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Abstract
Existing multilingual video corpus moment re-
trieval (mVCMR) methods are mainly based
on a two-stream structure. The visual stream
utilizes the visual content in the video to esti-
mate the query-visual similarity, and the subti-
tle stream exploits the query-subtitle similarity.
The final query-video similarity ensembles sim-
ilarities from two streams. In our work, we pro-
pose a simple and effective strategy termed as
Cross-lingual Cross-modal Consolidation (C3)
to improve mVCMR accuracy. We adopt the
ensemble similarity as the teacher to guide the
training of each stream, leading to a more pow-
erful ensemble similarity. Meanwhile, we use
the teacher for a specific language to guide the
student for another language to exploit the com-
plementary knowledge across languages. Ex-
tensive experiments on mTVR dataset demon-
strate the effectiveness of our C3 method.

1 Introduction

Video Corpus Moment Retrieval (VCMR) task has
been proposed in (Escorcia et al., 2019; Lei et al.,
2020), which aims to retrieve a short moment from
a large video corpus given a natural language query.
Recently, (Lei et al., 2021a) introduces a multilin-
gual Video Corpus Moment Retrieval (mVCMR)
task. Compared with VCMR, mVCMR supports
queries in multiple languages. It is more useful in
practice, especially in international applications.

To facilitate the research in mVCMR, (Lei et al.,
2021a) builds a large-scale mTVR dataset, where
queries are in two languages. Apart from the
video’s visual content, the video’s textual subti-
tles are provided as auxiliary information to help
the query-to-video retrieval. (Lei et al., 2021a) pro-
poses an mXML model to generate the query-video
similarity for video retrieval and the query-clip sim-
ilarity for moment localization with a two-stream
structure. The subtitle stream captures the similar-
ity between the text query and the video’s textual
subtitles. In parallel, the visual stream describes the
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Figure 1: Illustration of our Cross-lingual Cross-modal
Consolidation (C3). The left green and right yellow
boxes contain similarities using English and Chinese
queries, respectively. Query-visual similarity measures
the relevance between the query and visual context, and
query-subtitle similarity denotes that between the query
and subtitle context. The final similarity is obtained by
summing up the query-visual and query-subtitle similar-
ities. The final similarity in a specific language serves as
the teacher to guide the learning of query-subtitle/query-
visual similarity in another language.

similarity between the text query and the video’s
visual content. The final text-video similarity is a
summation of the similarities from two streams.

As the final similarity is obtained from summing
up similarities of two streams, straightforwardly,
it is reasonable to hypothesize that improving the
effectiveness of the similarity from each stream is
beneficial to enhancing the performance of the fi-
nal similarity. Meanwhile, since the final similarity
fuses the information from two modalities, it is also
reasonable to hypothesize that the final similarity is
more reliable than the similarity from each stream.
Based on the above two hypotheses, we propose
a simple approach to improve the performance of
two-stream architecture for the mVCMR task. To
be specific, we use the final similarity fusing two
modalities as the teacher and the similarity from
each stream as the student. We train the student
through the guidance of the teacher’s knowledge.
Meanwhile, to exploit the natural compensation
across languages, we devise a student in one lan-
guage and the teacher in another language. We
term our method as cross-lingual cross-modal con-

1854



solidation (C3), as visualized in Figure 1. Compre-
hensive experimental results on the mTVR dataset
demonstrate the effectiveness of our C3 method.

