
Findings of the Association for Computational Linguistics: NAACL 2022, pages 1681 - 1697
July 10-15, 2022 ©2022 Association for Computational Linguistics

Zero-shot Entity Linking with Less Data

G P Shrivatsa Bhargav∗, Dinesh Khandelwal∗, Saswati Dana∗, Dinesh Garg,
Pavan Kapanipathi, Salim Roukos, Alexander Gray, L Venkata Subramaniam

IBM Research AI
{gpshri27,dikhand1,sdana027,garg.dinesh}@in.ibm.com

{kapanipa@us,roukos@us,alexander.gray,lvsubram@in}.ibm.com

Abstract
Entity Linking (EL) maps an entity mention
in a natural language sentence to an entity in
a knowledge base (KB). The Zero-shot En-
tity Linking (ZEL) extends the scope of EL
to unseen entities at the test time without re-
quiring new labeled data. BLINK (Wu et al.,
2020) (BERT-based) is one of the SOTA mod-
els for ZEL. Interestingly, we discovered that
BLINK exhibits diminishing returns, i.e., it
reaches 98% of its performance with just 1%
of the training data and the remaining 99%
of the data yields only a marginal increase of
2% in the performance. While this extra 2%
gain makes a huge difference for downstream
tasks, training BLINK on large amounts of
data is very resource-intensive and impracti-
cal. In this paper, we propose a neuro-symbolic,
multi-task learning approach to bridge this gap.
Our approach boosts the BLINK’s performance
with much less data by exploiting an auxil-
iary information about entity types. Specifi-
cally, we train our model on two tasks simul-
taneously - entity linking (primary task) and
hierarchical entity type prediction (auxiliary
task). The auxiliary task exploits the hierar-
chical structure of entity types. Our approach
achieves superior performance on ZEL task
with significantly less training data. On four
different benchmark datasets, we show that
our approach achieves significantly higher per-
formance than SOTA models when they are
trained with just 0.01%, 0.1%, or 1% of the
original training data. Our code is available at
https://github.com/IBM/NeSLET.

1 Introduction

Entity linking is a fundamental task in the field of
Natural Language Processing (NLP) and plays an
important role in numerous applications including
Knowledge Base (KB) question answering, docu-
ment understanding, dialogue systems, etc. Con-
sider the sentence – “She noticed a Jaguar speed-
ing on the highway.” In this sentence, the phrase

∗Equal contribution

Jaguar is called as entity mention and the task of
mapping this mention to a real world entity from
a given KB, e.g. Wikipedia, Wikidata, DBpedia,
etc., is called as entity linking (EL)1. For Wikipedia
KB, above mention of Jaguar should be mapped
to Jaguar car and not to Jaguar cat.

Majority of the prior works on EL focus only
on in-domain linking (Jiang et al., 2021; Orr et al.,
2021; Yamada et al., 2016; Chisholm and Hachey,
2015) where, gold entities (ground truth entities)
of the test examples are seen during training. In
other words, they assume both KB and entity set
are static. However, KBs evolve over time with ad-
dition of new entities and relations (Morsey et al.,
2012) because they are inherently incomplete and
facts change over time. This brings in a more use-
ful and challenging scenario of zero-shot linking
where the gold entity of test examples is unseen
during training. This task is known as zero-shot
entity linking (ZEL)2 and has gained attention in
recent times (Wu et al., 2020; Logeswaran et al.,
2019; Vyas and Ballesteros, 2021; Onoe and Dur-
rett, 2020; Gupta et al., 2017). A BERT-based
model, called BLINK (Wu et al., 2020), is a state-
of-the-art (SOTA) solution for the ZEL task. Re-
cently, a BART-based model, called GENRE (Cao
et al., 2021), was proposed and is claimed to outper-
form BLINK. While experimenting with BLINK,
we observed an interesting phenomenon: BLINK
exhibits diminishing returns. As shown in Figure 1,
BLINK attains 98% of its performance with just
1% of training data and further increase in the train-
ing data from 1% to 100% yields an additional
gain of just 2% in the performance. But note that

1In literature, this task is also called as Entity Disambigua-
tion (ED) and the combined task of mention detection plus
ED is called as EL. In this paper, we assume entity mentions
are given to us.

2In practice, a small percentage of test entities do get seen
during training time while working with large benchmark
datasets. We call this phenomenon as leakage. In the computer
vision field, the very same phenomenon of leakage is called as
Generalized Zero-Shot Learning (GZSL) (Jiang et al., 2019).

1681

https://github.com/IBM/NeSLET

0.00

20.00

40.00

60.00

80.00

100.00

0% 20% 40% 60% 80% 100%

M
et

ric

Training Size

Train Domain: Wiki BLINK
Test Domain: Wiki NED UM

% Test Entities Seen
BLINK Accuracy

9M examples

0.00

20.00

40.00

60.00

80.00

0% 1% 2%

M
et

ric

Training Size

% Test Entities Seen

BLINK Accuracy

90K examples
9K examples

900 examples

8.97%
2.07%

Figure 1: Figure on the right is a zoomed version of the figure on the left. The solid curve denotes diminishing
returns for linking accuracy of BLINK’s bi-encoder on the target domain as we increase the source domain’s training
data size. The dotted curve denotes the % of test entities leaking into training. A 10-fold increase in the training data
(from 900 to 9K examples) yields a performance gain of less than 10%. A further 10-fold increase (from 9K to
90K) merely yields a boost of 2.07%. As source domain training data increases, the leakage increases and problem
drifts from ZEL to EL setting.

even a slight increase in entity linking performance
has been shown to improve downstream tasks such
as question answering significantly (Kapanipathi
et al., 2021). However, training BLINK on a such a
large volume of data just to offer a marginal gain of
2% is quite impractical due to heavy investment re-
quired in terms of data, time, and hardware. As per
a tweet3 from an author of the BLINK, its training
took about a week’s time on 8-GPUs for 9M ex-
amples. Based on the above observation, this paper
aims to beat BLINK performance4 while utilizing
only 1% of training data.

To achieve above goal, we design a novel neuro-
symbolic approach that combines an easily avail-
able symbolic information, called entity types hi-
erarchy, with the BLINK model to reduce train-
ing data requirement without compromising ZEL
performance. For example, most of the KBs
would tag the entity Mercedes-Benz as Company
or Organization. Type information can help
disambiguate Mercedes-Benz even if it was unseen
during training because mentions of similar-typed
entities, say Jaguar, would have been seen. Our
experiments empirically verify the above hypoth-
esis. Previous works (Gupta et al., 2017; Raiman
and Raiman, 2018; Onoe and Durrett, 2020) have
also demonstrated performance gains by using en-
tity types. However, their primary focus was on
improving the performance, not on reducing the
training data requirement, as they were not based

3https://twitter.com/riedelcastro/status/1256283045855969286
4In our experiments BLINK consistently outperforms

GENRE by a significant margin in low data regimes.

on large language models. Even after utilizing
type information, their performance is substantially
lower than systems based on large language models
such as BLINK and GENRE.

Furthermore, to the best of our knowledge, all
of the existing systems that exploit entity types for
entity linking task ignore the hierarchical structure
of types. We hypothesize that exploiting the hierar-
chical structure of types can aid in the task of entity
linking, especially when training with less data. A
common strategy while training models with less
training data is to apply a strong prior (arising from
domain knowledge) on the parameters. The type
hierarchy can be used as a prior and encoded into
the model directly so that the model will not have
to learn it from the very limited training data. We
encode such a prior via ensuring the logical con-
sistency (imposed by the hierarchy) of predicted
entity types – if a type is predicted, then its parent
must also be predicted. For this, we have devel-
oped a novel neuro-symbolic technique inspired
from Gödel and Łukasiewicz norms (Klement et al.,
2000).

The following are the contributions of this paper:

• We show BLINK exhibits diminishing returns
(Fig. 1).

• By utilizing diminishing returns behavior of
BLINK, we propose a solution, called Neuro-
symbolic entity Linking using Entities Type
(NeSLET), for the zero shot entity linking prob-
lem in low training data regimes. NeSLET is a
novel combination of techniques from a diverse
set of fields namely multi-task learning, fuzzy

1682

logic, and hierarchical multi-label classification.
NeSLET is trained on two tasks simultaneously
- entity linking (primary task) and hierarchical
entity type prediction (auxiliary task).

