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Abstract

Recent years have witnessed the improving per-
formance of Chinese Named Entity Recogni-
tion (NER) from proposing new frameworks or
incorporating word lexicons. However, the in-
ner composition of entity mentions in character-
level Chinese NER has been rarely studied.
Actually, most mentions of regular types have
strong name regularity. For example, entities
end with indicator words such as “/AF] (com-
pany) ” or “831T (bank)” usually belong to or-
ganization. In this paper, we propose a simple
but effective method for investigating the regu-
larity of entity spans in Chinese NER, dubbed
as Regularity-Inspired reCOgnition Network
(RICON). Specifically, the proposed model
consists of two branches: a regularity-aware
module and a regularity-agnostic module. The
regularity-aware module captures the internal
regularity of each span for better entity type pre-
diction, while the regularity-agnostic module is
employed to locate the boundary of entities and
relieve the excessive attention to span regularity.
An orthogonality space is further constructed
to encourage two modules to extract different
aspects of regularity features. To verify the
effectiveness of our method, we conduct exten-
sive experiments on three benchmark datasets
and a practical medical dataset. The experimen-
tal results show that our RICON significantly
outperforms previous state-of-the-art methods,
including various lexicon-based methods.

1 Introduction

Named entity recognition (NER) aims at identify-
ing text spans pertaining to specific entity types. It
plays an important role in many downstream tasks
such as relation extraction (Cheng et al., 2021),
entity linking (Gu et al., 2021), co-reference reso-
lution (Clark and Manning, 2016), and knowledge
graph (Ji et al., 2020). Due to the complex composi-
tion (Gui et al., 2019), character-level Chinese NER
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Figure 1: (a) Complex composition of Chinese NER and
regularity. (b) Excessive focusing on regularity leads to
wrong entity boundary.

is more challenging compared to English NER. As
shown in Figure 1 (a), the middle character “Jii”
can constitute words with the characters to both
their left and their right, such as “JA[{fi (River)”
and “Yii%2 (flows)”, leading to ambiguous charac-
ter boundaries.

There are two typical frameworks for NER. The
first one conceptualizes NER as a sequence labeling
task (Huang et al., 2015; Lample et al., 2016; Ma
and Hovy, 2016), where each character is assigned
to a special label (e.g., B-LOC, I-LOC). The second
one is span-based method (Li et al., 2020a; Yu et al.,
2020), which classifies candidate spans based on
their span-level representations. However, despite
the success of these two types of methods, they
do not explicitly take the complex composition of
Chinese NER into consideration. Recently, several
works (Zhang and Yang, 2018; Gui et al., 2019; Li
et al., 2020b) utilize external lexicon knowledge to
help connect related characters and promote captur-
ing the local composition. Nevertheless, building
the lexicon is time-consuming and the quality of
the lexicon may not be satisfied.

In contrast to previous works, we observe that
the regularity exists in the common NER types
(e.g., ORG and LOC). As shown in Figure 1 (a),
“J& H /RiA] (Niger River)” follows the specific com-
position pattern “XX+jA] (XX + River)” which ends
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with indicator character “JA[" and mostly belongs
to location type, and the ambiguous character “Jii”
can properly constitute “JiL4%” with the right char-
acter “42”. Thus, the regularity information serves
as important clues for entity type recognition and
identifying the character composition. Formally,
we refer to regularity as specific internal patterns
contained in a type of entity (Lin et al., 2020).
However, too immersed regularity leads to unfa-
vorable boundary detection of entities and disturb-
ing character composition. As shown in Figure 1
(b), “H [EPFA (Chinese team)” conforms to the pat-
tern “XX+PA (XX + Team)”, but the correct entity
boundary should be “H*[E (Chinese)” and “PA 3
(players)” according to the context. Therefore, the
context also plays a key role in determining the
character boundary.

