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Abstract

Self-supervised vision-and-language pretrain-
ing (VLP) aims to learn transferable multi-
modal representations from large-scale image-
text data and to achieve strong performances
on a broad scope of vision-language tasks af-
ter finetuning. Previous mainstream VLP ap-
proaches typically adopt a two-step strategy re-
lying on external object detectors to encode
images in a multi-modal Transformer frame-
work, which suffer from restrictive object con-
cept space, limited image context and inef-
ficient computation. In this paper, we pro-
pose an object-aware end-to-end VLP frame-
work, which directly feeds image grid fea-
tures from CNNs into the Transformer and
learns the multi-modal representations jointly.
More importantly, we propose to perform ob-
ject knowledge distillation to facilitate learn-
ing cross-modal alignment at different seman-
tic levels. To achieve that, we design two
novel pretext tasks by taking object features
and their semantic labels from external de-
tectors as supervision: 1.) Object-guided
masked vision modeling task focuses on en-
forcing object-aware representation learning
in the multi-modal Transformer; 2.) Phrase-
region alignment task aims to improve cross-
modal alignment by utilizing the similarities
between noun phrases and object labels in the
linguistic space. Extensive experiments on a
wide range of vision-language tasks demon-
strate the efficacy of our proposed framework,
and we achieve competitive or superior perfor-
mances over the existing pretraining strategies.

1 Introduction

With the success of BERT (Devlin et al., 2018)
in language modeling, self-supervised Vision-and-
Language Pretraining (VLP) has attracted much in-
terest from AI community, which aims to learn gen-
eralizable multi-modal representations from large-
scale image-text data. Combined with a pretrain-
then-transfer strategy, it shows great potential in

tackling vision and language reasoning tasks, such
as image-text retrieval, visual question answering
(VQA) and visual entailment (Antol et al., 2015;
Lee et al., 2018; Xie et al., 2019; Liu et al., 2021,
2020). A critical step in such representation learn-
ing is to jointly model linguistic entities and visual
semantic concepts (e.g., attributes, objects, and re-
lations), as well as their alignment. However, this
is particularly challenging due to large discrepancy
in visual and language representations (pixels vs
words) and lack of entity-level cross-modal corre-
spondence in supervision.

To tackle those challenges, most existing ap-
proaches (Li et al., 2021; Gan et al., 2020; Chen
et al., 2020; Lu et al., 2019) adopt a two-step pre-
training strategy that firstly utilizes off-the-shelf
detectors to parse images into a set of object to-
kens, and then builds a multi-layer Transformer to
learn visual and language embeddings jointly. In
order to facilitate the multi-modal learning, those
networks are typically trained via a set of carefully
designed BERT-like objectives (e.g. Image-Text
Matching). Despite its promising performance, the
two-step strategy suffers from several limitations:
1) limited visual object concepts as the external
detectors are trained on a predefined set of object
categories; 2) lack of context cues outside of the
object regions, which are crucial for complex rea-
soning tasks; 3) sub-optimal visual representation
due to stage-wise training; and 4) computational
inefficiency caused by additional detection mod-
ules. To overcome those limitations, recent works
attempt to learn a joint visual-linguistic representa-
tions in an end-to-end manner (Huang et al., 2021,
2020; Xu et al., 2021; Kim et al., 2021). These
methods directly take dense visual features from
image grids as inputs to a multi-modal Transformer
network, and hence do not rely on external object
detectors in both pretraining and finetuning stages.
Such model design significantly simplifies overall
network architecture and allows deeper integration
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between visual and language features. However, us-
ing grid-level features makes it difficult to capture
object-level visual concepts, which often results
in less expressive multi-modal representations and
inferior performances in downstream tasks.

In this work, we propose a novel object-aware
end-to-end (E2E) VLP approach that inherits the
strengths of both types of pretraining strategies
mentioned above. Our core idea, which we name
KD-VLP, is to incorporate visual object concepts
in the E2E multi-modal learning, which is instan-
tiated by performing Knowledge Distillation from
semantic objects (e.g., from the off-the-shelf de-
tectors) during the pretraining stage. This allows
the network to better capture object representations
and hence facilitates learning the alignment of lin-
guistic entities and visual concepts. To achieve
this, we introduce two novel pretext tasks to per-
form object knowledge distillation based on a
CNN+Transformer architecture: an object-based
masked vision modeling task for enforcing object-
aware feature embeddings, and a phrase-region
alignment task for building correspondence be-
tween object regions and language entities.

