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Abstract
Numerical reasoning over text is a challeng-
ing subtask in question answering (QA) that
requires both the understanding of texts and
numbers. However, existing language models
in these numerical reasoning QA models tend
to overly rely on the pre-existing parametric
knowledge at inference time, which commonly
causes hallucination in interpreting numbers.
Our work proposes a novel attention masked
reasoning model, the NC-BERT, that learns to
leverage the number-related contextual knowl-
edge to alleviate the over-reliance on paramet-
ric knowledge and enhance the numerical rea-
soning capabilities of the QA model. The em-
pirical results suggest that understanding of
numbers in their context by reducing the para-
metric knowledge influence, and refining nu-
merical information in the number embeddings
lead to improved numerical reasoning accuracy
and performance in DROP, a numerical QA
dataset.

1 Introduction

Understanding numbers in text is critical when deal-
ing with numerical reasoning problems over text.
Most previous works (Ran et al., 2019; Andor et al.,
2019; Chen et al., 2020b; Gupta et al., 2019; Chen
et al., 2020a; Geva et al., 2020; Saha et al., 2021)
on such numerical reasoning over text have shown
substantial amounts of performance gain in numer-
ical question answering (QA) tasks such as DROP
(Dua et al., 2019). While these models display
stellar performance, previous studies that evaluate
model’s numerical reasoning robustness (Talmor
et al., 2020; Kim et al., 2021; Al-Negheimish et al.,
2021) suggest that these QA models that typically
depend on large language models (LM) such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) suffer from a limitation: the disre-
gard of context information at inference time for
numerical reasoning.

∗Equal contribution.

Question : “Is John older or younger?”
Passage : “John is in his 80s and the other 
person is in her 90s.”

Over-reliance on parametric knowledge in 
numerical reasoning over text

Question : “Which age group makes up 
the largest percentage of population?”
Passage : “14.3% … are in their 20s, … 
14.9% in their 40s and 13.0% are in their 
50s.

older younger

50s 40s

Model 
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Figure 1: Cases that testify the over-reliance on paramet-
ric knowledge by language models like BERT during
numerical reasoning. These attest to the language mod-
els’ lack of ability to properly understand numbers in
their given context.

This issue is exemplified in Figure 1 showing a
numerical reasoning question (Talmor et al., 2020),
where LMs fail to decouple number values from
their types; a number is understood as in the LM,
not as the value to be interpreted in the local con-
text. For example, in the first case of Figure 1, the
model misinterprets the numbers "80s" and "90s"
as YEAR-type from the LM, instead of AGE-type
obtainable from the given local context, leading to
an incorrect answer for the "older" relation. Had
the model leveraged the context of the passage in-
stead of pre-existing knowledge reflected in the
LM’s parameters, the model should have correctly
predicted the answer. Such knowledge is com-
monly referred to as parametric knowledge, which
is learned from the training instances that the model
has encountered prior to the inference process as in
the above example. Previous works (Krishna et al.,
2021; Bender et al., 2021; Al-Negheimish et al.,
2021) testify that such propensity to rely on previ-
ously learned knowledge instead of looking at the
present context information frequently haunts large
LMs. As such, we hypothesize that the capability
to override the parametric knowledge captured in
the number embeddings with the relevant contex-
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tual knowledge is crucial to properly understand
the numbers at inference time, and thus perform
accurate and robust numerical reasoning.

To override the detrimental influence of para-
metric knowledge on model’s numerical reason-
ing capability, our work proposes a novel attention
masking scheme. This Numerical-Contextual at-
tention mask (NC-Mask) explicitly induces the
number-related flow of contextual information into
the number embeddings to enable the model to
properly interpret the numbers according to the
context given, and thereby improve the model’s nu-
merical reasoning capability. This attention mask
is predicated upon the following two intuitions: (i)
numbers are always related to entities in the same
sentence and (ii) a number type (e.g., YEAR, AGE,
QUANTITY) is defined by its surrounding words.
While such entity-number and type-number inter-
actions rely on the self-attention mechanism of the
Transformer architecture (Vaswani et al., 2017), the
local relations to be captured from the context are
not always implicitly captured by the LM’s self-
attention. Our NC-Mask is intended to consolidate
such relations.