In this paper, we introduce a simple but effective
method to explore the regularity information of en-
tity spans for Chinese NER, dubbed as Regularity-
Inspired reCOgnition Network (RICON). The pro-
posed model consists of two branches named
regularity-aware module and regularity-agnostic
module, where each module has task-specific en-
coder and optimization object. Concretely, the
regularity-aware module aims at analyzing the in-
ternal regularity of each span and integrates the sig-
nificant regularity information into the correspond-
ing span-level representation, leading to precise
entity type prediction. Meanwhile, the regularity-
agnostic module is devised to capture context in-
formation and avoid excessive focus on intra-span
regularity. Furthermore, we adopt an orthogonal-
ity space restriction to encourage two branches to
extract different features with regard to the regular-
ity. To verify the effectiveness of our method, we
conduct extensive experiments on three large-scale
benchmark datasets (OntoNotes V4.0, OntoNotes
V5.0, and MSRA). The results show that RICON
achieves considerable improvements compared to
the state-of-the-art models, even outperforming ex-
isting lexicon-based models. Moreover, we exper-
iment on a practical medical dataset (CBLUE) to
further demonstrate the ability of RICON.

Our contributions can be summarized as follows:

* This is the first work that explicitly explores
the internal regularity of entity mentions for
Chinese NER.

* We propose a simple but effective method for
Chinese NER, which effectively utilizes reg-

ularity information while avoiding excessive
focus on intra-span regularity.

* Extensive experiments on three large-scale
benchmark datasets and a practical medical
dataset demonstrate the effectiveness of our
proposed method.

2 Related Work

Traditional methods treat NER as a sequence label-
ing task, where each word or character in the sen-
tence is assigned to a special label. As a representa-
tive, Huang et al. (2015) utilized the BiLSTM as an
encoder to learn the contextual representation, and
then exploited Conditional Random Field (CRF)
as a decoder to label the tokens. The BiLSTM-
CREF architecture achieved superior performance
on various datasets, hence many following works
(Lample et al., 2016; Ma and Hovy, 2016) adopt
such architecture. More recently, strong pre-trained
language models such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019) are incorporated to
further enhance the performance of NER. Although
the sequence labeling framework achieves decent
performance on flat NER, it struggles for nested
NER. As a result, span-based models are proposed
to solve the nested problem by classifying all possi-
ble spans into predefined types (e.g. PER, LOC) in
the sentence. For example, Yu et al. (2020) adopted
a biaffine attention model to assign scores for all
potential spans and achieved the state-of-the-art
performance on both flat and nested English NER
datasets. Shen et al. (2021) also employed span-
based framework on Chinese NER datasets. In this
paper, we adopt span-based method as our basic
framework for two reasons. Firstly, the span-based
method considers each span and naturally suits ana-
lyzing inner-span character composition. Secondly,
the span-based framework can easily extend our
method from flat NER to nested NER.

Recently, for Chinese NER, researchers pro-
posed various lexicon-based models that incorpo-
rate the external lexicon information and obtained
better results. Zhang and Yang (2018) investigated
Lattice-LSTM for incorporating word lexicons into
the character-based NER model. However, the lat-
tice structure fails to compute in parallel. To ad-
dress this problem, Gui et al. (2019) introduced
a lexicon-based graph neural network that recasts
Chinese NER as a node classification task. There
are also several works that focus on incorporating
all matched words from the lexicon into the charac-
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Figure 2: Overall structure of RICON. Each character in the sentence is first embedded by BERT. Then, two separate
Bi-LSTM layers are adopted to encode representations for the regularity-aware module and regularity-agnostic
module. An orthogonality space is further utilized to encourage extracting different features for each module.

ter embeddings (Ma et al., 2020; Liu et al., 2021).
Different from the aforementioned lexicon-based
works that incorporate external resources, in this
paper, we focus on exploring the internal regularity
information of spans.

3 Method

The overall architecture of our RICON is shown in
Figure 2, which mainly consists of two branches:
the regularity-aware module and the regularity-
agnostic module.

3.1 Embedding and Task-specific Encoder

First of all, each character of the input sequence is
embedded into a dense vector. Then the character
vectors are separately fed into two task-specific
bidirectional LSTM (BiLSTM) layers to extract
the corresponding hidden states for each module
respectively. Formally, given a sentence with [
characters s = {c1, co, ..., c;}. We use a standard
BERT (Devlin et al., 2019) to obtain the context
dependent embeddings for a target token:

z; = BERT(¢;) (1)

Then, the sequence of character embeddings will be
fed to two separate BILSTM layers for regularity-
aware module and regularity-agnostic module. The
hidden state of BiLSTM is expressed as follows:

Hip = LSTM(zs, Bio1r) )

)

A
¢ Linear
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Figure 3: Conceptual comparison of three architectures
for span-based NER. {, } denotes the representations
across from ith to jth character of the span s; ;.

