𝑠9:  the chemical 

symbol for helium 

is he

𝑖1: the chemical symbol for 

argon is ar and the chemical 

symbol for neon is ne

𝑖2: the chemical symbol for helium is he 

and the chemical symbol for argon is ar

and the chemical symbol for neon is ne

Gold Tree

Predicted Tree

Conjunction

Substitution

If-then

Conjunction

Conjunction Substitution

Substitution

Figure 9: Case 2. Explaining the question and answer in this case requires 5 leaf facts from the given 25 facts.
METGEN can select the correct facts, generate valid entailment trees, and provide the reasoning types of steps.
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NYSEDREGENTS_2014_4_17

Predicted Tree
pred_int534: the cat will inherit the white colored fur from its parents. (if
its fur from its parents.) 

|- pred_int34: the fur of the parent cats is white in color. (conjunction) 
| |- sent8: the parent cats have white fur. ([]) 
| |- sent20: white fur is white in color. ([]) 
|- pred_int430: a cat inherits color / coloration of fur from its parents. (substitution) 
| |- sent6: a cat is a kind of animal. ([]) 
| |- pred_int244: animals inherit color / coloration of fur from their parents. (if
| | |- sent2: the color of / coloration of fur is an inherited characteristic. ([]) 
| | |- pred_int27: animals can inherit characteristic
| | | |- sent7: inheriting is when an inherited characteristic is passed from parent to offspring. ([]) 
| | | |- sent14: animals produce offspring. ([]) 

Gold Tree:
int3: the cat will inherit the white colored fur from its parents.

|- int2: a cat will inherit the color of the fur of its parents.
| |- int1: the offspring will inherit the color of the fur of its parent.
| | |- sent2: the color of / coloration of fur is an inherited characteristic.
| | |- sent7: inheriting is when an inherited characteristic is passed from parent to offspring.
| |- sent14: animals produce offspring.
| |- sent6: a cat is a kind of animal.
|- sent20: white fur is white in color.
|- sent8: the parent cats have white fur.

ID: NYSEDREGENTS_2014_4_17
Q: Which trait would a cat most likely inherit from its parents?
A: having white fur
H: the cat will inherit the white colored fur from its parents
S:
s1: heredity is similar to inheritance
s2: the color of / coloration of fur is an inherited characteristic
s3: the mature / adult form of a kitten is called a cat
s4: if an organism passes on its traits then future generations will have those traits
s5: freckles are an inherited characteristic
s6: a cat is a kind of animal
s7: inheriting is when an inherited characteristic is passed from parent to offspring
s8: the parent cats have white fur
s9: coloration means a thing 's color
s10: an animal knows how to do instinctive behaviors when it is born
s11: color is a kind of physical / visual property
s12: offspring receives half of the genes from each parent
s13: a homozygous recessive organism contains only recessive genes
s14: animals produce offspring
s15: trait means property
s16: the size of an organism is an inherited characteristic
s17: genetic / hereditary means of genes / heredity
s18: coat means fur coat
s19: genes contains genetic information
s20: white fur is white in color
s21: coloration means a pattern of colors
s22: hair / fur is a part of skin for protection / keeping warm
s23: the shape of body parts is an inherited characteristic
s24: hair is similar to fur
s25: dna are a vehicle for passing genes from parent to offspring

Question Q: Which trait would a cat most likely inherit from its parents?

Answer A: having white fur

Hypothesis H: the cat will inherit the white colored fur from its parents

Facts S:

s1: heredity is similar to inheritance

s2: the color of / coloration of fur is an inherited characteristic

s3: the mature / adult form of a kitten is called a cat

s4: if an organism passes on its traits then future generations will have those 

traits

s5: freckles are an inherited characteristic

s6: a cat is a kind of animal

s7: inheriting is when an inherited characteristic is passed from parent to 

offspring

s8: the parent cats have white fur

s9: coloration means a thing 's color

s10: an animal knows how to do instinctive behaviors when it is born

s11: color is a kind of physical / visual property

s12: offspring receives half of the genes from each parent

s13: a homozygous recessive organism contains only recessive genes

s14: animals produce offspring

s15: trait means property

s16: the size of an organism is an inherited characteristic

s17: genetic / hereditary means of genes / heredity

s18: coat means fur coat

s19: genes contains genetic information

s20: white fur is white in color

s21: coloration means a pattern of colors

s22: hair / fur is a part of skin for protection / keeping warm

s23: the shape of body parts is an inherited characteristic

s24: hair is similar to fur

s25: dna are a vehicle for passing genes from parent to offspring

H: the cat will inherit the white 

colored fur from its parents

𝑖1: the offspring will 

inherit the color of the fur 

of its parent.