• We are the first ones to show that accounting for
hierarchical structure of entity types improves
entity linking as compared to treating it flat.

• For the scenarios where a ZEL model is given
to us in the form of just black-box, we have pro-
posed a neuro-symbolic inference algorithm that
explicitly uses types just at inference time to im-
prove the performance of given black-box.

• Our experiments on four benchmark datasets
show that NeSLET beats both SOTA baselines
(BLINK and GENRE) in multiple low-data
regimes.

2 Related Works

Entity Linking (EL): Recently, the models (Wu
et al., 2020; Cao et al., 2021) based on large lan-
guage models such as BERT (Devlin et al., 2019)
and BART (Lewis et al., 2020) have achieved SOTA
results for the EL task. Table 1 slices the EL lit-
erature based on the flavor of underlying neural
model (BERT or non-BERT) and variants of the
EL task. Here, end-to-end EL means solving both
mention detection and entity disambiguation tasks
at the same time. BERT-based models require large
training data and hence leads to poor generaliz-
ability in the case of cross-domain EL (aka ZEL)
when training data is less. This motivated us to
use auxiliary information about entity types. As
shown in Table 1, previous works have used en-
tity types to help the EL task. However, to the
best of our knowledge, none of these approaches
are designed to work in a low-data regime. More-
over, these approaches do not leverage intrinsic
hierarchical structure of types and instead work
with a flat hierarchy. Logeswaran et al. (2019) pro-
posed an interesting dataset for ZEL based on the
community portal (https://www.fandom.com). We,
however, do not work with this dataset and related
approaches (Tang et al., 2021) as it lacks entity type
information.
Fine-grained Entity Typing (FET): FET (Ling
and Weld, 2012; Gillick et al., 2014) is the task
of assigning types from a semantic hierarchy to
the entity mentions in text. FET is a hierarchi-
cal multi-label classification (HMLC) task and our
auxiliary task is also an FET task. The popular
datasets for FET, such as AIDA, BBN (Weischedel

and Brunstein, 2005), OntoNotes (Gillick et al.,
2014), FIGER (Ling and Weld, 2012), etc., come
with shallow hierarchies (2 to 3 levels deep) com-
pared to our DBpedia type hierarchy (7 levels deep).
Ultra-Fine entity typing dataset (Choi et al., 2018)
comes with around 10k types, but the types are
not arranged in a hierarchy. There are also in-
dependent studies on the abstract HMLC prob-
lem (Giunchiglia and Lukasiewicz, 2020; Srivas-
tava et al., 2020) without tying it to any applica-
tion. The latest work on HMLC (Giunchiglia and
Lukasiewicz, 2020) uses a loss function that is sim-
ilar to our Gödel and Łukasiewicz t-norms (Kle-
ment et al., 2000).
Multi-task Learning (MTL): An MTL frame-
work (Caruana, 1995) is often used to improve
the performance on the primary task by learning a
shared representation between the primary and one
or more closely related auxiliary tasks. Learning a
joint representation between related tasks helps in
preventing over-fitting (Maurer, 2006), even when
the amount of training data is less for each task. In
our case, the primary task is entity linking and the
auxiliary task is entity type prediction.

3 Problem Definition

The ZEL task is akin to a cross-domain classifica-
tion task where entities play the role of classes.
It has two distinct characteristics - (i) number of
classes (in both source and target domain) could be
in the order of millions, e.g., Wikipedia has more
than 5 million entities, (ii) classes are not merely
labels but have rich features in the form of short
textual descriptions. Formally, in a ZEL task, we
are given an entity set ES , called seen (aka train)
entities. Each entity e ∈ ES is seen during training
in the form of a linked gold entity for some training
mention m. We are also given another entity
set EU , called unseen (aka test) entities, where
ES ∩EU = ∅5. The element-level structure of these
entity sets is as follows: ES = {(ei, di)}Ki=1 and
EU = {(ei, di)}Li=(K+1), where ei is the unique ti-
tle of the entity and di is a short textual description
of the entity. The train, validation, and test sets
look as follows. Dzel

train = {(mi, ei) | ei ∈ ES}Ni=1;
Dzel

val = {(mj , ej) | ej ∈ ES}Vj=1 ; Dzel
test =

{(mk, ek) | ek ∈ EU}Mk=1. In these datasets, the

5In an ideal ZEL task, for each of the test example, the
corresponding linked gold entity comes from the set EU . How-
ever, in practice, for a small fraction of test examples, we have
their linked gold entities coming from the set ES .

1683

EL Technique Variants of EL Task
In-domain Cross-domain End-to-end

Neural
(non-
BERT)

w/o types Chisholm and Hachey Logeswaran et al.,Le and Titov, Banerjee et al.
Yamada et al. Ganea and Hofmann

with types Raiman and Raiman Gupta et al., Onoe and Durrett
Neural
(BERT)

w/o types Orr et al. Wu et al., Vyas and Ballesteros, Li et al.
Chen et al.

with types Jiang et al. This Paper

Table 1: Slicing the space of prior art on EL.

first part mi (and mj ,mk) corresponds to the
input text string along with the entity mention
substring marked. The second part ei (and ej , ek)
corresponds to the gold entity that must be linked
to this mention. A standard practice is to represent
mi as the following tuple - (left context, mention,
right context). For the sentence “She noticed a
Jaguar speeding on the highway", we have mi =
(She noticed a, Jaguar, speeding on the highway)
and ei = Jaguar_Cars .

A typical model for ZEL task is a scoring func-
tion fzel :M× E 7→ R, here E = ES ∪ EU . For
any given mention m ∈M, it induces a score for
each entity e ∈ E . The ZEL model uses these
induced scores fzel(m, e) to rank all the entities
and highest-scoring entity is predicted as the final
answer. The performance of a ZEL model is mea-
sured via Hits@k for k ≥ 1. Hits@k measures if
the gold entity appears within the top-k elements.
For k = 1, it is called accuracy.

3.1 Entity Type Prediction - Auxiliary Task

We use entity type prediction (ETP) as an auxil-
iary task. The goal behind ETP is to link an en-
tity mention to one or more type classes from a
given entity type set T = {tj}|T |

j=1. for e.g., in
sentence “She noticed a Jaguar speeding on the
highway", the mention Jaguar is classified into
Organization and Company classes as per DBpe-
dia’s (Lehmann et al., 2015) type classes hierarchy.
Training data for such a task is given in the form of
Dtype

train = {(mi, ti)}Ni=1 where ti = [tij]
|T |
j=1 is a bi-

nary vector of size |T | where tij equals 1 if tj ∈ T
is a valid type for the corresponding gold entity
ei, and 0 otherwise. A typical model for the entity
type prediction is given by ftype :M×T 7→ [0, 1].
For any given mention m ∈M, it induces a prob-
ability score for each type class tj ∈ T . That is,
p(tj |m) = ftype(m, tj), ∀tj ∈ T . The perfor-
mance of the ETP task is measured via F1 score

computed over predicted type set and gold type set.
We make a simplifying assumption that size of gold
type set is known to us; this helps us avoid hassle
of setting a threshold.

4 NeSLET

As mentioned earlier, NeSLET is an MTL-based
neuro-symbolic approach where we use ETP as
an auxiliary task and jointly learn it with the pri-
mary task of EL. Both the primary and auxiliary
tasks are classification tasks for a given mention
m except that: (i) the corresponding classes are
different – entities for the primary task and types
for the auxiliary task, and (ii) auxiliary task is a
HMLC task. In our modeling, we make a simplified
assumption that the probability of entity e being
the gold entity of a mention m is conditionally in-
dependent of the probability of any type tj being
the valid type of the gold entity. In other words,
p(e, t | m) = p(e | m)·∏|T |

j=1 p(tj | m), ∀e, t,m.
Neural Model for p(e | m): We use following
models for p(e | m) where, Vm and Ve are the
vector representations of mention m and entity e,
respectively.

p(e | m)=fzel(m, e)=
exp(V ⊤

m · Ve)∑
e′∈E exp(V

⊤
m · Ve′)

(1)

As shown in Figure 3, we use BERT to obtain
vector representation for both mention m and the
entity e (as described in Wu et al. (2020)). Pa-
rameters of these BERT models are denoted by
θm and θe, respectively. Thus, we can say Vm =
mention-bert(m, θm) and Ve = entity-bert(e, θe).
Neuro-symbolic Model for p(tj | m): In prac-
tice, KB’s organize entity types in the form of a
logical hierarchy as shown in Figure 2. In such
a hierarchy, if we traverse along a path from leaf
node to the root, e.g. cat → mammal → animal,
the corresponding types become coarse grained. To
ensure this logical consistency property of the type