Wiy = LSTM(z1, Biorr) 3)
hi,T = [%}’i,T; %’i,T] (4)

where 7 € {aware, agnostic}, [;] denotes concate-
nation, and the dimension of h; ; is 2d. The char-
acter sequence representation can be denoted as
Hy ={hiz ..., iz, hir}.

3.2 Regularity-aware Module

In this module, we aim to explore the internal regu-
larity of each span. As shown in Figure 3 (a), typi-
cal span-based NER methods (Sohrab and Miwa,
2018; Xia et al., 2019; Li et al., 2020a) represent
each entity span via concatenating corresponding
head and tail features, and use a linear classifier
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to predict the type of this span. In this way, the
span features are coarse-grained. Then, as denoted
in Figure 3 (b), Yu et al. (2020) propose a biaffine
decoder to enhance the interaction between head
and tail representations after two MLPs and predict
span types simultaneously. Nevertheless, the inter-
nal regularity among characters in the span is still
neglected in this biaffine method.

Consequently for this, our regularity-aware mod-
ule is devised to capture the internal regularity fea-
ture for each span s; ;, as demonstrated in Figure 3
(c). It is worth noting that span representations are
obtained by the head and tail characters of the span,
while the regularity representations stem from each
character in the span. To achieve this goal, we
utilize a linear attention to obtain the regularity
representation of each span as follows:

W ht + breg (5)

reg

oy = —copla) ©)

i exp(ar)

h{ice) = Zat h (7)

where hy = hyaware and t € {i,0+1,..., 7} is the
index of the span, Wy € R?4*! and by € R!
are learnable weights and bias respectively. For
a span whose length is 1, we do not extract extra
features but use the hidden representation /; aware
to denote its regularity. The regularity feature
H(reg) ¢ RIXIX2d wil] be used for the subsequent
entity type prediction.

To predict the type of an entity, our model inte-
grates the regularity feature of each span into the
span representations. Firstly, we acquire the span
representation via a biaffine attention mechanism
by interacting head and tail features:

h(span)

Si,j

iU + (hi ® h)UP + by (8)

where h;, hj € Haware are the head and tail rep-
resentations of span s; ;. UM is a 2d x 2d x 2d
tensor, U®) is a 4d x 2d matrix, and b is the bias.
It is worth noting that here we do not apply two sep-
arate MLPs like Figure 3 (b) to generate different
representations for the head and tail features of the
spans, as different MLPs will project the head, tail,
and regularity representation into distinct spaces.
The experiment also verifies that such space in-
consistency degrades the recognition performance.

Then a gated network is devised to integrate the
span and regularity representation as below:

J(U(S) [h(SPan) h(reg)] + bz) )

Si,g Si,j

9sij =

My = gsi; @ AP 4 (1 g, ) © BIB) (10)

Si,j

where U(3) € R4*1 is a trainable parameter and

b, is the bias. o denotes the sigmoid function and ©®
mean the element-wise dot multiplication. Finally,
we adopt a standard linear classifier with a softmax
function to predict the entity type for each span.

Usi; = Softmax(Wtype hs; ; + b3) (11)
where Wiype € R?4%¢ is a trainable parameter and
bs is the bias. The loss function of the regularity-

aware module is defined as cross-entropy:

N 1
Laware = —— Zzzys”log yslg) 1<

(12)
where ys, ; denotes the prediction and ys, ; is the
the ground truth type of the span. IV is the number
of training samples in the regularity-aware module.

3.3 Regularity-agnostic Module

By considering regularity, above regularity-aware
module makes the model stricter in terms of predict-
ing the entity type, thus improving the precision of
entity prediction. Nevertheless, too immersed regu-
larity may result in inaccurate word boundaries. To
get rid of it, we propose to erase the concrete form
of golden entities and relieve the excessive learning
of structural pattern by regularity-aware module. In
this scenario, the head and tail features which deter-
mine boundary become more significant, thereby
we first apply two multi-layer perceptrons (MLPs)
on the hidden states from BiLSTM to get separate
representations for head and tail. Then a biaffine
decoder is leveraged for obtaining entity probabil-
ity of the span s; ; as follows:

hi = MLPpeaa(hi) - hj = MLPa(hy)  (13)

_ 7 T (%

Yij = o([hi; 1] Umlhy;1])
where h; = hi,agnostic: hj = hj,agnostic, Un is a
(2d + 1) x 1 x (2d + 1) trainable parameter, o

(14)
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is the sigmoid function. Finally, we adopt binary
cross-entropy loss to train this task.