2 Related Work

Text-video retrieval. Traditionally, text-video re-
trieval (Rohrbach et al., 2015; Xu et al., 2016) is
normally tackled through two mainstream meth-
ods: joint-embedding methods (Xu et al., 2015;
Torabi et al., 2016; Pan et al., 2016; Plummer
et al., 2017; Miech et al., 2019) and attention-
based methods (Yu et al., 2017, 2018; Hori et al.,
2017; Krishna et al., 2017). Recently, inspired
by the great success of pre-training achieved by
Transformer (Vaswani et al., 2017) and BERT (De-
vlin et al., 2019) in natural language processing,
Transformer/BERT-based models emerge for solv-
ing text-video retrieval (Sun et al., 2019b,a; Li et al.,
2020; Luo et al., 2020; Lei et al., 2021b).
Video corpus moment retrieval. Video corpus
moment retrieval (Escorcia et al., 2019; Lei et al.,
2020) aims to retrieve the ground-truth video from
the whole corpus and predict the moment with high
Intersection-of-Union (IoU) with the ground-truth
moment using the natural language query. In prac-
tice, videos are often associated with other modal-
ities (e.g., subtitles), so the multi-modal moment
retrieval task with both visual and text contexts
has been proposed. The recent work mTVR (Lei
et al., 2021a) extends the monolingual moment
retrieval task to the multilingual setting, and intro-
duces a large-scale multilingual moment retrieval
(i.e., mTVR) dataset, where the language queries
and subtitles are in two languages (i.e., English
and Chinese). Meanwhile, it proposes the mXML
model jointly trained on the English and Chinese
data for multilingual video moment retrieval.
Knowledge distillation. (Hinton et al., 2015) pro-
poses knowledge distillation (KD), where the stu-
dent network is trained by the soft output of the
teacher network. Recently, knowledge distillation
has demonstrated the effectiveness for many vi-
sion and language tasks (Tan et al., 2018; Hu et al.,
2020; Fu et al., 2021; Wang et al., 2020; Fei et al.,
2021; Sun et al., 2019c; Hou et al., 2020; Sanh
et al., 2019; Peng et al., 2019; Jin et al., 2019; Liu
et al., 2022, 2020, 2021). For example, (Sun et al.,
2019c) proposes a Patient Knowledge Distillation
method to compress an original large model into an
equally-effective lightweight shallow network for
pre-trained language models (Devlin et al., 2019).

3 Method

3.1 Preliminary

Problem Definition. The current multilingual mo-
ment retrieval model mXML (Lei et al., 2021a)
performs video retrieval at its shallow layers and
moment localization at its deep layers. We denote
a query by qg, where g denotes the language type,
e.g., English. A video v consists of L consecutive
moments {cl}Ll=1. Each moment cl is paired with
subtitle sg,l. mXML generates the query-video
score S(qg, v) for video retrieval and the index of
the start/end frame tst/ted for moment localization:

[S(qg, v), tst, ted] = mXML(qg, {(cl, sg,l)}Ll=1).

mXML supports English (en) and Chinese (zh),
i.e., g ∈ {en, zh}. Below, we describe the video
retrieval and moment localization in mXML briefly.
You can refer to the Appendix A for more details.
Input Feature. ResNet-152 (He et al., 2016) and
I3D (Carreira and Zisserman, 2017) extract the vi-
sual features of each video moment. The language
features are extracted by RoBERTa-base (Liu et al.,
2019) for English (Liu et al., 2019) and Chi-
nese (Cui et al., 2020), respectively. Self-Encoder
(SE) based on Transformer (Vaswani et al., 2017)
and modular attention (Lei et al., 2020) are used to
further encode the visual and text features.
Video Retrieval. The subtitle-based score for
video retrieval Ss(qg, v) and the visual-based score
Sv(qg, v) are obtained by two streams, respectively.
The details of obtaining Ss(qg, v) and Sv(qg, v) are
shown in Appendix A.3. The final video retrieval
score S(qg, v) using both contexts is devised as

S(qg, v) = Ss(qg, v) + Sv(qg, v). (1)

Moment Localization. The subtitle-based query-
clip score Ss(qg, cl) and the visual-based query-
clip score Sv(qg, cl) are computed by two streams,
respectively. The details of computing Ss(qg, cl)
and Sv(qg, cl) are shown in Appendix A.4. The
final query-clip score is devised as

S(qg, cl) = Ss(qg, cl) + Sv(qg, cl). (2)

Then, to produce moment localization predictions
from S(qg, cl), mXML predicts the start and end
probabilities pst

g ,p
ed
g ∈ RL for each query.

For mXML, the video retrieval loss Lvr, moment
localization loss Lloc and language neighborhood
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constraint loss Lnc are illustrated in Appendix A.5.
The final loss function of mXML is devised as

LmXML = Lvr + λ1Lloc + λ2Lnc, (3)

where λ1 and λ2 are the loss weights.