On the other hand, this "overwriting" of para-
metric knowledge in the number embeddings can
cause the characteristic numeracy information (e.g.,
magnitude) in the embeddings to be diluted. Pre-
vious works (Wallace et al., 2019; Sundararaman
et al., 2020; Pal and Baral, 2021; Kim et al., 2021)
show that LMs possess, to a certain degree, the
notion of numeracy in their parameters. For exam-
ple, the information that number 2 is less than or
equal to 9 (2 ≤ 9) is contained within the embed-
dings of those numbers. In order to avoid losing
such valuable numeracy information, we adopt the
DICE regularization (Sundararaman et al., 2020),
a magnitude-inducing regularizer to instill relative
magnitude hierarchy into the number representa-
tions and thus replenish the diluted numeracy in
the embeddings for numerical reasoning.

The empirical results of this work suggest that
our attention masking strategy improves the nu-
merical reasoning capability of the QA model. In
Section 5, we also provide a detailed analysis on
the optimal application of our masking strategy on
the different layers and heads of the QA model’s
encoder. Our results also imply that our attention
masking allows extra layers that leverage the knowl-
edge instilled by the masked channels to be added,
leading to the scaling up of the model without pre-

training the extra layers.

2 Related Work

2.1 Parametric Knowledge vs. Contextual
Knowledge

Downstream NLP tasks often require the use of two
disparate sources of knowledge: parametric and
contextual knowledge. Previous works (Longpre
et al., 2021) reveal that conflicts between the two
types of knowledge occur from over-reliance on
parametric knowledge, which is exacerbated by the
significant overlap between the passage-question
pairs in the training and validation sets (Krishna
et al., 2021; Al-Negheimish et al., 2021). For the
task of numerical QA, a related work (Talmor et al.,
2020) reveals that models fail to understand num-
bers in the given passage because they rely on the
parametric knowledge (i.e., memorization) within
the pre-trained number embeddings. Such lack
of contextual understanding of numbers prevent
these models from properly interpreting numbers
and thus inhibit effective numerical reasoning over
text.

2.2 Numeracy in Language Models

Recent studies on the numeracy of large LMs re-
veal that number embeddings constructed by ei-
ther the non-contextual embedding methods (Sun-
dararaman et al., 2020) or large language models
(Wallace et al., 2019; Talmor et al., 2020; Sun-
dararaman et al., 2020; Kim et al., 2021) possess,
to a certain degree, a prior notion of numeracy
such as magnitude. However, the numeracy in the
LMs are neither deterministic nor accurate (Wal-
lace et al., 2019) like the scalar numbers. These
representations, furthermore, require additional re-
finement measures to induce additional numeracy
(Sundararaman et al., 2020). Such lack of numer-
acy can lead to a few of the following problems: (i)
confusing numbers of similar magnitude (Talmor
et al., 2020), and (ii) calculating wrong numerical
answers (Geva et al., 2020). Since our masking
scheme can bring about such issues due to diluted
numeracy in the number embeddings, we adopt a
numeracy-inducing regularization term from Sun-
dararaman et al. (2020) to alleviate this problem
and improve the overall accuracy in numerical cal-
culations.
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3 Approach

In this work, we propose an attention masked ques-
tion answering (QA) model, namely the Numerical-
Contextual BERT (NC-BERT), that learns to rely
on the contextual knowledge and exhibits improved
numerical reasoning capability in QA. First, we
construct a tripartite attention mask (i.e., NC-
Mask) over a self-attention layer on top of the
encoder to direct the flow of necessary contex-
tual information to the number embeddings, so
that number-related contextual knowledge such as
entity-number and type-number relations are effec-
tively leveraged during model training. We then
adopt a complementary numeracy-inducing regu-
larizer to counteract the numeracy dilution issue
caused by our masking strategy and to further en-
hance the accuracy of numerical calculation.