N 1 l
Eagnostic = _%Z Z Z[yfy)log(gfp)

where y;; denotes the prediction and y;; is the bi-
nary target indicating whether the span is an entity
or not. N is the number of training samples in the
regularity-agnostic module.

3.4 Orthogonality Space Restriction

As regularity-aware module aims to capture the reg-
ularity information while regularity-agnostic mod-
ule pays no attention to the concrete regularity,
we expect to learn different features for these two
modules. To this end, we construct an orthogo-
nality space on the top of two BiLSTM layers to
encourage encoding different aspects of the input
embeddings. The loss is calculated as follows:

Horth = HawareT Hagnostic ( 16)

N 1 l
1 2
2
Eorth = ”HorthHF = _N Z ZZ |h£§b)|
n=1i=1 j=1

a7
where ||-||% is the squared Frobenius norm and N
is the number of training elements.

3.5 Training and Inference

During training, our RICON can be trained by joint
optimizing above three sub-tasks, so we define the
total loss as below:

L= Alﬁaware + )\2£agnostic + /\3£0rth (18)

where A1, A2, and A3 are hyperparameter. During
inference, we directly use regularity-aware module
to predict the entity type for each span and apply
a post-processing constraint for two overlapped
entity candidates F and F5 that if F; < Eg; <
Ey; < B3, where i and j are start and end indexes,
we only select the entity with the higher type score.

4 Experiments

4.1 Datasets

OntoNotes V4.0 (Weischedel et al., 2011). It is
a multilingual corpus in the news domain. This

dataset has 4 entity types. We use the same split as
(Zhang and Yang, 2018).
OntoNotes V5.0 (Pradhan et al., 2013). Compared
with V4.0, this version has more news data and
contains 18 types of entities. We use the same split
as (Jie and Lu, 2019).
MSRA (Levow, 2006). It contains 3 types of
named entities collected from the news domain.
We use the same split as (Gui et al., 2019).
CBLUE-CMeEE (Hongying et al, 2020).
CBLUE is Chinese biomedical language under-
standing evaluation which consists of 10 sub-tasks.
Among them, CMeEE focuses on Chinese medical
entity extraction and has 9 types of entities. We
use the official train and dev split.
In addition, all types of OntoNotes V4.0,
OntoNotes V5.0, MSRA, and 8 types of CBLUE-
CMEeEE are flat NER, while the symptom type of
CBLUE-CMEeEE is nested NER.

Due to the space limitation, the statistics of all
datasets are listed in the appendix.

4.2 Implementation Details

In our experiments, we use the same settings for
all datasets. Specifically, we adopt the standard
pre-trained Chinese BERT-base model with 768 di-
mensions hidden representation to obtain character
embeddings. We use Adam optimizer with 2e-5
learning rate for BERT embedding fine-tuning and
0.001 learning rate for other parts. The number of
layer and dropout rate of BiLSTM encoders are
set to 3 and 0.4. The hidden state size of BILSTM
encoders is set to 200. For the regularity-agnostic
module, the output dimension of MLPs and the
dropout rate are set to 150 and 0.2. To avoid over-
fitting, we also apply 0.1 dropout rate for the BERT
output embeddings. For the hyper-parameters in
loss, we set Ay = Ay = 1 and A3 = 0.5. For all
experiments including ablation study, we adopt an
average of performance over five different runs to
reduce randomness.

4.3 Comparison Methods

In our experiments, we compare our RICON with
recent state-of-the-art methods, where part of them
contain pre-trained language model BERT or exter-
nal Chinese lexicon information. Here we briefly
describe five typical methods:

(1) Star-GAT (Chen and Kong, 2021) propose a
Star-transformer based NER system. They utilize
explicit head and tail boundary information and
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Models Lexicon OntoNotes V4.0 OntoNotes V5.0 MSRA