1684

hierarchy, we require that our proposed model sat-
isfies the following path monotonicity property.
[Path Monotonicity Property]: Let tk be the parent
node of tj in the given type hierarchy. For any
mention m, we must ensure that type probabili-
ties predicted by our model satisfy the following
monotonicity condition: 0 ≤ p(tj | m) ≤ p(tk |
m) ≤ 1. We ensure this by exploiting Gödel or
Łukasiewicz t-norm (Klement et al., 2000) used in
the field of fuzzy logic (Klir and Yuan, 1995). As
per these t-norms, if tj is an internal node in the
hierarchy then we compute its probability purely
in a symbolic fashion by using the probabilities
assigned to its children nodes. We use logical OR
formula (given below) of the Gödel (equation 2a) or
Łukasiewicz (equation 2b) t-norm for this purpose.
Ctj in these formulas denotes the set of children
nodes for tj .

p(tj |m) =





maxtk∈Ctj p(tk|m) (2a)

min

{
1,
∑

tk∈Ctj
p(tk|m)

}
(2b)

𝑟𝑜𝑜𝑡

𝑡! 𝑡" 𝑡# 𝑡$

𝑡% 𝑡& 𝑡' 𝑡(𝑡)

𝑡!* 𝑡!! 𝑡!" 𝑡!#

Upward closed
type set of entity 𝑒+

𝑒!

0.1

0.01

0.9

0.8 0.7

0.6 0.1

0.2 0.1

0.010.1

0.02 0.03Pa
th

 m
on

ot
on

ici
ty

of

typ
e p

ro
ba

bi
liti

es

𝑝𝑎𝑡ℎ!

𝑝𝑎𝑡ℎ" 𝑝𝑎𝑡ℎ# 𝑝𝑎𝑡ℎ$ 𝑝𝑎𝑡ℎ%

𝑝𝑎𝑡ℎ& 𝑝𝑎𝑡ℎ'

Figure 2: An illustration of type hierarchy and issue of
path consistency during training.

For above model to work, we still need to ad-
dress the issue of computing type probability for
each leaf node tj in the hierarchy. We achieve this
via a neural model where we obtain vector repre-
sentations Vtj for each leaf node by using a type
network. The type network comprises an initial em-
bedding vector for each type class and an optional
linear layer followed by non-linearity. The param-
eters of this type network are denoted by θt and
hence, we have Vtj = type-network(tj , θt). Type
probability of each leaf node is computed using:

p(tj | m)=ftype(m, tj)=
1

1 + exp(−V ⊤
m · Vtj)

(3)

Because of equations (4) and (3), we call this model
as neuro-symbolic. While training the above model,
we need to prepare our data so as to ensure a prop-
erty called upward closure of entity types.
[Upward Closure of Entity Types]: If tj is given to
be a type of an entity ei in a training example then
all the nodes on the path from tj till root must also
be considered as its valid types. For e.g., suppose
{t9} is given as a valid type for entity ei as shown
in Figure 2. Then, we must augment its type set by
adding all the ancestor nodes of {t9}. This results
in {t4, t9} as the upward closed type set for ei.
Model Training: For training our model param-
eters θm, θe, and θt; we define loss ℓzel for the
primary task and ℓtype for the auxiliary task.

ℓzel(θm, θe) =−
∑

(mi,ei)∈Dzel
train

log p(ei|mi)

ℓtype(θm, θt) = −
∑

(mi,ei)∈Dzel
train

∑

tj∈T
1ei(tj) log p(tj |mi)

+ (1− 1ei(tj)) log(1− p(tj |mi))

where, 1ei(tj) is an indicator variable capturing
whether tj is a valid type of entity ei or not. The
loss function ℓzel is similar to the bi-encoder loss
function used in BLINK (Wu et al., 2020). The
combined loss for the two tasks is given by

ℓmtl(θm, θe, θt) = ℓzel(θm, θe) + α ℓtype(θm, θt)

where α is a hyperparameter.
Thus, learning of NeSLET involves solving the

following optimization problem.

θ∗m, θ∗e , θ
∗
t = argmin

(θm,θe,θt)
ℓmtl(θm, θe, θt) (4)

Observe, the parameter θm is common across both
the tasks’ loss terms. Due to this, both these tasks
get tied together during training and the ETP task
induces a bias in the hypothesis selection for the
EL task. If there are multiple equally good EL
hypotheses (i.e. model parameters θm and θe), the
inductive bias forces model to pick an hypothesis
that does well on the ETP task. Such inductive
bias helps in better generalization for the EL task
across new domain even when trained with the less
data. We train EL and ETP tasks jointly using
hard parameter sharing (Sun et al., 2020; Ruder,
2017) strategy. In this strategy, we train θm, θe, θt
simultaneously. The backpropagation scheme for
this scenario is depicted in Figure 3.
Inference: Given a mention m, the trained EL
model is used to predict entities in a ranked order.

1685

En#ty BERT Mention BERT

𝑒 𝑚

Type Network

𝑡!

ℓ!"# + 𝛼 ℓ$%&"

𝑉" 𝑉# 𝑉$!
𝜂!"#∇ℓ!"# 𝜂!"#𝛼 ∇ℓ$%&" 𝜂$%&" 𝛼 ∇ℓ$%&"𝜂!"# ∇ℓ!"#

ℓ'$#

Figure 3: Training strategy with hard parameter sharing.

5 Experiments

Datasets and Type Hierarchy: Table 2 sum-
marizes various benchmark datasets used in our
experiments. We use Wiki BLINK (Wu et al., 2020)
and Wiki FGET (Onoe and Durrett, 2020) as two
different datasets for the training domain. Each
of these datasets are based on Wikipedia. For the
test domain, we use two benchmark datasets –
WikilinksNED UM (NED for short) (Onoe, 2020;
Onoe and Durrett, 2020) and CoNLL-YAGO
(CoNLL for short) (Hoffart et al., 2011; Max
Planck Institute for Informatics, 2013). For
the Wiki FGET dataset, we have two variants
available – one for each of the test domains.
These two variants were prepared by the authors
so as to ensure a good amount of entity types
being covered between train and test domains
where entity types were taken from Wikipedia
categories. For each entity across all datasets,
we use DBpedia (Lehmann et al., 2015) to get
the entity types. DBpedia ontology (dbp, 2020)
contains 769 types including root type owl:Thing.
These types are arranged in a tree structure having
7 levels and 611 leaves.

Domain Dataset
Examples # Unique Entities

Train Val. Test Train Val. Test

Train

Wiki BLINK 9M 10K – 1.49M 8.7K –
Wiki FGET 5.6M 3K – 1.3M 2.8K –(NED)
Wiki FGET 6M 5K – 1.14M 4.5K –(CoNLL)

Test NED – 10K 10K – 2.3K 2.5K
CoNLL – 4791 4485 – 1.6K 1.5K

Table 2: Datasets summary. For train (test) domain
datasets, we have specified a dash (–) in its test (train)
column as that set is never used. For the last row, the
splits are as per Onoe and Durrett (2020).

Implementation Details: We used the BLINK

source code from (Wu, 2020) as the base model
and implemented NeSLET on top of it. The
hyperparameters that we used closely follow
BLINK. For both the mention and entity BERT
models, we use the bert-base-uncased model. We
use a batch size of 128, maximum context length
of 64 (32 tokens on each side of the mention),
and the maximum entity description length is
set to 128. The learning rates are ηzel = 10−5

and ηtype = 10−3. We use ADAM (Kingma and
Ba, 2015) to optimize the objective. For BLINK
and NeSLET models, we train each of them in
two stages – first with in-batch negative entities,
followed by hard-negative (Gillick et al., 2019)
entities. We obtained the hard-negatives similar to
Wu et al. (2020) by finding the top-10 predicted
entities for each training example. These hard
negatives are combined with the random in-batch
negatives during training. We do not perform hard
negative mining for the types because we use all
the negatives types while computing ℓtype. In both
these stages, the number of training epochs is 30
for 0.01% and 0.1% data splits, and 4 for the 1%
data splits. The best model is selected based on
the source domain validation set accuracy which
is computed after each epoch. We initialize the
NeSLET model with the weights obtained by
training BLINK on the corresponding training
data splits (0.01%, 0.1% and 1%). We use BERT
to compute the initial embedding for types based
on their names. The type loss weight, α, for each
iteration is obtained using: α = 2

1+e−γp − 1 where,
γ is set to 10 and p ∈ [0, 1] is the training progress.
In the NeSLET model, we use a weighted sum
(learnt) of the CLS vectors from layer #5 to #11 of
the mention BERT as the mention representation
for the purpose of type prediction.