3.1 Preliminaries

We first provide a qualitative analysis on an LM’s
number token embeddings to identify and reveal
the type of pre-existing parametric knowledge in
them, which induces model dependence on para-
metric instead of contextual knowledge. To this
end, we first sample all the number embeddings
from a pre-trained BERT-base model (Devlin et al.,
2019). Then, we use an off-the-shelf similarity
search tool, FAISS (Johnson et al., 2017), to cal-
culate the cosine similarity between each number
embedding and every other non-number token em-
beddings in BERT’s vocabulary. The next step
is to sample tokens with top-k (k = 5) similar-
ity scores for each number token. Note that we
exclude other numeral tokens (e.g., "two", "71"),
non-alphabetical tokens, and special tokens such
as [PAD] and [SEP] as seen in Table 1. However,
we retain number-related tokens such as "15th" and
"1990s" as indicators of DATE-related parametric
knowledge within the embeddings.

In Table 1, we can see that the number embed-
dings are deemed to contain semantics about date,
month or other quantity information. Furthermore,
numbers like "2018" already contain DATE-related
information, which does not seem out-of-context
considering that "2018" is more often than not used
in such contexts. However, this knowledge influ-
ences model decisions negatively when questions
use "2018" for a non-date scenario, resulting in
an error as in Figure 1. Numbers like "50" and
"114" that are seldom used in DATE context also
hold such DATE information, further suggesting

What is in Number Embeddings

2018
currently, october, 1990s, july,
19th

50
1950s, various, significant,
many, substantial

114 12th, 11th, 14th, 15th, 13th
2 ii, several, various, 4th, iii
11 11th, 12th, 10th, 8th, 13th

Table 1: The leftmost column contains the number to-
kens from BERT (bert-base-uncased)’s vocab-
ulary and the rightmost column contains the top-5
similarity-scored tokens that correspond to each number
token.

that relying entirely on such parametric knowledge
induces models to make a wrong prediction. It is
evident, therefore, we need to pay attention to the
distinction and interplay between the parametric
knowledge identified in this analysis and context-
specific semantics in QA models during numerical
reasoning.

3.2 Base Model Architecture
A QA model for numerical reasoning needs to con-
duct both the span extraction from text and numer-
ical answer generation. This steered our work to
leverage GenBERT (Geva et al., 2020) as our base-
line. Given a question (q) with m tokens and a
passage (p) with n tokens, we construct an input
sequence that consists of the BERT special tokens
as follows: <[CLS] q1, q2,..., qm, [SEP], p1, p2,
..., pn>. Then, we produce the contextualized rep-
resentations, M, for each token after passing the
input sequence through a pre-trained LM encoder
of choice (in this case, BERT).

M = Encoder(q,p) (1)

The representation M is then passed on to two
different kind of prediction modules for answer
prediction; namely, span extraction and decoder
modules. The span extraction module, Hspan, cal-
culates the probabilities of start and end spans,
whereas the decoder module, Hdec, generates an-
swers that are not found within the passage but can
only be calculated by numerical reasoning such as
addition and counting.

Hspan : (ŷstart, ŷend) = argmax
s<=e

P (Ms)P (Me) (2)

Hdec : ŷi = argmax
i

P (yi|y1, y2, ..., yi−1,M) (3)
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John Kasay hitting a 4 5 – yard field goal ... with Kasay kicking a 4 9 – yard field goal

BERT... ...

𝑙𝑎𝑦𝑒𝑟 1

𝑙𝑎𝑦𝑒𝑟 2

𝑙𝑎𝑦𝑒𝑟 𝑁

𝑙𝑎𝑦𝑒𝑟 𝑁 + 1 + NC-Mask

9 4 <E>

Encoder

Decoder

9 4<S>

(Ground Truth: 94)

Figure 2: A visual representation of Numerical-Contextual BERT (NC-BERT). The green layer represents the extra
layer with NC-Mask on top of the encoder. The blue-highlighted path represents the digits that appear in the passage,
along with the entity-number channel that is highlighted in blue in the NC-Mask layer. The decoder-number channel
is presented in the upper half of the figure. Here, we omit the type-number channel for ease of understanding.

In the above equation, Ms and Me denote the
start and end token representations, respectively.
We then train the model by minimizing the loss,
Lans, which is a marginal probability over the out-
put of two modules as follows:

Lans = −log(pdec ·
S∏

s=1

p(ys) +
∑

h∈q,c

ph ·
∑

(i,j)∈T

ph(i, j)

(4)

where pdec and ph are the module type proba-
bilities from a single layer feed-forward network
(i.e., the type module). S is the length of the answer
sequence generated by the decoder, and T is the set
of all possible answer spans from the passage. We
omit the conditionals for brevity.