P R FI P R F1 P R F1
Lattice LSTM (Zhang and Yang, 2018) v 76.35 71.56 73.88 - - - 93.57 92.79 93.18
Collaborative Graph Network (Sui et al., 2019) v 75.06 74.52 74.79 - - - 94.01 9293 93.47
LGN (Gui et al., 2019) v 76.13 73.68 74.89 - - - 94.19 92.73 93.46
DGLSTM-CRF (Jie and Lu, 2019) - - - 7740 7741 77.40 - - -
WC-GCN (Tang et al., 2020) v 76.59 75.17 75.87 - - - 94.82 93.98 94.40
Star-GAT (Chen and Kong, 2021) 79.25 80.66 79.95 | 78.22 80.88 79.53 - - -
with Pre-trained Language Model
BERT-Tagger 76.01 79.96 77.93 | 73.59 80.55 7691 |93.40 94.12 93.76
BERT+LSTM+CRF 81.99 81.65 81.82 | 77.12 79.81 78.44 |95.06 94.61 94.83
BERT+PLTE (Mengge et al., 2020) v 79.62 81.82 80.60 - - - 9491 94.15 94.53
BERT+Biaffine (Yu et al., 2020) 81.06 84.03 82.52 | 78.79 80.07 79.43 | 96.65 94.75 95.20
BERT+FLAT (Li et al., 2020b) v - - 81.82 - - - - - 96.09
BERT+SoftLexicon (Ma et al., 2020) v 83.41 82.21 82.81 - - - 95.75 95.10 95.42
LEBERT (Liu et al., 2021) v - - 82.08 - - - - - 95.70
RICON (Ours) 81.95 84.78 83.33 | 79.26 81.64 80.43 | 9594 96.33 96.14

Table 1: We compare our RICON with recent state-of-the-art models on three Chinese benchmark datasets.

Dependency GAT-based implicit boundary infor-
mation to improve the performance. It is the SOTA
model on the OntoNotes V5.0 dataset.

(2) BERT+Biaffine (Yu et al., 2020) recast NER
as a task of identifying start and end positions and
assigning a type to each span by a biaffine attention.
(3) BERT+FLAT (Li et al., 2020b) devise a FLAT
model for Chinese NER, which converts the lattice
structure into a flat structure consisting of spans
to overcome the shortage of lattice-based model
(Zhang and Yang, 2018). They also equipped with
BERT embeddings and achieved the SOTA perfor-
mance on the MSRA dataset.

(4) BERT+SoftLexicon (Ma et al., 2020) incorpo-
rate the word lexicon into the character features.
They leverage Chinese lexicon to match every char-
acter in the sentence with word appeared in the lex-
icon to improve the performance, which achieves
the SOTA performance on OntoNotes V4.0.

(5) LEBERT (Liu et al., 2021) introduce a Lexicon
Adapter layer to integrate external lexicon knowl-
edge into BERT layers directly.

4.4 Results

We present the results on three benchmark datasets
in Table 1. From this table, we can observe that
our RICON achieves the state-of-the-art perfor-
mance on these datasets. Moreover, RICON even
outperforms recent methods with Chinese lexi-
con significantly. Concretely, on OntoNotes V4.0,
RICON achieves 0.81 absolute F1 improvement
over the strong method BERT+Biaffine and 0.52
absolute improvement compared with the SOTA
lexicon-based method BERT+SoftLexicon. On
OntoNotes V5.0, we obtain a decent improvement
compared to the SOTA approach Star-GAT by 0.90
F1 score. In addition, on MSRA, although the

All Types Symptom Type
Model P R Fl P R Fl
BERT-Tagger 53.41 63.32 57.95 40.57 4538 42.84
BERT-CRF 58.34 64.08 61.07 46.01 47.51 46.75
BERT-Biaffine 64.17 61.29 62.29 63.17 3391 44.14
RICON 66.25 64.89 65.57 57.93 43.99 50.01

Table 2: Performance of models on CBLUE-CMeEE,
including all types and symptom type.

improvement of our model over the SOTA model
BERT-FLAT is limited, our model still surpasses
the other two lexicon-based models LEBERT and
BERT+SoftLexicon by 0.44 and 0.72 respectively.

In addition, we present the model performance
on CBLUE-CMEeEE in Table 2. Considering there
are no available lexicons for this task, we only
compare RICON with typical models. As shown
in this table, RICON outperforms the strong BERT-
Biaffine model with a 3.28 F1 score improvement
over 9 types. It is remarkable progress in this chal-
lenging dataset. Meanwhile, we provided the re-
sult of nested symptom type. RICON performs
much better than BERT-Biaffine with a 5.81 F1 im-
provement. This observation also denotes that our
RICON also applies to nested NER.