Computing Infrastructure: We trained our
models on a single machine having 2 × 20 core
POWER9 processors, 6×Nvidia Volta V100 GPUs
with 32GB memory, and 512GB system RAM. A
single training epoch for the NeSLET model on a
train set of 900 samples takes 2 to 3 minutes.

Results: Table 3 summarizes our experimen-
tal results, where we have compared performance
of NeSLET with two baselines – BLINK and
GENRE (Cao et al., 2021). For training and in-
ference of GENRE, we use the hyperparameters
reported in (Cao et al., 2021) (more details given
in Section B.4 of the appendix). The performance

1686

Domain Training
Data %

Method

Train Test GENRE BLINK NeSLET-G NeSLET-L NeSLET-F Gain
Hierarchy

Gain

W
ik

iB
L

IN
K NED

0.01 33.1 56.6 57.0 57.0 57.7 1.9 -1.2
0.1 44.3 65.4 64.6 65.6 65.4 0.3 0.3

1 55.0 67.7 70.0 69.7 69.9 3.4 0.1

CoNLL
0.01 49.4 61.2 62.6 64.3 63.5 5.1 1.3

0.1 60.2 71.6 70.5 73.0 70.6 2.0 3.4
1 68.5 72.3 74.7 75.2 74.4 4.0 1.1

W
ik

iF
G

E
T NED

0.01 22.3 47.6 52.8 52.1 55.3 16.2 -4.5
0.1 36.8 62.0 63.7 63.6 63.0 2.7 1.1

1 50.7 67.3 68.1 67.6 69.2 2.8 -1.6

CoNLL
0.01 37.6 52.8 60.1 60.1 58.4 13.8 2.9

0.1 53.2 68.4 70.5 69.8 69.6 3.1 1.3
1 62.5 73.1 75.0 75.1 73.8 2.7 1.8

Table 3: Performance of NeSLET compared to GENRE and BLINK on target domain’s test set. NeSLET-G,
NeSLET-L, and NeSLET-F correspond to the variants of NeSLET that use Gödel (G), Łukasiewicz (L) norms
to exploit the type hierarchy, or, assume that the types are Flat (F) i.e, no hierarchy. The Gain column denotes
the performance gain (in %) obtained by the best of NeSLET-G and NeSLET-L and NeSLET-F relative to the
best of GENRE and BLINK. The Hierarchy Gain column denotes the performance gain (in %) obtained using
the hierarchical structure of entity types and is calculated as the best of NeSLET-G and NeSLET-L relative to
NeSLET-F.

numbers for NeSLET in Table 3 were reported
using the models (hyperparameter configurations)
that resulted in the best performance on the source
domain’s validation set. In all of our experiments,
BLINK performed better than GENRE in low train-
ing data regimes. The detailed performance num-
bers for validation and test sets across tuning ranges
of various hyperparameters are captured in Tables
16, 17, and 18 of the appendix. These tables also
capture the performance on the auxiliary task. Ta-
ble 10 of the appendix shows the performance sat-
uration trend for BLINK beyond 1% training data.
We have captured the statistics related to leakage
of entities and mentions in Tables 6, 7, and 8 of the
appendix.

Domain Method

Train Test
BLINK
(100%)

NeSLET
(1%)

Wiki BLINK
NED 71.7 70.0

CoNLL 71.5 75.2

Wiki FGET
NED 67.7 69.2

CoNLL 74.4 75.1

Table 4: Comparing the accuracy of BLINK trained on
100% data and NeSLET trained on 1% data.

Insights: In Table 3, we see that NeSLET out-
performs the baselines in all twelve training and

test domain combinations (2 training datasets x 2
test sets x 3 training data percentages). These re-
sults validate our claim that learning entity linking
and entity type prediction in a multi-task learning
fashion leads to improved performance on entity
linking in low training data regimes. This character-
istic is beneficial for real-world applications, where
acquiring training data is quite expensive. From
Table 3, we can see that the variants of NeSLET
that exploit the type hierarchy using Gödel and
Łukasiewicz norms (NeSLET-G and NeSLET-L)
outperform NeSLET-F (which ignores the type hi-
erarchy) in nine out of the twelve experiments. It
shows that exploiting type hierarchy boosts the en-
tity linking accuracy most times. The experiments
in Table 3 also suggest that one fuzzy logic op-
erator need not perform the best on all domains.
The choice of these operators can be considered
as a hyperparameter. In Table 4, we compare the
accuracy of BLINK trained on 100% data with
NeSLET trained on 1% data. For the purpose of
this study, we consider the version of NeSLET
(Gödel, Łukasiewicz or Flat) that achieves the high-
est accuracy on the given combination of train and
test datasets. NeSLET trained on 1% data outper-
forms BLINK trained on 100% data in three out of
the four experiments. NeSLET not only manages
to recover the accuracy that BLINK loses due to

1687

the reduction in training data size, but also goes
beyond. The positive transfer of knowledge from
the auxiliary task of entity type prediction to the
primary task of entity linking enables NeSLET to
outperform the baselines in low data regimes.

6 What if ZEL Model is a Black-Box?

Note that NeSLET model exploits entity type in-
formation only at the time of training a ZEL model
(BLINK in this case). However, what if the ZEL
model is available only as a black-box? For such
a scenario, which is quite plausible in practice, it
is not possible to train NeSLET like models that
exploit entity types. To address this, we propose a
neuro-symbolic inference Algorithm 1 that lever-
ages entity type information only at inference time
and thereby improves the performance of the given
black-box ZEL model. Algorithm 1 assumes ac-
cess to two black-box models - one for ZEL task
and other for entity types prediction. Both of these
models may be trained on separate datasets and
made available as pre-trained black-box models.
Algorithm 1 uses the types model to re-rank enti-
ties outputted by the ZEL model.

Algorithm 1: Type-based Inference

1 For a given mtest, pick a set S of top-k
entities from E using the zel score
Szel(e | mtest) = p(e | mtest; θ

zel∗
m , θ∗e);

2 For each entity e ∈ S, compute type based
ranking score by Stype(e | mtest) =∑

tj∈T 1e(tj) · p(tj | mtest; θ
type∗
m , θ∗t);

3 For each entity e ∈ S, compute a total
ranking score given by
Stotal = (βzel · Szel) + (βtype · Stype) +
(βboth · Szel · Stype) where,
0 ≤ βzel, βtype, βboth are weights of
different terms and act as hyperparameters;

4 Output the entity with highest joint score.

When βzel = 1, βtype = βboth = 0, Algorithm 1
gets simplified to the inference strategy of the ZEL
model. The inference strategy of Algorithm 1 runs
into a problem if types are arranged in a hierar-
chy. Consider two entities e1 and e2. After type
augmentation, suppose valid type sets of e1 and
e2 are given by the paths root → t2 → t6 and
root→ t2 → t6 → t10, respectively, in type hier-
archy of Figure 2. In this case, the type-based score
Stype(·) will always score e2 higher than e1. Thus,

it has a bias in terms of preferring the entities hav-
ing deeper penetration in the hierarchy. If we mod-
ify the formula Stype(·) and divide it by the path
length then also it will be problematic as it will now
favor shallow paths. To mitigate this bias, we sug-
gest following revision in this formula: S̃type(e |
mtest) =

∑
pathj

p(pathj | mtest) · p(pathj | e)
where, sum is taken over all the paths from root till
leaves in the type hierarchy (see Figure 2). For each
such path, p(pathj | mtest) denotes predicted prob-
ability for mention’s type being the leaf node on
that path. The entity’s path probability p(pathj | e)
depends on whether pathj contains any valid type
of e. Details of computing p(pathj | e) are given
in Section B.6 of the appendix.
Hierarchy Pruning: Computation of p(pathj | e)
involves estimating prior probability p(tb|ta) of an
entity having finer type tb given it has a coarse type
ta (parent of tb). If tb is too fine-grained, we do
not have enough data to reliably estimate p(tb|ta).
To mitigate such data sparsity issues, we consider
only top-k levels of the hierarchy from the root
and restrict all the calculations on these types (see
Figure 2). Our experiments show strong evidence
that pruning improves the performance.
Results: Table 5 shows the performance gain ob-
tained by using type-based inference on top of the
NeSLET-L model (treated as black-box). There
are two hyperparameters in Algorithm 1 – top-k
entities return by ZEL model, and pruning level of
the type hierarchy. The values and tuning ranges of
these hyperparameters are given in Table 9 of the
appendix. The detailed performance numbers are
given in Tables 16, 17, and 18 of the appendix.
Anecdotal examples given in Tables 11 and 12
show how our inference scheme pushes the gold
entity to Rank-1 which otherwise lies at Rank-2 in
ZEL model’s prediction. Also, in few cases, our
type-based inference pushes down the correct pre-
diction from Rank-1 position. Two such examples
are given in Tables 13 and 14 of appendix.