3.3 NC-BERT for Numerical Reasoning

We describe NC-BERT, an encoder-decoder model
designed for numerical reasoning, with the intu-
ition and mechanism behind the three parts of the
NC-Mask scheme. Also explained in this section
is the rationale for the numeracy-inducing regu-
larization term to deal with the numeracy dilution
issue caused by the attention masking scheme. We
fine-tune the model with our mask to enable the
model to use the mask as a medium to effectively

aggregate numerical-contextual knowledge from
texts.

3.3.1 NC-Mask
We construct an attention mask that allows the
number-related contextual information to be chan-
neled to the number embeddings. Two main intu-
itions are: (i) numbers are bound to the entities in
the same sentence, and (ii) the words surrounding
a number define its type. In order to reflect the in-
tuitions, we construct two types of attention masks
referred to as entity-number and type-number chan-
nels, which attempt to leverage the number-related
input context and adjust the influence of parametric
knowledge in the number embeddings. In addition,
we devise the third channel, the decoder-number
channel for two reasons: (i) the decoder needs only
to "calculate" number sequence answers and (ii) the
non-essential passage tokens act as noise during
numerical calculation of the decoder.

Entity-Number Channel To construct the
entity-number channel, we first extract every en-
tity1 and digit in each sentence. For each sentence,
we construct an entity index set, E, and a dictio-
nary with the digit indices as keys and E as values.
E′ (where E′ ⊆ E) is assigned as a value to a digit

1Using Stanford Stanza toolkit for NLP (Qi et al., 2020)
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index if and only if the corresponding digit and
E′ belong in the same sentence. The dictionary is
then used to construct the attention mask, AE , as
follows:

α = softmax(AE ⊙ QKT

√
dk

)V (5)

where α is the normalized attention score and AE

is the attention mask that drowns out the tokens
that are irrelevant to interpreting numbers in the
text, namely, the non-entity tokens. To elaborate,
when the query, qi, of the ith number token attends
to all the m + n other sequence of tokens in the
text during self-attention, AE leaves the attention
scores from the ith number token to the entities
in the same sentence unchanged, while zeroing
out all the other attention scores to preclude their
corresponding values (v ∈ V ) from being added
to the subsequent-layer representation of the ith

number token.
Type-Number Channel Type-number channel

is constructed in a similar fashion as in Equation 5
by creating another attention mask, AW . We first
define a window of size k for every number. Within
each window, we select the m (where m/2 <= k)
immediately neighboring words and construct an-
other dictionary with the digit indices as keys and
their neighboring word indices as values. Simi-
lar to AE , AW is constructed to block out all the
non-essential, noisy interactions from the number
embeddings to irrelevant tokens in the text, while
retaining the attention to the m immediately neigh-
boring words that define the number type.

Decoder-Number Channel In a regular encoder-
decoder Transformer architecture, the decoder uses
its query, Qdec, to attend over the value embed-
dings, Venc, of the encoder’s last hidden states
(Vaswani et al., 2017). In this work, the decoder
employs a new type of source attention mask, Asrc,
along with the above two masks, that confines the
decoder’s query to attend only over the numbers
and the question tokens of the encoder’s last hidden
states (Equation 6).

γ = softmax(Asrc ⊙
QdecK

T
enc√

dk
)Venc (6)

where γ is the source attention score. Since the
number embedding is constructed to contain the
number-related contextual knowledge, the decoder
can learn to attend to the numbers by utilizing such
knowledge within the number embeddings and per-
form calculations.

Figure 2 shows the overall framework, NC-
BERT, with the NC-Mask applied on top of the
encoder and decoder-number channel selectively
attending to the last hidden state representations
of the number tokens. The details of where the
NC-Mask is applied in the encoder and the reason
thereof is elaborated in Section 5.4

3.3.2 Numeracy-Inducing Regularization

Figure 3: A visual depiction of how the DICE-loss in-
duces the relative magnitude hierarchy among the digit
embeddings. The leftmost arrow depicts the embedding
of 0 and the rightmost the embedding of 9.