3.2 C3 in Video Retrieval

In Eq. (1), the final video-level similarity S(qg, v)
is a summation of scores from two modalities,
Sv(qg, v) and Ss(qg, v). We use S(qg, v) with
knowledge of two modalities as the teacher and
distill (Hinton et al., 2015) its knowledge to the
score with information of only a single modality.

In the multilingual scenario, to exploit more com-
plementary knowledge, a more effective approach
is to distill the scores from a language g ∈ {en, zh}
to the scores from another language h ∈ {en, zh}:

S(qh, v)
distill−−−→ Sv(qg, v),

S(qh, v)
distill−−−→ Ss(qg, v).

(4)

Given a mini-batch of query-video pairs
{(qig, vi)}ni=1, where n is the batchsize, S(qih, v

k)

is the similarity score between qih and vk of the
teacher model based on two modalities (i.e., visual
and subtitle contexts), where k ∈ [1, n]. Sv(q

i
g, v

k)

and Ss(q
i
g, v

k) are the corresponding similarity
scores of the student model from visual and subti-
tle contexts, respectively. Then, for each query qih,
we can generate the teacher scores {S(qih, vk)}nk=1,
and perform the softmax function with temperature
τvr on the scores to obtain the normalized score:

Ŝ(qih, v
i) =

eS(q
i
h,v

i)/τvr

∑n
k=1 e

S(qih,v
k)/τvr

. (5)

In the same manner, we obtain the normalized stu-
dent scores Ŝv(q

i
h, v

i) and Ŝs(q
i
h, v

i). Finally, the
C3 loss for video retrieval is devised as

Lvr
C3 =

n∑

i=1

∑

g∈{en,zh}

∑

h ̸=g

−1

n
[Ŝ(qih, v

i)log(Ŝv(q
i
h, v

i))

+Ŝ(qih, v
i)log(Ŝs(q

i
h, v

i))].
(6)

The loss for video retrieval is devised as

Lvr
+ = Lvr + αLvr

C3 , (7)

where α is a pre-defined positive constant.

3.3 C3 in Moment Localization
Similarly, C3 can also be used on the moment lo-
calization. In Eq. (2), we generate the query-clip
similarity score using two contexts, and then pro-
duce the start and end probabilities. In the same
way, based on Ss(qg, cl) with single subtitle con-
text, we can generate the start and end probabilities
pst
g,s,p

ed
g,s ∈ RL, and based on Sv(qg, cl) with sin-

gle visual context, we can generate pst
g,v,p

ed
g,v ∈

RL. Note that we use the softmax function with
temperature τloc to generate the start and end proba-
bilities in the similar way of Eq. (5). We define the
start and end probabilities of the teacher model
from language h as pst

h and ped
h , and the start

and end probabilities of the student model from
language g as pst

g,v,p
ed
g,v using visual context and

pst
g,s,p

ed
g,s using subtitle context. Thus, the C3 loss

for moment localization is defined as follows:

Lloc
C3 =

∑

g∈{en,zh}

∑

h ̸=g

[CE(pst
h ,p

st
g,v) + CE(pst

h ,p
st
g,s)

+CE(ped
h ,ped

g,v) + CE(ped
h ,ped

g,s)],

(8)

where CE() is cross-entropy function defined as

CE(x,y) = −
L∑

l=1

x[l]log(y[l]). (9)

The loss for moment localization is as follows:

Lloc
+ = Lloc + βLloc

C3 , (10)

where β is a pre-defined positive constant.

3.4 Training and Inference
Final loss function. Considering our proposed C3,
the final loss function is constructed as follows:

LmXML+ = Lvr
+ + λ1Lloc

+ + λ2Lnc, (11)

which is similar to the formulation of LmXML de-
fined in Eq. (3) but replaces Lvr by its counterpart
Lvr
+ and Lloc by Lloc

+ based on our C3.
Training. The training consists of two stages. In
the first stage, we train the standard mXML model
using the loss function LmXML in Eq. (3) to obtain
the teacher model, which produces the query-video
score S(qg, v) and the query-clip score S(qg, cl)
with knowledge of two modalities. Then, in the
second stage, we use the teacher mXML model to
distill the training process of the randomly initial-
ized student mXML model using the loss function
LmXML+ in Eq. (11). After training, the student
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Algorithm 1: The training process.