𝑠2:  the color of / 

coloration of fur is an 

inherited characteristic

𝑠7: inheriting is when an 

inherited characteristic is passed 

from parent to offspring

𝑠8: the parent 

cats have 

white fur.

𝑠14: animals 

produce 

offspring

𝑠6: a cat is 

a kind of 

animal

𝑖2: a cat will inherit the color 

of the fur of its parents

𝑠20: white 

fur is white 

in color.

H: the cat will inherit the white 

colored fur from its parents

𝑖1: animals can inherit 

characteristic from their 

parents

𝑠2:  the color of / 

coloration of fur is an 

inherited characteristic

𝑠7: inheriting is when an 

inherited characteristic is passed 

from parent to offspring

𝑠8: the parent 

cats have 

white fur.

𝑠14: animals 

produce 

offspring

𝑠6: a cat is 

a kind of 

animal

𝑖2: animals inherit color / 

coloration of fur from their 

parents

𝑠20: white 

fur is white 

in color.

𝑖3: a cat inherits color / 

coloration of fur from its 

parents

𝑖4: the fur of the parent cats 

is white in color

Gold Tree

Predicted Tree

Conjunction

Substitution

If-then

Substitution

If-then

Substitution Conjunction

If-then

Figure 10: Case 3. METGEN can handle medium-complexity questions and provide the reasoning types of steps.
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Mercury_7186148
Predicted Tree
H: heat is transferred to the spoon from the hot chocolate through conduction. (if
through conduction.) 

|- pred_int674: hot chocolate is a source of heat. (substitution) 
| |- sent8: hot chocolate is kind of hot substance. ([]) 
| |- sent13: a hot substance is a source of heat. ([]) 
|- pred_int73: if heat is conducted to a spoon then the spoon will become hot. (substitution) 
| |- sent6: a spoon is a kind of object. ([]) 
| |- sent18: if heat is conducted to an object then that object will become hot. ([]) 

Gold Tree:
int8: heat is transferred to the spoon from the hot chocolate through conduction.

|- int1: if heat is conducted to a spoon then that spoon will become hot.
| |- sent18: if heat is conducted to an object then that object will become hot.
| |- sent6: a spoon is a kind of object.
|- int7: the spoon in the hot chocolate will become hot.
| |- int6: the spoon being exposed to the hot chocolate is an example of thermal conductor being exposed to a source of heat.
| | |- int2: spoons are usually thermal conductor.
| | | |- sent20: spoons are usually made of metal.
| | | |- sent4: metal is a thermal conductor.
| | |- int4: a spoon is exposed to the hot chocolate.
| | | |- int3: if a spoon is used to stir hot chocolate then that spoon is touching that liquid.
| | | | |- sent15: if a spoon is used to stir a liquid then that spoon is touching that liquid.
| | | | |- sent23: hot chocolate is a kind of liquid.
| | | |- sent2: touching is similar to being exposed to.
| | | |- sent25: a spoon is used to stir a cup of hot chocolate.
| | |- int5: the cup of hot substance is a source of heat.
| | | |- sent13: a hot substance is a source of heat.
| | | |- sent8: hot chocolate is kind of hot substance.
| |- sent21: if a thermal conductor is exposed to a source of heat then that conductor may become hot / warm

ID: Mercury_7186148
Q: A student is mixing a cup of hot chocolate with a spoon. How is the heat transferred between the hot chocolate and the par
of the spoon that is in the hot chocolate?
A: Conduction transfers energy from the hot chocolate to the spoon.
H: heat is transferred to the spoon from the hot chocolate through conduction
S:
s1: static electricity is when electrons are exchanged between objects through friction
s2: touching is similar to being exposed to
s3: if something transfers energy to something else then that something else absorbs that energy
s4: metal is a thermal conductor
s5: friction occurs when two object 's surfaces move against each other
s6: a spoon is a kind of object
s7: if something is in something else , then that something is exposed to that something else
s8: hot chocolate is kind of hot substance
s9: conductivity is a measure of how easily electricity travels through a material
s10: friction causes the temperature of an object to increase
s11: the heat energy in the cooler object increases in thermal conduction
s12: if one object absorbs more energy than another object , then the object will be warmer
s13: a hot substance is a source of heat
s14: conductivity is a kind of physical property
s15: if a spoon is used to stir a liquid then that spoon is touching that liquid
s16: thermal energy is a kind of energy
s17: absorbing energy causes objects / materials / substances to heat
s18: if heat is conducted to an object then that object will become hot
s19: sending electricity through a conductor causes electricity / electric current to flow through that conductor
s20: spoons are usually made of metal
s21: if a thermal conductor is exposed to a source of heat then that conductor may become hot / warm
s22: heat means heat energy
s23: hot chocolate is a kind of liquid
s24: heat energy is synonymous with thermal energy
s25: a spoon is used to stir a cup of hot chocolate