Overwriting the parametric knowledge with NC-
Mask, however, can cause pre-existing numeracy
characteristic like the magnitude of a number, to
be erased from the number representations. To al-
leviate such dilution of numeracy and to revive the
magnitude characteristic of numbers in the repre-
sentations, we adopt the numeracy-inducing reg-
ularization (DICE-loss in short) term (Sundarara-
man et al., 2020). It samples two random digits,
a and b, from the given input text and their corre-
sponding hidden states, va and vb, from the last
layer of the encoder. Then, it calculates the differ-
ence between the scalar distance of a and b and the
cosine distance, dcos, of their corresponding last
layer representations as follows.

Lnum = ∥2 |a− b|
|a|+ |b| − dcos(va,vb)∥2 (7)

DICE-loss (Figure 3) acts as an effective reg-
ularizer to induce the relative magnitude relation
among the digits, thereby adjusting model parame-
ters to generate contextualized number embeddings
reflecting such hierarchy of magnitude. With the
DICE-loss, the final expression for the objective
ends up as follows: L = Lans + Lnum.

4 Experiments

To validate the proposed approach, we establish the
two following research questions:
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Q1. “Does number-related contextual knowl-
edge help improve numerical reasoning?"

Q2. “Does compensating for the diluted numer-
acy give more accurate numerical calculation?"

Q1 is assessed by the channel-wise application
of the NC-Mask on our model encoder. By eval-
uating each channel and its effect on the model’s
reasoning capability, we reveal how the number-
related contextual knowledge influence the base-
line’s numerical reasoning. We also determine the
optimal placement of the NC-Mask by exploring
where in the encoder should the mask be applied
for better numerical reasoning. Q2 is evaluated
by applying DICE-loss and thereby replenishing
the diluted numeracy of the number embeddings.
In addition, we experiment with the least signifi-
cant digit first (LSDF) generation scheme on our
encoder-decoder architecture. The goal is to ex-
plore the idea of taking the "carry" into account to
bring about an additional benefit to the overall nu-
merical reasoning capability of our model (details
in the Appendix).

4.1 Dataset

DROP (Dua et al., 2019) is a numerical reasoning
over text dataset for QA models. This evaluation
dataset consists of a total of 9,536 question-answer
pairs with respect to 582 passages. The answer
types are largely: Number, Date and Others, where
Others refer to span type answers.

4.2 Baselines

For the baseline, we use GenBERT (Geva et al.,
2020), a Transformer encoder-decoder model ini-
tialized with BERT-base parameters pre-trained
with simple arithmetic and textual number rea-
soning tasks. On top of the baseline, we empiri-
cally evaluate the effectiveness of (i) NC-Mask (ii)
the numeracy-inducing regularization (DICE-loss),
along with the LSDF generation technique for ad-
ditional reasoning enhancement. We do not incor-
porate other state-of-the-art models like QDGAT
(Chen et al., 2020a) and NumNet (Ran et al., 2019),
since they disregard the numeracy understanding
part (Wallace et al., 2019) by simply employing
specialized heads that learn to assign {-1, 0, +1} on
numbers for summation, and they do not actually
perform implicit calculation to derive numerical
answers by delegating the calculation part to a sym-
bolic calculator.

4.2.1 Implementation Details
The model is based on GenBERT and is trained
using RTX3090 NVIDIA GPU. With the training
batch size of 16, the hidden size of 768, the learning
rate of 3e-5 and an Adam optimizer with a linear
warm up of 0.1. The rest of the hyperparameters
are in the Appendix.

5 Results

In this section, we explain the results of our NC-
Mask scheme and complementary numeracy reg-
ularizer by comparing the per answer-type Exact
Match (EM) and F1 scores. The results also include
head- and layer-wise probing done to determine the
optimal masking position in the model.

5.1 Leveraging Contextual Knowledge

As in Table 2, the addition of NC-Mask leads to no-
ticeable performance improvements over the base-
line. The Entity-Number channel proves to be the
largest benefactor to the model’s enhanced numeri-
cal reasoning capability. Such result can be inter-
preted from the fact that numbers now share high
semantic similarity with the entities in question,
which in turn improves the model’s numerical rea-
soning by incorporating those numbers during the
calculation. The Type-Number channel, in contrast,
turns out to contribute most to the Date-type ques-
tions; the result is likely caused by the increased in-
teraction between the Date-related tokens and num-
bers. For the Decoder-Number channel, through
the ablation study in Table 2, we prove that the
channel is a necessary component of the NC-Mask
scheme, given the performance degradation in both
the Number and Date type questions in its absence.