4.5 Ablation Study

We conduct abundant ablation studies on
OntoNotes V4.0 and V5.0 from module and
implementation perspectives in Table 3 and 4.
Vanilla in tables is built from RICON by removing
orthogonality space and regularity-agnostic
module, and omitting to capture regularity features
and integrate it in the regularity-aware module.
From the results in Table 3, we can observe
that: (1) When applying regularity-agnostic mod-
ule to the vanilla, the performances improve by
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OntoNotes V4.0 | OntoNotes V5.0 - Dataset (F1)
Module P R FI P R Tl Implementation [ OntoNotes V4.0 [ OntoNotes V5.0
Vanilla 81.08 84.17 82.59]77.87 82.04 79.42 Vanilla+Reg-aware . 83.16 80.07
+Reg-agnostic 81.18 84.77 82.80|78.32 81.48 79.90 Reg. feature by Mean-pooling | 83.06 (-0.10) 1 79.97 (-0.10)
+Reg-aware 87.49 83.86 83.16/79.28 80.90 80.07 Reg. feature by Max—'poolmg 82.82 (-0.34) 79.79 (-0.28)

. Reg. feature by Multi-Head 83.10 (-0.06) | 79.86 (-0.21)
+Reg-aware & agnostic|81.72 84.89 83.28(79.24 81.48 80.33 Gate replaced with Add $2.96 (:0.20) 7904 (:0.13)
RICON (Ours) 81.95 84.78 83.33]79.26 81.64 80.43 Gate replaced with Cat 82.80 (-:0.36) | 79.77(-0.30)

Apply MLPs to head and tail 82.90 (-0.26) 79.67 (-0.40)
Table 3: Performance of modules on OntoNotes. Vanilla 82.59 (-0.57) | 79.42 (-0.65)

0.21 and 0.48 respectively, showing the effective-
ness of this module. (2) When the vanilla equips
with regularity-aware module, the F1 scores sig-
nificantly improve by 0.57 and 0.65 respectively,
which verifies that regularity plays a significant
role in entity recognition. (3) After combining
regularity-aware and regularity-agnostic modules,
we achieve further improvements, which indicates
that two modules can mutually reinforce each other.
(4) The orthogonality space is a valid method ac-
cording to the further F1 score improvements.

Furthermore, we notice that adding the
regularity-aware module significantly increases
the Precision (1.41 on both datasets, Vanilla vs
Vanilla+Reg-aware) but reduces the Recall (0.31
and 1.04 respectively), which conforms to that fo-
cusing on regularity feature would reinforce the
type prediction, while missing several spans that
are supposed to be entities. Nevertheless, this sit-
uation can be remedied by the regularity-agnostic
module and the Recall improved 1.03 and 0.58,
respectively (Vanilla+Reg-aware vs Vanilla+Reg-
aware & agnostic). This result also meets our mo-
tivation that regularity-agnostic module can rein-
force the entity boundary detection.

As shown in Table 4, there are several alternative
ways to extract regularity information instead of
linear attention used in this paper, such as mean-
pooling, max-pooling, or more complex multi-head
self-attention (Vaswani et al., 2017), but these meth-
ods all perform worse. It is one future direction
to explore how to obtain regularity by a more so-
phisticated architecture. However, considering the
model complexity and performance, we choose
linear attention to capture regularity. In addition,
replacing our devised gate mechanism with a sim-
ple concatenate or add operation both degrades
the performance, denoting that gate mechanism is
more efficient to integrate span feature and regu-
larity feature. We also explored adding two MLPs
separately to head and tail features when generat-
ing span features in the regularity-aware module.
The experimental results prove that different fea-

Table 4: Performance of variants on OntoNotes datasets.

ture space for span feature and regularity feature
leads to worse performance.

4.6 Analysis

In this section, We deeply analyze our proposed
RICON from the following aspects.

4.6.1 Regularity: A Latent Adaptive Lexicon.

The lexicon-based methods focus on incorporating
external word lexicons to improve the performance
of character-based NER. The core concept of them
is preserving all words which match a specific char-
acter and let the subsequent NER model determine
which word to apply (Zhang and Yang, 2018; Ma
et al., 2020). In our model, we calculate the regu-
larity for each span, namely, all words containing a
specific character are considered, and then the best
word and corresponding regularity will be deter-
mined. In this sense, our explored regularity can be
seen as a latent adaptive lexicon. Furthermore, this
latent adaptive lexicon is more complete than ex-
ternal lexicons because all spans matching the spe-
cific character are considered, while lexicon-based
methods only match a limited number of words.
As shown in Table 1, the previous SOTA method
BERT+Biaffine performs worse than lexicon-based
methods, but our regularity-based method RICON
outperforms the lexicon-based methods. Actually,
our regularity-based method can further be com-
bined with lexicon-based methods.