Domain Method
Train Test NeSLET-L NeSLET-LT

Wiki BLINK
NED 69.65 69.64

CoNLL 75.24 75.37

Wiki FGET
NED 67.58 67.67

CoNLL 75.06 75.39

Table 5: Accuracy boost for ZEL black-box model
(NeSLET-L trained on 1% data) when applied type
inference (NeSLET-LT).

1688

7 Conclusions

We have developed a multi-task approach called
NeSLET wherein one can leverage the auxiliary
domain knowledge about entity types so as to im-
prove the performance on zero-shot entity linking
task, beyond what SOTA methods such as BLINK
and GENRE offer, in an extremely low training
data regime. We believe, this research opens up
an avenue for such deep learning based methods
to be tried in real applications where training ex-
amples are very less. The future directions include
exploring other architectures and learning schemes
to train our hard parameter sharing model. Design
of newer auxiliary tasks based on self-supervision
is another potential direction.

8 Ethical Considerations

Any ZEL technique, like ours, that advances the
SOTA with less training data is a boon for appli-
cations such as KB question answering, document
understanding, dialogue systems, etc. Our solution,
however, comes with its own limitations and risks
as follows. 1) Our assumption of entity types com-
ing from the same hierarchy for both train and test
domains is not always true in practice. Moreover, if
there is no entity type information available in the
first place, then our approach can not even be used.
2) The sensitivity of our predictions with respect
to mild perturbation in input text could be a risk
factor while deploying it in real-life applications.
It warrants a rigorous study that we leave as future
work.

We use publicly available datasets for training
and testing our models. The Wiki BLINK and
CoNLL-YAGO datasets are available under the
MIT and CC-BY-3.0 licenses respectively. For the
other datasets mentioned in Table 2, we obtained
permissions from the authors (Onoe and Durrett,
2020) as the license was not explicitly mentioned
on their Github. All of these datasets were con-
structed using publicly available sources such as
Wikipedia for the purpose of developing entity link-
ing systems and they are being used as intended.
We believe these datasets do not contain any infor-
mation that is offensive or uniquely identifies any
individual.

Acknowledgments

We would like to thank the entire team from the
IBM Research AI Hardware Center and the Center

for Computational Innovation at Rensselaer Poly-
technic Institute for computational resources on the
AiMOS Supercomputer. We conducted most of our
experiments on the AiMOS computing platform.
We would also like to acknowledge IBM Cognitive
Computing Cluster (CCC) for providing resources
to carry out various experiments.

References
2020. DBpedia Ontology. http://
akswnc7.informatik.uni-leipzig.de/
dstreitmatter/archivo/dbpedia.org/
ontology--DEV/2020.10.15-031000/
ontology--DEV_type=parsed.owl.

Debayan Banerjee, Debanjan Chaudhuri, Mohnish
Dubey, and Jens Lehmann. 2020. PNEL: Pointer
network based end-to-end entity linking over knowl-
edge graphs. In ISWC, pages 21–38.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In ICLR.

Rich Caruana. 1995. Learning many related tasks at the
same time with backpropagation. In NeurIPS, pages
657–664.

Shuang Chen, Jinpeng Wang, Feng Jiang, and Chin-Yew
Lin. 2020. Improving entity linking by modeling
latent entity type information. In AAAI, pages 7529–
7537.

Andrew Chisholm and Ben Hachey. 2015. Entity dis-
ambiguation with web links. Transactions of the As-
sociation for Computational Linguistics, 3:145–156.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In ACL, pages
87–96.

Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. 2009. Introduction to
Algorithms. MIT press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT, pages 4171–4186.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In EMNLP, pages 2619–2629.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. arXiv
preprint arXiv:1412.1820.

Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessan-
dro Presta, Jason Baldridge, Eugene Ie, and Diego
Garcia-Olano. 2019. Learning dense representations
for entity retrieval. In CoNLL, pages 528–537.

1689

http://akswnc7.informatik.uni-leipzig.de/dstreitmatter/archivo/dbpedia.org/ontology--DEV/2020.10.15-031000/ontology--DEV_type=parsed.owl
http://akswnc7.informatik.uni-leipzig.de/dstreitmatter/archivo/dbpedia.org/ontology--DEV/2020.10.15-031000/ontology--DEV_type=parsed.owl
http://akswnc7.informatik.uni-leipzig.de/dstreitmatter/archivo/dbpedia.org/ontology--DEV/2020.10.15-031000/ontology--DEV_type=parsed.owl
http://akswnc7.informatik.uni-leipzig.de/dstreitmatter/archivo/dbpedia.org/ontology--DEV/2020.10.15-031000/ontology--DEV_type=parsed.owl
http://akswnc7.informatik.uni-leipzig.de/dstreitmatter/archivo/dbpedia.org/ontology--DEV/2020.10.15-031000/ontology--DEV_type=parsed.owl
https://doi.org/10.1007/978-3-030-62419-4_2
https://doi.org/10.1007/978-3-030-62419-4_2
https://doi.org/10.1007/978-3-030-62419-4_2
https://openreview.net/forum?id=5k8F6UU39V
http://papers.nips.cc/paper/959-learning-many-related-tasks-at-the-same-time-with-backpropagation
http://papers.nips.cc/paper/959-learning-many-related-tasks-at-the-same-time-with-backpropagation
https://doi.org/10.1609/aaai.v34i05.6251
https://doi.org/10.1609/aaai.v34i05.6251
https://doi.org/10.1162/tacl_a_00129
https://doi.org/10.1162/tacl_a_00129
https://doi.org/10.18653/v1/P18-1009
https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D17-1277
https://doi.org/10.18653/v1/D17-1277
https://doi.org/10.48550/arXiv.1412.1820
https://doi.org/10.48550/arXiv.1412.1820
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049

E Giunchiglia and T Lukasiewicz. 2020. Coherent
hierarchical multi-label classification networks. In
NeurIPS, pages 9662–9673.

Nitish Gupta, Sameer Singh, and Dan Roth. 2017. En-
tity linking via joint encoding of types, descriptions,
and context. In EMNLP, pages 2681–2690.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in
text. In EMNLP, pages 782–792.

Hang Jiang, Sairam Gurajada, Qiuhao Lu, Sumit Nee-
lam, Lucian Popa, Prithviraj Sen, Yunyao Li, and
Alexander Gray. 2021. LNN-EL: A neuro-symbolic
approach to short-text entity linking. In ACL, pages
775–787.

Huajie Jiang, Ruiping Wang, Shiguang Shan, and Xilin
Chen. 2019. Transferable contrastive network for
generalized zero-shot learning. In ICCV, pages 9764–
9773.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravis-
hankar, Salim Roukos, Alexander Gray, Ramón Fer-
nandez Astudillo, Maria Chang, Cristina Corne-
lio, Saswati Dana, Achille Fokoue-Nkoutche, et al.
2021. Leveraging abstract meaning representation
for knowledge base question answering. In Findings
of ACL-IJCNLP 2021.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Erich-Peter Klement, Radko Mesiar, and Endre Pap.
2000. Triangular Norms, volume 8 of Trends in
Logic. Springer.

George Klir and Bo Yuan. 1995. Fuzzy sets and fuzzy
logic, volume 4. Prentice hall New Jersey.

Phong Le and Ivan Titov. 2018. Improving entity link-
ing by modeling latent relations between mentions.
In ACL, pages 1595–1604.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia - A
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In ACL, pages 7871–7880.

Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar
Mehdad, and Wen-tau Yih. 2020. Efficient one-pass
end-to-end entity linking for questions. In EMNLP,
pages 6433–6441.

Xiao Ling and Daniel S Weld. 2012. Fine-Grained
entity recognition. In AAAI, pages 94–100.

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova, Jacob Devlin, and Honglak Lee.
2019. Zero-shot entity linking by reading entity de-
scriptions. In ACL, pages 3449–3460.

Andreas Maurer. 2006. Bounds for linear multi-task
learning. Journal of Machine Learning Research,
7(1):117–139.

Max Planck Institute for Informatics. 2013.
AIDA CoNLL-YAGO Dataset. https:
//www.mpi-inf.mpg.de/departments/
databases-and-information-systems/
research/ambiverse-nlu/aida/
downloads.

Mohamed Morsey, Jens Lehmann, Sören Auer, Claus
Stadler, and Sebastian Hellmann. 2012. Dbpedia and
the live extraction of structured data from wikipedia.
Program: Electronic Library and Information Sys-
tems, 46(2):157–181.

Yasumasa Onoe. 2020. Et4el. https://github.
com/yasumasaonoe/ET4EL.

Yasumasa Onoe and Greg Durrett. 2020. Fine-grained
entity typing for domain independent entity linking.
In AAAI, pages 8576–8583.

Laurel Orr, Megan Leszczynski, Simran Arora, Sen Wu,
Neel Guha, Xiao Ling, and Christopher Re. 2021.
Bootleg: Chasing the tail with self-supervised named
entity disambiguation. In CIDR.

Jonathan Raiman and Olivier Raiman. 2018. Deeptype:
Multilingual entity linking by neural type system
evolution. In AAAI, pages 5406–5413.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Santosh K. Srivastava, Dinesh Khandelwal, Dhiraj
Madan, Dinesh Garg, Hima Karanam, and L. Venkata
Subramaniam. 2020. Inductive quantum embedding.
In NeurIPS.

Tianxiang Sun, Yunfan Shao, Xiaonan Li, Pengfei Liu,
Hang Yan, Xipeng Qiu, and Xuanjing Huang. 2020.
Learning sparse sharing architectures for multiple
tasks. In AAAI, pages 8936–8943.

Hongyin Tang, Xingwu Sun, Beihong Jin, and Fuzheng
Zhang. 2021. A bidirectional multi-paragraph read-
ing model for zero-shot entity linking. In AAAI,
pages 13889–13897.

Yogarshi Vyas and Miguel Ballesteros. 2021. Linking
entities to unseen knowledge bases with arbitrary
schemas. In NAACL-HLT, pages 834–844.

Ralph Weischedel and Ada Brunstein. 2005. Bbn pro-
noun coreference and entity type corpus. Linguistic
Data Consortium, Philadelphia, 112.

1690

https://proceedings.neurips.cc/paper/2020/hash/6dd4e10e3296fa63738371ec0d5df818-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dd4e10e3296fa63738371ec0d5df818-Abstract.html
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
https://doi.org/10.18653/v1/D17-1284
https://aclanthology.org/D11-1072
https://aclanthology.org/D11-1072
https://doi.org/10.18653/v1/2021.acl-long.64
https://doi.org/10.18653/v1/2021.acl-long.64
https://doi.org/10.1109/ICCV.2019.00986
https://doi.org/10.1109/ICCV.2019.00986
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://openreview.net/forum?id=8gmWwjFyLj
https://openreview.net/forum?id=8gmWwjFyLj
https://doi.org/10.1007/978-94-015-9540-7
https://www.pearson.com/us/higher-education/program/Klir-Fuzzy-Sets-and-Fuzzy-Logic-Theory-and-Applications/PGM73001.html
https://www.pearson.com/us/higher-education/program/Klir-Fuzzy-Sets-and-Fuzzy-Logic-Theory-and-Applications/PGM73001.html
https://doi.org/10.18653/v1/P18-1148
https://doi.org/10.18653/v1/P18-1148
https://content.iospress.com/articles/semantic-web/sw134
https://content.iospress.com/articles/semantic-web/sw134
https://content.iospress.com/articles/semantic-web/sw134
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.emnlp-main.522
https://doi.org/10.18653/v1/2020.emnlp-main.522
https://ojs.aaai.org/index.php/AAAI/article/view/8122
https://ojs.aaai.org/index.php/AAAI/article/view/8122
https://doi.org/10.18653/v1/P19-1335
https://doi.org/10.18653/v1/P19-1335
https://jmlr.csail.mit.edu/papers/v7/maurer06a.html
https://jmlr.csail.mit.edu/papers/v7/maurer06a.html
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ambiverse-nlu/aida/downloads
https://doi.org/10.1108/00330331211221828
https://doi.org/10.1108/00330331211221828
https://github.com/yasumasaonoe/ET4EL
https://github.com/yasumasaonoe/ET4EL
https://doi.org/10.1609/aaai.v34i05.6380
https://doi.org/10.1609/aaai.v34i05.6380
http://cidrdb.org/cidr2021/papers/cidr2021_paper13.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper13.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/12008
https://ojs.aaai.org/index.php/AAAI/article/view/12008
https://ojs.aaai.org/index.php/AAAI/article/view/12008
https://doi.org/10.48550/arXiv.1706.05098
https://doi.org/10.48550/arXiv.1706.05098
https://proceedings.neurips.cc/paper/2020/hash/b87039703fe79778e9f140b78621d7fb-Abstract.html
https://doi.org/10.1609/aaai.v34i05.6424
https://doi.org/10.1609/aaai.v34i05.6424
https://ojs.aaai.org/index.php/AAAI/article/view/17636
https://ojs.aaai.org/index.php/AAAI/article/view/17636
https://doi.org/10.18653/v1/2021.naacl-main.65
https://doi.org/10.18653/v1/2021.naacl-main.65
https://doi.org/10.18653/v1/2021.naacl-main.65
https://doi.org/10.35111/9fx9-gz10
https://doi.org/10.35111/9fx9-gz10

Ledell Wu. 2020. BLINK. https://github.
com/facebookresearch/BLINK.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
EMNLP, pages 6397–6407.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. In SIGNLL, pages 250–259.

A Leakage Analysis for Entity and
Mention

Tables 6, 7, and 8 show the percentage of test exam-
ples in our benchmark datasets whose gold entities
(e), mentions (m), entity and mention pairs (e,m)
were seen during training, respectively.

B Experiments

B.1 Type-based Inference Hyperparameters
Table 9 shows hyperparameters and their tuning
ranges related to our proposed type-based inference
Algorithm 1. Initially, we tuned these hyperparam-
eters on the source domain’s validation set, but that
did not result in any performance gain. The reason
could be a significant difference in the source and
target domain’s data distributions. To explore fur-
ther, we tuned these hyperparameters on the target
domain’s validation set and obtained a boost in en-
tity linking performance. Improving the type-based
inference algorithm to obtain gains by tuning on
the source domain alone is a direction of future
work.

B.2 BLINK Accuracy
Table 10 shows BLINK’s bi-encoder accuracy with
varying level of training set size. This serves as a
key baseline for our results.

B.3 Anecdotal Examples
Tables 11 and 12 show anecdotal examples where,
NeSLET model predicts the gold entity at Rank-2
but, our proposed type-based inference corrects the
prediction of NeSLET by promoting it to Rank-
1 during inference time. Tables 13 and 14, on
the other hand, show anecdotal examples where
type-based inference makes the prediction of the
ZEL model incorrect. However, at an aggregate
level, our type-based inference overall improves
ZEL performance. Here the type model comes
from NeSLETwith the Łukasiewicz norm.

B.4 GENRE Experiment Details
GENRE (Cao et al., 2021) is a SOTA entity link-
ing system based on BART (Lewis et al., 2020).
Given an input mention m to GENRE, it autore-
gressively generates an entity name e. We ini-
tialized BART weights with pre-trained BART
from (Lewis et al., 2020) and fine-tuned it on Wiki
BLINK (Wu et al., 2020) and Wiki FGET (Onoe and
Durrett, 2020) datasets for different training data
splits (0.01%, 0.1% and 1%). We used the hyper-
parameters reported in (Cao et al., 2021) and the
training script available at https://github.
com/facebookresearch/GENRE for train-
ing GENRE. For different training data splits, we
used different numbers of training update steps as
reported in Table 15. We selected the model us-
ing test domain’s validation set. For inference, we
used the same hyperparameters as used by (Cao
et al., 2021) for the entity disambiguation task. We
have constructed a trie (Cormen et al., 2009) using
BLINK’s 5.9M entities set to perform constrained
decoding at the inference time.