Question Q: A student is mixing a cup of hot chocolate with a spoon. How is the heat transferred between the hot chocolate and 

the part of the spoon that is in the hot chocolate?

Answer A: Conduction transfers energy from the hot chocolate to the spoon.

Hypothesis H: heat is transferred to the spoon from the hot chocolate through conduction

Facts S:

H: heat is transferred to the spoon from the 

hot chocolate through conduction

𝑖5: the cup of hot 

substance is a 

source of heat

𝑠15: if a spoon is used to stir 

a liquid then that spoon is 

touching that liquid

𝑠13: a hot 

substance is a 

source of heat

𝑠8: hot chocolate 

is kind of hot 

substance

𝑠23: hot 

chocolate is a 

kind of liquid

𝑠6: a spoon 

is a kind of 

object

𝑠4: metal is a 

thermal 

conductor

𝑠2: touching is 

similar to being 

exposed to

𝑖3: if a spoon is used to stir 

hot chocolate then that spoon 

is touching that liquid

𝑖4: a spoon is 

exposed to the hot 

chocolate

𝑖2: spoons are 

usually thermal 

conductor

𝑖1: if heat is conducted to 

a spoon then that spoon 

will become hot

𝑖7: the spoon in the hot 

chocolate will become 

hot

𝑖6: the spoon being exposed to the 

hot chocolate is an example of 

thermal conductor being exposed 

to a source of heat

𝑠25: a spoon is 

used to stir a cup 

of hot chocolate

𝑠20: spoons are 

usually made of 

metal

𝑠18: if heat is conducted 

to an object then that 

object will become hot

𝑠21: if a thermal conductor is 

exposed to a source of heat 

then that conductor may 

become hot / warm

Gold Tree

Predicted Tree

𝑠13: a hot 

substance is a 

source of heat

𝑠8: hot chocolate 

is kind of hot 

substance

𝑠6: a spoon 

is a kind of 

object

𝑠18: if heat is conducted 

to an object then that 

object will become hot

𝑖1: hot chocolate is 

a source of heat

𝑖2: if heat is conducted 

to a spoon then the 

spoon will become hot

H: heat is transferred to the spoon from the 

hot chocolate through conduction

s1: static electricity is when electrons are exchanged between objects through 

friction

s2: touching is similar to being exposed to

s3: if something transfers energy to something else then that something else 

absorbs that energy

s4: metal is a thermal conductor

s5: friction occurs when two object 's surfaces move against each other

s6: a spoon is a kind of object

s7: if something is in something else , then that something is exposed to that 

something else

s8: hot chocolate is kind of hot substance

s9: conductivity is a measure of how easily electricity travels through a 

material

s10: friction causes the temperature of an object to increase

s11: the heat energy in the cooler object increases in thermal conduction

s12: if one object absorbs more energy than another object , then the object 

will be warmer

s13: a hot substance is a source of heat

s14: conductivity is a kind of physical property

s15: if a spoon is used to stir a liquid then that spoon is touching that liquid

s16: thermal energy is a kind of energy

s17: absorbing energy causes objects / materials / substances to heat

s18: if heat is conducted to an object then that object will become hot

s19: sending electricity through a conductor causes electricity / electric 

current to flow through that conductor

s20: spoons are usually made of metal

s21: if a thermal conductor is exposed to a source of heat then that conductor 

may become hot / warm

s22: heat means heat energy

s23: hot chocolate is a kind of liquid

s24: heat energy is synonymous with thermal energy

s25: a spoon is used to stir a cup of hot chocolate

Conjunction

Substitution

If-then

SubstitutionSubstitution

If-then

Figure 11: Case 4. The question requires more complex reasoning, where the gold tree contains 11 leaf facts and 8
entailment steps. Although the full tree generated by METGEN is not entirely correct, the intermediate conclusions
i1, i2 are still reliable.
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