Specifically, we adopt a typical CNN
backbone+multi-modal Transformer model
for the pretraining. Given an image-text pair, the
visual backbone firstly computes a set of visual
features on the image grid. Then a multi-layer
Transformer takes the visual features and the
corresponding text tokens as input to generate
their multi-modal embeddings. Based on those
embeddings, a set of task-specific heads compute
the corresponding objectives to train the entire
network in an end-to-end fashion. Here, in addition
to the commonly-used image-text matching and
masked language modeling objectives, we develop
two object-aware pretext tasks. The first task,
object-guided masked vision modeling (OMVM),
aims to reconstruct the RoI features and semantic
label of each object (from an external detector)
using the surrounding visual context and text
description. To facilitate cross-modal alignment,
we also develop a knowledge-guided masking
strategy, which samples object candidates for
reconstruction according to the similarity scores
between the noun phrases in the corresponding
text and their semantic labels. The second task,
phrase-region alignment (PRA), aims to further
improve cross-modal alignment by matching the
above-mentioned phrase-label similarity scores of

each phrase with the cross-modal similarity scores
between the noun phrase embeddings and object
region embeddings. After pretraining, we then
transfer the learned multi-modal representations to
different downstream vision-language tasks.

We perform pretraining on two widely-used
indomain datasets: MSCOCO Caption (Lin
et al., 2014) and Visual Genome (Krishna et al.,
2016), and validate the learned multi-modal rep-
resentations on five well-known visual-language
tasks: Visual Question Answering (VQA), Image-
text retrieval, Nature Language Visual Reason-
ing (NLVR2), Visual Entailment (VE) and Visual
Commonsense Reasoning (VCR). Empirical results
show that our method outperforms the state-of-the-
art end-to-end approaches by a sizeable margin. To
better understand our method, we also provide a
detailed ablation study and visualization.

The contributions of our work are three-fold:

• We propose a novel end-to-end pretraining
strategy, capable of better encoding visual ob-
ject concepts and facilitating multi-modal rep-
resentation learning.

• We design an object-guided masked vision
model task for distilling knowledge from ex-
ternal object detectors, and a phrase-region
alignment task to facilitate learning better
phrase-region correspondence.

• Compared with existing methods, we achieve
competitive or superior performances without
using external detection outputs during fine-
tuning stage and model test.

2 Related Work

The existing self-supervised VLP approaches can
be largely categorized into two groups: the two-
step pretraining and the end-to-end pretraining, de-
pending on whether they rely on visual object em-
beddings as input for the Transformer.

Two-step Pretraining firstly employ an off-the-
shelf object detector to convert an image into a set
of object embeddings, and then feed them into a
Transformer jointly with text embeddings to gen-
erate their multi-modal representations. Hence
their visual feature networks are not optimized dur-
ing both pretraining & finetuning stage. Most of
these methods, such as LXMERT (Tan and Bansal,
2019),ViLBert (Lu et al., 2019), VL-Bert (Su
et al., 2020), Unicoder-VL (Li et al., 2020a) and
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UNITER (Chen et al., 2020), adopt BERT-like
objectives to train their networks, which include
Masked Language Modeling (MLM), Masked Vi-
sion Modeling (MVM) and Image-Text Matching
(ITM). In addition, VILLA (Gan et al., 2020) devel-
ops an advanced adversarial pretraining and fine-
tuning strategy to improve generalization ability.
OSCAR (Li et al., 2020b) and VINVL (Zhang et al.,
2021) introduce object labels to bridge different
modalities and revisit the importance of visual fea-
tures. Ernie-ViL (Yu et al., 2020) exploits struc-
tured knowledge in the text and constructs scene
graph prediction tasks to learn joint representa-
tions. UNIMO (Li et al., 2021) proposes a uni-
fied model to leverage large-scale free text corpus,
image collections, and image-text pairs simultane-
ously through a contrastive learning task. Despite
their strong performances, those methods are lim-
ited by the object detector and neglect visual cues
outside of object regions, often leading to mistakes
in downstream tasks.

End-to-End (E2E) Pretraining directly feed
dense features on image grids from a visual back-
bone network into a Transformer network along
with text tokens. As such, both the visual and
Transformer networks are optimized jointly in an
end-to-end manner in the pretraining & finetuning
stage. Pixel-Bert and SOHO (Huang et al., 2021,
2020) pioneer the use of the E2E pretraining ar-
chitecture and propose a novel visual-dictionary
masked vision modeling task. E2E-VLP (Xu et al.,
2021) presents a pretraining framework supervised
with additional object detection and image caption-
ing tasks to enhance visual semantics learning. It
is worth noting that their object detection pretext
task requires millions of bounding boxes annota-
tion, unable to generalize to large-scale image-text
corpus. ViLT (Kim et al., 2021) is the first to unify
vision and language with a pure Transformer net-
work, which has a simpler structure and enjoys
faster inference. However, compared to the two-
step methods, they are typically less expressive
in terms of object-level concepts and thus suffer
from weaker performances on challenging visual
reasoning tasks. Our method is in line with the
E2E pretraining framework. The key difference is
that we propose to facilitate learning object-aware
multi-modal representations by performing object
semantic knowledge distillation.