B.5 Comparison of NeSLET vs. BLINK
Tables 16, 17, and 18 show detailed comparison of
NeSLET with BLINK when both are trained with
0.01%, 0.1%, and 1% of training data splits. The
ETP F1 is the performance of the auxiliary ETP
task. Different rows capture variations in train/test
domain datasets as well as key hyperparameters
for NeSLET. ‘Flat’ loss means treating the type
hierarchy as flat. Column β corresponds to the
values for (βzel, βtype, βboth). The NeSLET accu-
racy when inferred w/o types corresponds to the
case βzel = 1, βtype = βboth = 0. For each row,
the NeSLET performance w/ types is taken for the
combination of ‘Tree Level’, ‘top-k’, and β that
resulted in the best NeSLET performance on test
domain’s validation set.

1691

https://github.com/facebookresearch/BLINK
https://github.com/facebookresearch/BLINK
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/K16-1025
https://doi.org/10.18653/v1/K16-1025
https://doi.org/10.18653/v1/K16-1025
https://github.com/facebookresearch/GENRE
https://github.com/facebookresearch/GENRE

Domain % Test entities (e) seen during training

Train Test
Varying levels of training set

0.01% 0.1% 1% 5% 25% 50% 100%

Wiki BLINK
NED 4.21 13.24 37.51 64.33 84.30 89.85 92.78

CoNLL 13.42 35.70 63.14 76.41 85.15 88.21 91.55

Wiki FGET
NED 1.04 7.60 26.26 51.88 75.24 82.48 87.09

CoNLL 8.74 31.62 53.94 69.45 82.23 86.20 89.16

Table 6: Percentage of test examples whose gold entities (e) were seen during training time.

Domain
% Test mentions (m) seen during

training

Train Test
Varying levels of training set

0.01% 0.1% 1% 5% 25% 50% 100%

Wiki BLINK
NED 5.27 15.52 44.85 72.74 90.81 94.35 96.40

CoNLL 8.23 29.92 51.48 62.34 70.97 74.49 77.35

Wiki FGET
NED 0.06 9.47 34.11 62.84 85.48 91.09 94.26

CoNLL 6.62 26.71 46.93 58.55 68.52 72.00 75.03

Table 7: Percentage of test examples whose mentions (m) were seen during training time.

Domain
% Test (entity, mention) pairs seen during

training

Train Test
Varying levels of training set

0.01% 0.1% 1% 5% 25% 50% 100%

Wiki BLINK
NED 3.24 10.40 26.75 48.92 68.93 77.06 82.47

CoNLL 6.44 23.79 39.42 51.17 61.38 65.71 69.41

Wiki FGET
NED 0.00 4.33 17.07 36.69 60.32 68.49 75.18

CoNLL 4.93 19.62 35.01 46.27 57.44 61.56 65.28

Table 8: Percentage of test examples whose gold entity and mention pairs (e,m) were seen during training time.

1692

Parameter Symbol Tuning Range

Parameter for type-based inference strategy βzel {0, 1}

Parameter for type-based inference strategy βtype {0, 1}

Parameter for type-based inference strategy βboth {0, 1}

Parameter for type-based inference strategy top-k {2, 3, 5, 10, 100}

Pruning level of type hierarchy during inference Tree Level {1, 2, 3, 4, 5, 6, 7}

Table 9: List of hyperparameters and tuning range. For optimal value of the hyperparameters, please refer
Tables 16, 17, and 18.

Domain ZEL Accuracy

Train Test
Varying levels of training set

0.01% 0.1% 1% 5% 100%

Wiki BLINK
NED 56.62 65.38 67.66 68.87 71.72

CoNLL 61.18 71.61 72.27 73.50 71.50

Wiki FGET
NED 47.62 62.00 67.34 68.59 67.74

CoNLL 52.77 68.40 73.08 72.99 74.36

Table 10: BLINK’s bi-encoder accuracy with varying level of training set size.

1693

Mention (m)

in Marin County, California, Lucasfilm Ltd. is one of the most
... The Seattle Mariners are an American professional baseball
team based in Seattle, Washington. Enfranchised in 1977 ,
the Mariners are a member of the Western Division of Major
League Baseball ’s American League . Safeco Field has

Gold entity (e∗) Washington (state)

NeSLET’s top-3 predictions with
scores Szel(e | mtest)

[Seattle (0.54), Washington, D.C. (0.23),
Washington (state) (0.22)]

Type set for Seattle [City, Settlement, Place, PopulatedPlace]

Type set for Washington (state)
[Settlement, AdministrativeRegion, PopulatedPlace, Place,
Region]

Our predictions p(tj | mtest)
[City (0.99), Settlement (0.99), Place (0.99), PopulatedPlace
(0.99), AdministrativeRegion (0.99), Region (0.99)]

Type Score S̃type(e | mtest)
[Seattle (0.21), Washington, D.C. (0.21),
Washington (state) (0.57)]

Type-based inference top-3 predic-
tions with scores Stotal(e | mtest)

[Washington (state) (0.79), Seattle (0.75),
Washington, D.C. (0.44)]

Table 11: An anecdotal example where the NeSLET model predicts the gold entity at Rank-2 position but type-based
inference promotes it to Rank-1.

Mention (m)

Pink Floyd song ‘Keep Talking’. Hawking’s early life and the
onset of his illness was the subject of the 2004 BBC4 TV film
Hawking in which he was portrayed by Benedict Cumberbatch.
In 2008, Hawking was the subject of and featured in the docu-
mentary series Stephen Hawking, Master.

Gold entity (e∗) Hawking (2004 film)

NeSLETś top-3 predictions with
scores Szel(e | mtest)

[Stephen Hawking (0.51), Hawking (2004 film) (0.48),
Hawking (2013 film) (0.0042)]

Type set for Stephen Hawking [Scientist, Person, Agent]

Type set for Hawking (2004 film) [TelevisionShow, Film, Work]

Our predictions p(tj | mtest)
[Scientist (6.6× 10−8), Person (0.061), Agent (0.061),
TelevisionShow (0.87), Film (0.99), Work (0.99)]

Type Score S̃type(e | mtest)
[Stephen Hawking (0.097),
Hawking (2004 film) (0.63), Hawking (2013 film) (0.26)]

Type-based inference top-3 predic-
tions with scores Stotal(e | mtest)

[Hawking (2004 film) (1.11), Stephen Hawking (0.60),
Hawking (2013 film) (0.26)]

Table 12: One more anecdotal example where the NeSLET model predicts the gold entity at Rank-2 position but
type-based inference promotes it to Rank-1.

1694

Mention (m)

way she does. All this makes me feel this character is made
up of a strongly ironic stance on Atwood’s part. More ironic
than in Cat’s Eye. Yet a pattern to identify with is emerging
also. Joan is growing up. She is beginning to break away from
Arthur to question him.

Gold entity (e∗) Cat’s Eye (novel)

NeSLETś top-3 predictions with
scores Szel(e | mtest)

[Cat’s Eye (novel) (0.52), Eye of the Cat (0.30),
Eye of Cat (0.16)]

Type set for Cat’s Eye (novel) [Book, Work, WrittenWork]

Type set for Eye of the Cat [Film, Work]

Our predictions p(tj | mtest) [Book (0.07), Work (0.89), WrittenWork (0.07), Film (0.89)]

Type Score S̃type(e | mtest)
[Cat’s Eye (novel) (0.23), Eye of the Cat (0.53),
Eye of Cat (0.23)]

Type-based inference top-3 predic-
tions with scores Stotal(e | mtest)

[Eye of the Cat (0.83), Cat’s Eye (novel) (0.75),
Eye of Cat (0.39)]

Table 13: An anecdotal example where the NeSLET model predicts the gold entity at Rank-1 position but type-based
inference pushes it down to Rank-2.