4.6.2 Performance vs. Entity Type.

We examine how regularity affects each entity type.
As Figure 4 shows, 12 types of entities achieve
better performance with the regularity. This result
conforms to the fact that types like GPE, ORG,
and DATE have strong regularity. Nevertheless, for
the types with little regularity information, such as
WORK_OF_ART and PERSON, immersed regu-
larity leads to performance degradation. We no-
tice that the MONEY type typically contains reg-
ularity but we do not observe an improvement in
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Figure 4: The performance of 15 types of entities on OntoNotes V5.0. The types are sorted in descending order
based on the proportion of entities of that type to the total. As the remaining 3 types on OntoNotes V5.0 only have
less than 35 entities (0.05%) among all entities. To avoid the impact of labeling errors, we do not present them here.

#1 Sentence (Truncated)

Characters (Entity Included)

Gold Label

Vanilla

Vanilla + Reg-aware
Regularity weight

P&, NEZE B0 =E®E w2 T E.

(Reportedly, Russian Army withdrawn from the three countries around Baltic

i z i
B-LOC M-LOC M-LOC E-LOC
B-GPE M-GPE M-GPE M-GPE
B-LOC M-LOC M-LOC E-LOC
0.04 0.06 0.07 0.83

)

#2 Sentence (Truncated)

Characters (Entity Included)

Gold Label
Vanilla + Reg-aware
Reg-aware + Reg-agnostic

R EE SR R

(News analysis: why the mergers of American companies are intensifying?)

% 7 Gl
B-GPE  E-GPE 0 0
B-ORG M-ORG M-ORG M-ORG
B-GPE  E-GPE 0 0

Table 5: There examples from the Ontonotes V4.0 dataset. The label is organized in the form of BMES.
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—o—Biaffine

2

S83

S

@

=80 |
77 F
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Entity Length Entity Length

(a) F1 on OntoNotes V4.0

==0==RICON
o= Biaffine

(b) F1 on OntoNotes V5.0
Figure 5: Performance vs. Entity Length

this category. This is, due to inconsistencies be-
tween the training and test dataset. For instance, the
training data contains the abundant pattern "num-
ber+dollar”, while only numbers exist in the test set.
To remedy the excessive regularity, our RICON fur-
ther utilizes a regularity-agnostic module to rectify
the captured regularity. The above observations
also inspire us to devise more elaborate NER for
different entity types with various degree regularity
properties in the future. Our regularity-aware mod-
ule may also serve as a potential tool for evaluating
the intensity of regularity.

4.6.3 Performance vs. Entity Length.

Figure 5 depicts the performance on the OntoNotes
V4.0 and V5.0 datasets with different length of en-
tities. From this figure, we can observe that our
RICON consistently outperforms BERT-Biaffine

(Yu et al., 2020) when the entity length is longer
than 2, which illustrates that the regularity informa-
tion is helpful to predict the types for long entities.
In contrast, BERT-Biaffine performs comparable
to RICON when entity length is 2 as there are no
additional character information except the head
and tail representations.

4.6.4 Case study.

Table 7 shows two examples from OntoNotes V4.0.
In the first example, the Vanilla misidentifies the
entity type, while Vanilla+reg-aware learns regular-
ity “XX+&" by the greatest weight 0.83 on “J&",
thus obtaining the accurate entity type. It is worth
noting that regularity can capture more complex
character compositions besides explicit patterns in
the first example. More complex examples are pre-
sented in the appendix. In the second example,
“ZE[E /A F]" conforms to the regularity "XX +/2
7" and is recognized as organization type by our
Vanilla+Reg-aware model. After equipping with
the regularity-agnostic module, we obtain the pre-
cise character boundary and relieve the excessive
attention to regularity.

5 Conclusion

In this paper, we proposed a simple but effec-
tive method to explore the regularity information
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for Chinese NER, dubbed as Regularity-Inspired
reCOgnition Network (RICON). It contains a
regularity-aware module to capture the internal
regularity feature of each span, and a regularity-
agnostic module to reinforce the entity boundary
detection while avoid imposing excessive attention
on regularity. The features of two modules are en-
couraged to be dissimilar by an orthogonality space
restriction. Evaluation shows that RICON achieves
the state-of-the-art performance on four datasets.
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A Data Statistics

Table 6 shows the detailed statistics of each dataset.