1 Train the teacher mXMLT, a standard
mXML model, using LmXML in Eq. (3).

2 for i ∈ [1, Q] do
3 Initialize a student model mXMLS.

4 mXMLT
distill−−−→ mXMLS using

LmXML+ in Eq. (11).
5 mXMLT = mXMLS.
6 end
7 return mXMLS

mXML model will perform better than the teacher
model. Thus, we utilize the trained student mXML
model as the new teacher mXML model to guide
the training of a new randomly initialized student
mXML model from the beginning. We repeat the
distillation process in the second stage for Q iter-
ations until the performance saturates. For better
clarification, we summarize the training process of
our proposed C3 method as shown in Algorithm 1.
Inference. Since our method is orthogonal to the
model, the inference process is same as the mXML.

4 Experiments

Dataset. mTVR (Lei et al., 2021a) is a large-scale
multilingual video moment retrieval dataset, which
contains 218 thousand English and Chinese queries
from 21.8 thousand TV show video clips. This
dataset extends the TVR dataset (in English) (Lei
et al., 2020) and adds Chinese queries and subti-
tles. (Lei et al., 2021a) proposed to split the mTVR
dataset into 80% train, 10% val, 5% test-public
and 5% test-private datasets. We use this dataset
to validate the effectiveness of our method for re-
search purpose. All experiments in our work are
conducted on one NVIDIA Tesla V100 GPU.
Experimental setting. We report the average recall
at K (i.e., R@K) for multilingual Video Corpus Mo-
ment Retrieval (mVCMR) task on the mTVR (Lei
et al., 2021a) dataset, where the predicted mo-
ment is right when it has high Intersection-over-
Union (IoU) with the ground-truth. We use the
same training strategy and network architecture of
mXML (Lei et al., 2021a). λ1 and λ2 of Eq. (3)
and Eq. (11) are set as 0.01, 1, respectively. The
loss weights α and β of Lvr

C3 and Lloc
C3 for video

retrieval and moment localization are set as 1.0,
100, respectively. The τvr is set as 0.02, and τloc is
set as 1. The number of distillation iterations, Q,

Table 1: R@1 on the test-public split of mTVR.

Methods English Chinese
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

MCN 0.02 0.00 0.13 0.02
CAL 0.09 0.04 0.11 0.04

MEE+MCN 0.92 0.42 1.43 0.64
MEE+CAL 0.97 0.39 1.51 0.62
MEE+ExCL 0.92 0.33 1.43 0.72

XML 7.25 3.25 5.91 2.57
mXML 8.30 3.82 6.76 3.20

C3 9.11 4.72 7.05 4.08

Table 2: R@10 on the test-public split of mTVR.

Methods English Chinese
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

XML 22.79 13.96 18.93 11.13
mXML 23.27 13.98 18.99 11.52

C3 24.72 16.00 20.62 13.30

is set as 2. We deploy our proposed C3 in mXML
and abbreviate the mXML with our C3 to C3.

4.1 Main Results

In Table 1, on the test-public split1 of the
mTVR dataset, we compare C3 with existing
methods, including proposal-based approaches
(MCN (Anne Hendricks et al., 2017) and CAL (Es-
corcia et al., 2019)), reranking-based methods
(MEE (Miech et al., 2018)+MCN, MEE+CAL,
MEE+ExCL (Ghosh et al., 2019) and XML (Lei
et al., 2020)) and the state-of-the-art mXML (Lei
et al., 2021a). We observe that our C3 achieves
consistently higher R@1 in both English and Chi-
nese than the baseline methods. In Table 2, C3 also
considerably improves the R@10 of the XML and
mXML on the test-public split of the mTVR dataset.
Note that the R@10 results of XML is based on
our re-implementation. In Table 3, we compare the
performance on the val split of the mTVR dataset,
and C3 also outperforms the mXML a lot, which
further shows the advantage of our method.