5.2 Counteracting Numeracy Dilution

With NC-Mask amplifying the influence of con-
textual knowledge in number embeddings, we now
deal with the numeracy dilution issue. The results
in Table 3 show substantial improvement in numeri-
cal reasoning performance. We also test DICE-loss
after removing NC-Mask to empirically prove that
the dilution of numeracy by our masking strategy
indeed adversely affects model performance and re-
quires the regularization. When adding the regular-
izer to the baseline alone (DICE (w/o NC-Mask)),
we see a drop in performance, meaning that em-
ploying the regularizer is ineffective considering
the pre-existing numeracy. On the contrary, we evi-
dence a major increase in performance by applying
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Model Number Date Others All

EM F1 EM F1 EM F1 EM F1

GenBERT 73.05 75.21 52.44 56.37 70.17 74.53 68.75 72.30
+ Entity-Number 73.37 76.24 52.41 56.33 71.02 75.98 69.10 72.61
+ Type-Number 73.09 75.30 53.60 56.59 70.15 74.34 68.82 72.31
+ Decoder-Number 73.10 75.37 52.40 55.98 70.33 74.82 68.78 72.34
NC-Mask 74.16 76.89 53.27 56.32 71.24 75.10 69.17 72.65
- Decoder-Number 73.74 76.33 53.25 56.31 71.24 75.10 69.09 72.40

Table 2: Evaluation on the DROP evaluation dataset. The first half shows the results per answer type for indepen-
dently applying the three channels of NC-Mask, in order to analyze the individual contextual knowledge influence
on the model’s numerical reasoning performance. NC-Mask provides the results of all the channels combined, with
an extra ablation result on the decoder-number channel.

Model Number Date Others All

EM F1 EM F1 EM F1 EM F1

NC-Mask 74.16 76.89 53.27 56.32 71.24 75.10 69.17 72.65
+ DICE (w/ NC-Mask) 75.03 77.70 53.42 56.45 72.10 75.63 69.93 73.55
+ DICE (w/o NC-Mask) 73.36 76.12 52.42 55.98 70.17 74.40 68.87 72.38
NC-BERT 75.09 77.72 53.41 56.31 72.12 75.68 69.96 73.59

Table 3: Results of NC-Mask in coordination with DICE-loss to alleviate the numeracy dilution issue. NC-BERT
incorporates the LSDF generation scheme.

NC-Mask and DICE-loss together. The implica-
tions of this outcome are: (i) numeracy dilution
occurs when overriding parametric knowledge in
the embeddings and can be addressed by adopting
the regularization term, and (ii) the regularization
and our masking strategy are complementary.

5.3 Head Replacement with NC-Mask

Heads and Layers EM F1

Original 68.75 72.30
All Layers & Heads 37.53 40.77

Last
Layer

All-Heads 68.83 72.35
Single-Head 69.12 72.88
Odd-Heads 68.76 72.19
Even-Heads 68.74 72.11

Table 4: Results after applying NC-Mask to the encoder.
“All" refers to applying NC-Mask to every head and
layer in the encoder. Single, Odd and Even-Heads refer
to the last layer head masking with NC-Mask.

To determine which part of the encoder should
our masking scheme be applied to, we thoroughly
investigated the effects of NC-Mask on the heads
and layers of the encoder. The result is shown in Ta-

ble 4, where "Original" is the original performance
of our baseline under our setting.

We first applied NC-Mask to all the heads and
layers (All) of the encoder. Our initial assumption
was that if a model could simply learn to attend to
useful, number-related context, the model would
easily leverage such information for more accurate
numerical reasoning. However, the performance
drops drastically (-31.53 in F1), suggesting that
neglecting the roles of heads and layers of the en-
coder is detrimental to numerical reasoning over
text. This result is also in correspondence with pre-
vious works (Rogers et al., 2020; Jo and Myaeng,
2020), where the roles of heads and layers are al-
ready defined during the pre-training of the model.