Datasets Type Train Dev Test
Sentence  15.7K 4.3K 4.3K
OntoNotes V4.0 Char 491.9K 200.5K 208.1K
Entity 12.8K 6.5K 7.2K
Sentence 36K 6.1K 4.5K
OntoNotes V5.0 Char 1197.5K 173.3K 147.4K
Entity 58.1K 8.5K 7.0K
Sentence  46.4K - 4.4K
MSRA Char 2169.9K - 172.6K
Entity 69.7K - 5.2K
Sentence  15.3K 5.0k -
CBLUE-CMeEE Char 825.0K 270.4K -
Entity 62.0K 20.3K -

Table 6: Statistics of datasets.

B More Case Study

B.1 Complex Regularity

Besides explicit patterns like the first example in
Table 5, Table 7 shows a more complex form of
regularity that our model can capture. In this ex-
ample, the Vanilla+Reg-aware model pays highest
attention weight 0.92 to important character ”F1”
(and), and recognize that A and B are indepen-
dent entities according to the regularity “A F B
(A and B)”. For comparison, the vanilla fails to
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B EXGY, EaBE - EBERNAA-.
Sentence (Truncated) . . . . . .
(RITEK Nien Hsing Textiles are the only two companies on the list in Taiwan.)
Characters (Entity Included) B & F s Bl ]
Gold Label B-ORG E-ORG B-ORG M-ORG M-ORG E-ORG
Vanilla o B-ORG M-ORG M-ORG M-ORG M-ORG E-ORG
Vanilla + Reg-aware B-ORG E-ORG B-ORG M-ORG M-ORG E-ORG
Regularity weight 7.5e-2 2.5e-6 9.2e-1 2.1e-6 8.9e-6 9.5e-4 3.1e-5

Table 7: An example on the Ontonotes V4.0 dataset. The label is organized in the form of BMES.

...complicated with multi-organ damage multi-organ damage

multi-organ damage

multi-organ damage

Sentence (Truncated) Golden Entity / Type Biaffine Prediction RICON Prediction Regularity
(1) fliZ s EoR... filiZ 548, Symptom ARIRH filiZ 528, Symptom

Multi-lobed lung lesions showed that... Multi-lobed lung lesions N/A Multi-lobed lung lesions XX+
(2) KRRt A HHRZE R E.. KARELA MRS, Symptom  AIHS KA IREEA %22, Symptom

Massive fusion lesions were the main... Massive fusion lesion N/A Massive fusion lesion

Q) IR . 2 5UE. . HFHEZE, Symptom ENYSil FFHERZE . Symptom XX+lesion
Increase liver lesions, most of which... liver lesions N/A liver lesions

@ BRI E - %, Symptom fF#15, Disease JiF#51%, Symptom

...can be complicated with liver damage.  liver damage liver damage liver damage XX+ %
(5) SARS VRS I OMER ... DERE, Symptom DIEFRE, Disease  /CMFHIE, Symptom

SARS children suffer from heart damage... heart damage heart damage heart damage

©) A ENERIRE ZIEFRE, Symptom ZIERRE, Disease ZNERHHE, Symptom XX+damage

Table 8: Cases study on the domain CBLUE-CMEeEE dataset.

distinguish these two entities. This example fur-
ther reveals that our regularity-aware module can
discover more complex character compositions.

B.2 Case Study in Medical Domain

To further demonstrate the effectiveness of our RI-
CON in Chinese NER, we present six examples
of the CBLUE-CMEeEE dataset from the medical
domain. As shown in the first three examples in
Table 8, the biaffine model fails to identify the
accurate boundary of the entities, thus leading to
unrecognized entity type. However, our RICON
achieves detecting the correct span boundary as
well as predicting golden type type (Symptom) of
the entities according to the regularity "XX+JF22"
(XX+lesion). In the last three examples, both bi-
affine model and our RICON successfully detect
the correct span boundary of the entities. For entity
type prediction, the biaffine model assigns a wrong
type (Disease) to these entities, but our RICON
predicts types correctly as a result of it captures the
regularity feature "XX+ %" (XX+damage) from
"Symptom" type. To sum up, our RICON is also
beneficial for domain datasets.
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