4.2 Ablation Study and Analysis

Effect of different components. By default, we ex-
ploit the C3 in both video retrieval (Lvr

C3 in Eq. (7))
and moment localization (Lloc

C3 in Eq. (10)). We
conduct the experiments to evaluate the importance
of Lloc

C3 and Lvr
C3 by removing one of them, respec-

tively. From Table 4, we observe that, by removing
Lloc
C3 or Lvr

C3 , the R@1 of video corpus moment re-
trieval considerably deteriorates. It validates the

1https://competitions.codalab.org/
competitions/33493
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Table 3: R@1 on the val split of mTVR.

Methods English Chinese
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

mXML 6.22 2.96 5.17 2.41
C3 7.44 3.85 5.70 2.86

Table 4: R@1 of the proposed C3 and its alternative
variants by removing one of the components in video
corpus moment retrieval on the val split of mTVR.

Methods English Chinese
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

w/o Lloc
C3 6.55 3.13 5.55 2.54

w/o Lvr
C3 6.71 3.54 5.53 2.72

C3 7.44 3.85 5.70 2.86

Table 5: R@1 and R@5 in the video retrieval (VR) of
different methods on the val split of mTVR.

Method English Chinese
R@1 R@5 R@1 R@5

mXML 19.35 42.32 17.75 39.34
C3 21.51 45.30 19.42 41.68

Table 6: R@1 in the single video moment retrieval
(SVMR) on the val split of mTVR.

Method English Chinese
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

mXML 29.05 13.20 26.31 11.46
C3 30.13 13.99 27.89 12.92

necessity of using both Lloc
C3 and Lvr

C3 in our C3.
Analysis on video retrieval. It is worth noting
that we consider both the video retrieval and the
moment localization in a single video for mVCMR
task. To more comprehensively demonstrate the
advantage of our C3, we also investigate its influ-
ence in the video retrieval task. From Table 5, we
can observe that our C3 outperforms the baseline
model, mXML, by a large margin.
Analysis on single video moment retrieval. To
further demonstrate the effectiveness of the pro-
posed C3 in moment localization, we also report the
single video moment retrieval (i.e., SVMR) results.
From Table 6, we observe that our C3 achieves sig-
nificant performance improvement compared with
mXML. It indicates that our C3 predicts more ac-
curate moment localization results, which shows
the effectiveness of our C3 in moment localization.
Extension on monolingual video corpus moment
retrieval. Despite that the proposed C3 method
is devised to mVCMR, it is also naturally applica-
ble to monolingual video corpus moment retrieval.
Here, we evaluate the effectiveness of our C3 in the
monolingual setting. TVR dataset (Lei et al., 2020)

Table 7: R@1 of different methods on both val and test-
public splits of the TVR dataset.

Method val test-public
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

XML 5.28 2.62 7.25 3.25
IC2 6.27 2.93 8.45 4.00

contains 109 thousand queries collected on 21.8
thousand videos from 6 TV shows of diverse gen-
res, where each video is associated with subtitles
and each query is associated with a tight temporal
window. Specifically, we use the XML (Lei et al.,
2020) model as the baseline method, and propose
an alternative variant by applying the our C3 loss
functions between the outputs of the multi-modality
and to the outputs of the single modality for both
the video retrieval and moment localization tasks
following the similar strategy of the Eq. (6) and
Eq. (8). In other words, this alternative variant
is called as the intra-lingual cross-modal consol-
idation (IC2) method. In Table 7, we compare
our alternative variant IC2 with the baseline model
XML on both val and test-public splits of the TVR
dataset for monolingual video corpus moment re-
trieval. As shown in Table 7, our IC2 also achieves
significant performance improvements on the TVR
dataset, which further demonstrates the versatility
of our proposed consolidation strategy.

5 Limitations and Potential risks

Although our C3 has achieved substantial improve-
ment based on mXML on the mTVR dataset, we
find that there exists some hyper-parameters (e.g.,
the τvr, τloc) to tune in C3, which may be time-
consuming. Besides, we develop the C3 strategy to
improve the performance of mVCMR task, and we
have not seen the potential ricks in our paper.