Based on the result, we then applied NC-Mask
to the heads of the encoder’s last layer since the
last hidden states are the ones used by the decoder
and span extraction module to generate the answer.
The result implies that imbuing NC-Mask to in-
duce the learning of number-related context is im-
portant. However, as the results of "Single-Head"
and the other heads in the last layer suggest that
considering each head’s role is critical to model
acquiring such contextual knowledge beneficial to
its numerical reasoning capability.
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Number of Heads (k) EM F1

No New Layer 68.75 72.30
0 68.54 72.11
1 68.68 72.27
2 69.22 72.87
4 69.21 72.86
6 69.52 73.00
12 69.96 73.59

Table 5: Model performance after applying NC-Mask
on k different heads of the layer on top of the encoder of
NC-BERT. k = 0 means a vanilla Transformer encoder
layer without the NC-Mask.

5.4 The Extra Layer for Masked Interaction

Applying NC-Mask to the last layer replaces one
of the pre-trained heads. Here, we see that the
loss of encoder’s original linguistic capability is
inevitable to acquire the additional numerical rea-
soning skill. Thus, to retain the original textual
reasoning capability of the encoder and provide ad-
ditional numerical-contextual knowledge, we add
an extra layer with NC-Mask on top of the encoder.
Here, we experiment with the number of heads (k)
in an effort to figure out the optimal number of
heads the model needs to acquire the most accurate
numerical reasoning capability.

Our initial assumption was twofold: (i) just like
in the last layer’s case, a single head would result in
the best performance, or (ii) there would be some
"sweet spot" in which the model shows the optimal
performance. On the contrary to our expectations,
the results shown in Table 5 display an entirely
different pattern from the ones in Table 4.

From the result of k = 0, we confirm that the
improvement in model performance does not arise
from the naïve addition of an extra self-attention
layer, since it rather exhibits a drop in performance.
With the incremental addition of the NC-Mask, we
evidence a proportional increase in performance,
which reaches the peak when the maximum number
of heads (k = 12) is masked. Our interpretation to
such disparity in masking patterns is that the extra
self-attention layer is not a pre-trained layer unlike
the last layer of the encoder; meaning, while the
heads of the last layer have pre-defined roles, the
extra layer is a randomly initialized parameter with
no head-wise roles defined. This implies that the
NC-Masked layer acted as a single, giant "head"
that induced useful numerical-contextual knowl-

Model Entity Type Other

Numbers (Original) 21.61 35.83 42.56
Numbers (NC-BERT) 47.14 52.86 -

Table 6: Changes (in %) in the attention patterns from
the numbers in passages to different relation types
within the encoder. NC-BERT exhibits amplified atten-
tion magnitude in all the three relation types compared
to its original counterpart.

Recall@K GenBERT NC-BERT

1 0.0049 0.0081
2 0.0103 0.0171
5 0.0295 0.0434

10 0.0689 0.0840
20 0.1492 0.1513
50 0.2691 0.2340

Table 7: Evaluation result of the Recall@K from the
number to entity and type-defining words. The entity
and type-defining tokens are treated as the ground truth
labels, and the K represents the number of top-K re-
trieved tokens using the corresponding number embed-
dings.

edge into the encoder, which in turn improved the
model’s numerical reasoning capability.

5.5 Interaction Between Numbers and
Contextual Knowledge

In Table 6, we provide an attention pattern analysis
to show that with our masking scheme, the number
representations readily acquire the relevant contex-
tual knowledge. The numbers shown in the table
represent the attention scores from the number to-
kens in the passage to entity tokens, number-type
tokens, and all the other tokens in the passage. For
Numbers (Original), we have normalized the atten-
tion scores over all the heads in the last layer of the
encoder, whereas the Numbers (NC-BERT) list
the normalized attention scores over all the heads
of the extra layer with the NC-Mask, where every
head (k = 12) is masked as in our final model
architecture. The results testify that the masking
scheme successfully increases the amount of in-
teraction between numbers and their related con-
textual knowledge (e.g., entity and type-defining
words), which in turn led to the improved reasoning
accuracy of our model.

On top of the increased interaction between num-
bers and related contextual knowledge, in Table 7,
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Question&Answer Passage GenBERT NC-BERT

Q: How many ac-
tive military per-
sonnel and reserve
are in the Croatian
Armed Forces?

The total number of active military personnel in the Croa-
tian Armed Forces stands at 14,506 and 6,000 reserves
working in various service branches of the armed forces.
In May 2016, Armed Forces had ...