Mention (m)

for National Harbor to take a stroll and do some window
shopping. The kids had fun on ‘the man in the sand’ better
known as The Awakening. We also walked along the trail
that connects to the Woodrow Wilson Bridge and leads into
Alexandria - lots of bikers and walkers

Gold entity (e∗) The Awakening (sculpture)

NeSLETś top-3 predictions with
scores Szel(e | mtest)

[The Awakening (sculpture) (0.35), Dalai Lama Awakening
(0.33), The Great Awakening (0.31)]

Type set for The Awakening (sculpture) [Artwork, Work]

Type set for Dalai Lama Awakening [Film, Work]

Our predictions p(tj | mtest) [Artwork (5.2× 10−7), Work (0.99), Film (0.99), Work (0.99)]

Type Score S̃type(e | mtest)
[The Awakening (sculpture) (0.19), Dalai Lama Awakening
(0.53), The Great Awakening (0.26)]

Type-based inference top-3 predic-
tions with scores Stotal(e | mtest)

[Dalai Lama Awakening (0.86), The Great Awakening (0.57),
The Awakening (sculpture) (0.54)]

Table 14: One more anecdotal example where the NeSLET model predicts the gold entity at Rank-1 position but
type-based inference pushes it down to Rank-2.

Training Data Split Number of Update Steps

0.01% 1k
0.1% 4k
1% 10k

Table 15: Number of update steps used for fine-tuning GENRE for different data splits.

1695

Domain

E
T

P
L

os
s

Tr
ee

L
ev

el
to

p-
k β

BLINK
Acc.

NeSLET Acc. when
inferred ETP

F1w/o types w/ types

Train Test Val Test Val Test Val Test Val Test

W
ik

i
B

L
IN

K

NED

Gödel 1 10 (1, 1, 0) 56.55 56.62 57.49 56.99 57.63 57.07 22.50 22.03

Łukasiewicz 3 2 (1, 1, 0) 56.55 56.62 58.41 56.98 58.46 56.95 25.15 24.98

Flat 3 2 (1, 1, 0) 56.55 56.62 56.25 57.69 56.66 57.72 54.35 52.66

CoNLL

Gödel 1 3 (1, 1, 0) 61.73 61.18 62.90 62.57 63.26 63.07 14.19 13.27

Łukasiewicz 3 3 (1, 1, 0) 61.73 61.18 63.41 64.28 63.72 64.46 27.83 25.32

Flat 2 2 (1, 1, 0) 61.73 61.18 64.67 63.47 65.11 63.95 62.74 62.16

W
ik

i
FG

E
T

NED

Gödel 1 5 (1, 1, 0) 45.44 47.62 52.18 52.82 52.52 52.79 22.42 21.74

Łukasiewicz 1 10 (1, 1, 0) 45.44 47.62 52.33 52.11 52.54 52.17 31.29 31.31

Flat 3 3 (1, 0, 1) 45.44 47.62 55.71 55.33 55.90 55.30 47.36 47.23

CoNLL

Gödel 1 5 (1, 1, 0) 55.79 52.77 62.00 60.10 62.23 60.14 12.79 11.61

Łukasiewicz 1 3 (1, 1, 0) 55.79 52.77 62.06 60.08 62.27 60.03 12.79 11.63

Flat 3 3 (1, 1, 0) 55.79 52.77 61.46 58.39 62.06 58.73 64.87 61.64

Table 16: Performance of proposed NeSLET vis-à-vis BLINK at 0.01% training dataset.

Domain

E
T

P
L

os
s

Tr
ee

L
ev

el
to

p-
k β

BLINK
Acc.

NeSLET Acc. when
inferred ETP

F1w/o types w/ types

Train Test Val Test Val Test Val Test Val Test

W
ik

i
B

L
IN

K

NED

Gödel 1 3 (1, 1, 0) 66.08 65.38 64.94 64.57 65.22 64.72 57.64 57.50

Łukasiewicz 1 2 (1, 1, 0) 66.08 65.38 66.31 65.58 66.57 65.58 46.73 46.47

Flat 1 3 (1, 1, 0) 66.08 65.38 65.70 65.35 66.00 65.25 65.31 64.19

CoNLL

Gödel 3 2 (1, 1, 0) 75.74 71.61 73.92 70.47 74.26 70.74 67.45 62.06

Łukasiewicz 3 2 (1, 1, 0) 75.74 71.61 76.00 73.01 76.44 73.26 54.47 52.97

Flat 3 3 (1, 1, 0) 75.74 71.61 74.28 70.58 74.76 71.14 77.28 74.94

W
ik

i
FG

E
T

NED

Gödel 1 3 (1, 1, 0) 61.14 62.00 62.88 63.72 63.11 63.88 55.92 54.33

Łukasiewicz 1 100 (1, 1, 0) 61.14 62.00 63.18 63.61 63.20 63.59 26.56 25.92

Flat 3 3 (1, 1, 0) 61.14 62.00 62.78 62.98 63.30 62.81 61.55 60.56

CoNLL

Gödel 1 2 (1, 1, 0) 71.93 68.40 73.23 70.49 73.60 70.60 70.05 65.98

Łukasiewicz 2 2 (1, 1, 0) 71.93 68.40 73.21 69.84 73.81 70.06 62.08 56.61

Flat 1 2 (1, 1, 0) 71.93 68.40 73.44 69.59 73.81 69.64 75.72 70.77

Table 17: Performance of proposed NeSLET approach vis-à-vis BLINK at 0.1% training dataset.

1696

Domain

E
T

P
L

os
s

Tr
ee

L
ev

el
to

p-
k β

BLINK
Acc.

NeSLET Acc. when
inferred ETP

F1w/o types w/ types

Train Test Val Test Val Test Val Test Val Test

W
ik

i
B

L
IN

K

NED

Gödel 3 2 (1, 1, 0) 69.37 67.66 70.91 70.02 71.32 69.69 64.53 62.76

Łukasiewicz 5 3 (1, 1, 0) 69.37 67.66 70.68 69.65 70.93 69.64 46.81 47.28

Flat 1 2 (1, 1, 0) 69.37 67.66 70.85 69.91 71.10 70.09 69.38 68.60

CoNLL

Gödel 4 2 (1, 1, 0) 76.12 72.27 78.70 74.74 79.14 75.06 73.80 71.02

Łukasiewicz 1 3 (1, 1, 0) 76.12 72.27 78.51 75.24 78.72 75.37 56.47 53.81

Flat 3 2 (1, 1, 0) 76.12 72.27 77.89 74.38 78.43 74.92 81.31 78.73

W
ik

i
FG

E
T

NED

Gödel 1 5 (1, 1, 0) 67.89 67.34 69.40 68.08 69.54 68.16 62.34 59.68

Łukasiewicz 1 2 (1, 1, 0) 67.89 67.34 68.73 67.58 68.86 67.67 41.94 41.04

Flat 1 2 (1, 1, 0) 67.89 67.34 70.50 69.21 70.58 69.05 66.75 66.48

CoNLL

Gödel 3 3 (1, 1, 0) 76.88 73.08 78.18 75.03 78.47 74.90 73.45 69.78

Łukasiewicz 2 5 (1, 1, 0) 76.88 73.08 78.41 75.06 78.72 75.39 56.27 54.22

Flat 3 2 (1, 0, 1) 76.88 73.08 78.37 73.77 78.66 74.13 79.01 75.52

Table 18: Performance of proposed NeSLET approach vis-à-vis BLINK at 1% training dataset.

B.6 Entity Path Probability p(pathj | e)
The entity’s path probability p(pathj | e) is com-
puted as follows.

1. p(pathj | e) ← 0 if leaf node of pathj is not
reachable from any valid type of e. For example,
in Figure 2), we would be having p(pathj |
ei) = 0, ∀j = 1→ 6.

2. p(pathj | e)← 0 if leaf node of pathj is reach-
able from some valid type (say tk) of e but a
direct child of tk not lying on the pathj is also
a valid type for e. For e.g., in Figure 2, imagine
node t4 having one more child called t14 and
the corresponding path being path8. Then, we
would be having p(path8 | ei) = 0.

3. For each of the remaining pathj , let tk be the
deepest node which is also a valid type of e. Tra-
verse the lower portion of pathj starting from
node tk all the way up to leaf node and multiply
conditional probabilities of the edges on the way
to get p(pathj | e) as follows: p(pathj | e) =∏

(b,a)∈pathj ,b is descendant of tk p(tb | ta). We ap-
proximate the conditional probabilities p(tb | ta)
with prior probabilities from the given dataset
about entities and the corresponding type set.

1697