6 Conclusion

In our work, for the multilingual video corpus mo-
ment retrieval (mVCMR), we introduce a simple
and effective Cross-Lingual and Cross-Modal Con-
solidation (i.e., C3) strategy. It enhances the relia-
bility of the similarity score from a single modality
through the knowledge distillation from the simi-
larity score with access to the multi-modal infor-
mation. Meanwhile, it exploits the complemen-
tary information across languages by cross-lingual
knowledge distillation for both video retrieval and
moment localization. Extensive experimental re-
sults demonstrate the effectiveness of our method.
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A More detailed preliminary on mXML

The current multilingual moment retrieval model
mXML (Lei et al., 2021a) is built upon the Cross-
modal Moment Localization (XML) model (Lei
et al., 2020), which performs efficient video-level
retrieval at its shallow layers and accurate moment-
level localization at its deep layers. To adjust to
the multilingual settings in the video corpus mo-
ment retrieval (VCMR) task and improve the ef-
ficiency and effectiveness, mXML employs two
strategies (i.e., encoder parameter sharing and lan-
guage neighborhood constraint loss) to better uti-
lize the multilingual data while maintaining smaller
model size. In this section, we briefly review the
mXML model, which is also illustrated in Figure 2.

A.1 Input Feature
ResNet-152 (He et al., 2016) and I3D (Carreira
and Zisserman, 2017) extract the visual features
of each video moment. The generated video
moment visual features are denoted by Ev =
[ev1, · · · , evL] ∈ Rd×L, where d is the feature di-
mension. The language features are extracted by
RoBERTa-base (Liu et al., 2019) for English (Liu
et al., 2019) and Chinese (Cui et al., 2020), re-
spectively. For queries, token-level features are
used. The query features are denoted by Eq

g =
[eqg,1, · · · , eqg,Lq

] ∈ Rd×Lq , where Lq is the num-
ber of tokens and g ∈ {en, zh}. For subtitles,
token-level features in a video moment are max-
pooled into a single vector. The subtitle features
are denoted by Es

g = [esg,1, · · · , esg,L] ∈ Rd×L.

A.2 Encoding
mXML uses Self-Encoder (SE) implemented by
Transformer (Vaswani et al., 2017) to further en-
code the query’s token features:

Hq
g = SE(Eq

g) = [hq
g,1, · · · ,hq

g,Lq
].

A modular attention (Lei et al., 2020) is conducted
on the query token features Hq

g, generating two
modularized query vectors qv

g,q
s
g ∈ Rd. In paral-

lel, mXML encodes the moment subtitle features
Es

g and moment visual features through a stack of
two Self-Encoders:

Hs
g,0 = SE(Es

g), H
s
g,1 = SE(Hs

g,0),

Hv
0 = SE(Ev), Hv

1 = SE(Hv
0).

Among them, the output of the first Self-Encoder,
Hs

g,0 and Hv
0, are used for video retrieval. The

output of the second Self-Encoder, Hs
g,1 and Hv

1

are used for moment localization.

A.3 Video Retrieval
Given the modularized queries qv

g,q
s
g and the en-

coded contexts Hv
0, Hs

g,0, the video-level retrieval
(VR) scores Ss(qg, v) and Sv(qg, v) using the sub-
title context and the visual context are computed as
follows, respectively:

Ss(qg, v) = max
l∈[1,L]

cos(qs
g,H

s
g,0[:, l]),

Sv(qg, v) = max
l∈[1,L]

cos(qv
g,H

v
0[:, l]),

(12)

where Hs
g,0[:, l] denotes the l-th column vector in

Hs
g,0 and cos(·, ·) measures the cosine similarity

between two vectors. The score essentially com-
putes the cosine similarity between each clip and
query and picks the maximum. Then, the final
video-level retrieval (VR) score S(qg, v) using both
subtitle and visual contexts is defined as follows:

S(qg, v) = Ss(qg, v) + Sv(qg, v). (13)

A.4 Moment Localization
Given the modularized queries qv

g,q
s
g and the

encoded contexts Hv
1, Hs

g,1, mXML computes
the query-clip similarity scores Ss(qg, cl) and
Sv(qg, cl) using the subtitle and visual contexts
as follows, respectively:

Ss(qg, cl) = ⟨Hv
1[:, l],q

v
g⟩,

Sv(qg, cl) = ⟨Hs
g,1[:, l],q

s
g⟩,

(14)

where ⟨·, ·⟩ denotes the inner product between two
vectors. Similarly, the final query-clip similarity
score using both contexts is defined as follows:

S(qg, cl) = Ss(qg, cl) + Sv(qg, cl), (15)

which is also the summation of these query-clip
similarity scores. Then, to produce moment local-
ization predictions from the final query-clip score
S(qg, cl), mXML adopts the Convolutional Start-
End detector (ConvSE) with two 1D convolution fil-
ters for learning to detect start (up) and end (down)
edges in the score curves and generate the start (st)
sstg and end (ed) scores sedg , which are also shown
as follows, respectively:

sstg = ConvSEst(S(qg, cl)),

sedg = ConvSEed(S(qg, cl)).
(16)

Then, these scores are normalized with the softmax
function to output the start and end probabilities
pst
g ,p

ed
g ∈ RL for each query.
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Figure 2: Illustration of inference process for multilingual video corpus moment retrieval (i.e., mVCMR) task. Here,
we take the language g ∈ {en, zh} as an example to show the processes of video retrieval and moment localization.
For the mVCMR setting, all encoders are shared for different languages, and language neighborhood constraint
is used on both query and subtitle embeddings. “ConvSE” and “Aggregation Function” operations are proposed
in (Lei et al., 2020). “SVMR” denotes single video moment retrieval.

A.5 Training and Inference
In Figure 2, in the training process, mXML op-
timizes the video retrieval score and the moment
localization probabilities based on the triplet loss
and the cross-entropy loss, respectively. Besides,
to facilitate more stronger multilingual learning,
mXML also utilizes language neighborhood con-
straint loss for both query and subtitle embeddings
based on the triplet loss. Below we introduce these
loss functions in detail.
Video Retrieval Loss. For each positive pair
(qig, v

i), mXML samples two negative pairs (qig, v
j)

and (qkg , v
i) from the same mini-batch to calculate

the combined hinge loss as follows:

Lvr =
∑

g∈{en,zh}

n∑

i=1

−1

n
{[S(qig, vi)− S(qig, v

j)) +mvr]+

+[S(qig, v
i)− S(qkg , v

i)) +mvr]+},

where [x]+ = max(x, 0), mvr is the margin and n
is the number of samples for each mini-batch.
Moment Localization Loss. Given the start and
end probabilities pst

g ,p
ed
g ∈ RL, the moment local-

ization loss is defined as follows:

Lloc =
∑

g∈{en,zh}

n∑

i=1

−1

n
[log(pst

g (t
i
st)) + log(ped

g (tied))],

where tist and tied are the ground-truth indices of
the start and the end, respectively.
Language Neighborhood Constraint Loss. Fol-
lowing (Kim et al., 2020; Burns et al., 2020),
mXML additionally adopts language neighborhood

constraint loss for multilingual learning. It encour-
ages sentences that express the same or similar
meanings to be close to each other in the embed-
ding space via a triplet loss. Given the i-th paired
sentence embeddings eien ∈ Rd and eizh ∈ Rd from
each mini-batch, mXML samples the j-th and the
k-th negative sentence embeddings ejen and ekzh
from this mini-batch, where i ̸= j and i ̸= k. The
language neighborhood constraint loss Lnc can be
formulated as follows:

Lnc =
n∑

i=1

−1

n
{[cos(ei

en, e
k
zh)− cos(ei

en, e
i
zh) +mnc]+

+[cos(ej
en, e

i
zh)− cos(ei

en, e
i
zh) +mnc]+},

where mnc is the margin. The language neighbor-
hood constraint loss is applied on both query and
subtitle embeddings.

Overall, the final loss function of mXML
LmXML is defined as follows:

LmXML = Lvr + λ1Lloc + λ2Lnc, (17)

where λ1 and λ2 are the loss weights of the moment
localization loss and the language neighborhood
constraint loss, respectively.
Inference. At inference, in Figure 2, for the video
corpus moment retrieval task, the predicted start
and end probabilities are employed to generate
the single video moment retrieval (SVMR) score,
where SVMR is to localize a video segment from
a video under the language query. Then, the video
retrieval score and the SVMR score are used to pro-
duce the final VCMR score using the aggregation
function proposed in (Lei et al., 2020).

1862