14,506 + ? =
14,506

14,506 + 6,000
= 20,506

Q: How many more
Macedonians were
there compared to
Albanians accord-
ing to the 2002
census?

Skopje, as the Republic of Macedonia as a whole, is
characterised by a large ethnic diversity ... According to
the 2002 census, Macedonians were the largest ethnic
group in Skopje, with 338,358 inhabitants, or 66.75%
of the population. Then came Albanians with 103,891
inhabitants (20.49%), ...

338,358 - ? =
328,337

338,358 -
103,891 =
234,467

Table 8: The case study of the DROP dataset. The table juxtaposes the model prediction cases for GenBERT
and NC-BERT to qualitatively illustrate the differences between the reasoning of the two models. The calculated
answers indicate that NC-BERT is able to relate numbers with their corresponding entities and type-words, leading
to improved numerical reasoning accuracy.

we provide the cosine similarity retrieval result of
entity and type-defining output representations us-
ing the number embeddings in terms of Recall@K.
With the two kinds of contextual knowledge as the
ground truth tokens, we calculate the recall for the
top-K tokens retrieved by the number embeddings
in the encoder output. The result in Table 7 shows
the increased similarity between the numbers and
the corresponding entity and type representations,
suggesting that our masking scheme successfully
increases the similarity and thus the interaction
between useful contextual knowledge and the num-
bers in text.

5.6 Qualitative Study

For an intuitive understanding of the effect of our
proposed method, we provide a case study on the
DROP dataset in Table 8. As the cases suggest,
our model is better able to relate numbers in text
with their pertinent entities (e.g., Croatian Armed
Forces) and type words (e.g., reserves), which
serve the model with useful entity-number and type-
number information that lead to improved numeri-
cal reasoning capability of our model. In contrast,
the baseline fails to relate the numbers needed for
the calculation, which results in wrong answers.

6 Conclusion

This work proposes a novel attention masking
scheme, NC-Mask, to relieve question answer-
ing (QA) models of the language model (LM) en-
coder’s over-reliance on parametric knowledge and
improve the numerical reasoning accuracy and ro-
bustness. Our analyses and empirical results pro-
vide strong evidence that BERT, a commonly used
encoder in QA models, needs to employ the extra

attention channels to leverage the number-related
contextual knowledge for robust numerical reason-
ing instead of entirely relying on the inherent self-
attention mechanism. By additionally adopting a
numeracy-inducing regularization term, our work
also shows that the proposed masking scheme and
regularization are complementary, and retaining
numeracy is essential for accurate numerical cal-
culation. Future efforts should focus on increas-
ing the scale of models with the masking scheme,
since masked, attention-constrained layers appear
to more positively contribute to model’s reasoning
capability than the addition of fully self-attentive
layers.
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A Appendix

A.1 Hyperparameters of the Model
In this section, we provide the important hyperpa-
rameters used during the training of our model.

Hyperparameter GenBERT NC-BERT

Batch size 16 16
Hidden size 768 768
Max. Sequence length 512 512
Learning rate 3e-5 3e-5
Optimizer AdamW AdamW
Seed 42 42
Approx. runtime 50 hrs 51.5 hrs

Table 9: Hyperparameters of the two models of this
work. The hyperparameters are set so the two models
are on an equal footing for fair comparison.

A.2 LSDF: Least Significant Digit First
Generation

Our final model, NC-BERT, employs the least
significant digit first (LSDF) generation scheme
during the fine-tuning of the model. The intuition
behind the LSDF generation is simple consider-
ing the basic rules of addition. When the digits of

lower significance add up with their sum greater
than or equal to 10, then a carry of 1 occurs which
is then passed on to the subsequent significant digit
for addition. Such sequence of carries can only
happen when the values of lower significance add
up in advance. LSDF incorporates this elemen-
tary arithmetic rule to the generation of number an-
swers, simply by reversing the order of the number
sequence answer (e.g., 127 → 721). This digit-
position reversing acts as an additional schematic
alteration to our encoder-decoder generative archi-
tecture, which turns out to benefit the numerical
reasoning capability of the model slightly. Our re-
sults also imply that considering the intuitive arith-
metic calculation steps is important in numerical
reasoning.
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