3 Our Approach

3.1 Problem Definition and Overview
The goal of self-supervised VLP is to learn a
generic and transferable visual-linguistic represen-
tation from a large amount of image-text data,
which can achieve strong generalization perfor-
mances in downstream vision-language tasks. To
this end, the pretraining framework typically de-
velops a variety of carefully-designed cross-modal
pretext tasks (e.g. MLM, ITM) to train a deep net-
work that encodes the multi-modal representation.
Formally, we denote the image-text corpus for train-
ing as X = {(Ii, Di)}|X |i=1 where I represents the
image andD is the corresponding language descrip-
tion. In general, we construct a pretraining network
consisting of a representation network moduleMθ

and a set of task-specific network heads {Φθs}Ss=1

where s indicates the pretext tasks. The overall
pretraining objective is defined as follows,

min
θ,θ1,...θS

E(I,D)∼X [
∑

s Ls(Ys,Φθs ◦Mθ(I,D)] (1)

where Ys and Ls are task-specific ground-truth la-
bel and loss function respectively, and ◦ is a net-
work compound operator. After pretraining, we
remove all the task-specific heads and apply the
representation networkMθ∗ with the learned pa-
rameters θ∗ to the downstream tasks, followed by
task-specific fine-tuning.

In this work, we aim to design an E2E pretrain-
ing strategy for the VLP problem. To this end,
we adopt a modular representation network, which
takes image grid features from a CNN-based vi-
sual network and the corresponding text embed-
dings into a multi-modal Transformer (Huang et al.,
2020, 2021). Our goal is to learn the visual network
and the Transformer jointly, and yet to effectively
encode object-level visual concepts in the multi-
modal representations. This enables us to capture
rich cross-modal alignment between linguistic en-
tities and visual semantic concepts for the down-
stream tasks, and meanwhile to enjoy the benefits
of an efficient E2E network design without relying
on detectors during fine-tuning and inference.

To achieve this, we propose a set of cross-modal
pretext tasks that perform object knowledge distil-
lation from external detectors in both semantic and
feature space. Specifically, in addition to the image-
text matching (ITM) and masked language mod-
eling (MLM) tasks, we introduce two novel pre-
text tasks, Object-Guided Masked Vision Modeling
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Figure 1: Overview: The model contains a Visual Backbone for preparing image embeddings and a Transformer for vision
& language fusion. The entire framework is supervised by two novel proposed pretext tasks: Object-guided Masked Vision
Modeling (OMVM), Phrase-Region Alignment (PRA) as well as two standard tasks: Masked Language Modeling (MLM) and
Image-Text Matching (ITM).

(OMVM) and Phrase-Region Alignment (PRA),
which take the object RoI feature embeddings and
semantic labels from external detectors as supervi-
sion. The OMVM task masks out the object regions
and forces the network to predict the correspond-
ing external RoI feature embeddings and object
labels while the PRA task exploits object labels
to encourage the alignment between visual objects
and language entities. Fig.1 illustrates an overview
of our framework. Below we will first present the
details of model architecture in Sec.3.2, followed
by our design of pretext tasks in Sec.3.3.

3.2 Model Architecture
Given an image-text pair, our model firstly com-
putes the image embeddings and linguistic embed-
dings respectively, and then concatenates them into
a sequence of tokens with two additional tokens
[sep] and [cls] as inputs to a Transformer for gen-
erating multi-modal contextualized embeddings.

Visual Embedding We adopt a CNN backbone
to extract image features V = {vi}Li=1 for each
image I where L is the size of feature grids and
vi ∈ Rdv is a feature vector with dimension dv.
In addition, each feature is further concatenated
with its 2-D sine position embedding (Carion et al.,
2020). Following SOHO, we use a ResNet-101(He
et al., 2016) as the visual backbone, followed by
additional 1x1 Conv and 2x2 strides Max-pooling
to reduce the memory footprint.

Linguistic Embedding For the language D, we
first tokenize the sentence into a sequence of word
tokens using WordPiece (Wu et al., 2016), then
encode them into word embeddingsW = {wj}Tj=1

where wj ∈ Rdw is the feature vector. Similarly,
an index position (Devlin et al., 2018) embedding
is supplemented to each word embedding.

Multi-modal Transformer After obtaining im-
age and linguistic embeddings, we assemble them
into a sequence of tokens {V, [sep],W, [cls]}, and
adopt a multi-layer Transformer to compute their
representations encoded by the final-layer states
{HV ,hsep,HW ,hcls} whereHV = {hvi}Li=1 and
HW = {hwj}Tj=1 represent the states for visual and
language part respectively. Finally, those repre-
sentations are sent into each pretext task head to
compute the supervision signals.

3.3 Pretext Tasks

We now describe our cross-modal pretext tasks for
the E2E pretraining, aiming to learn more effec-
tive multi-modal representations. Below we will
first introduce objects-aware pretext tasks that take
external object features and semantic labels as su-
pervision, followed by the standard MLM and ITM.

Specifically, for each image, we first generate a
set of object proposals from an off-the-shelf detec-
tor, denoted as {(on, cn, fn)}Nn=1 where on ∈ R4

is box location, cn indicates object category, and
fn ∈ Rdo is object RoI features with dimension
Rdo . For ease of notation, we also introduce a bi-
nary mask1 on the feature map for each object on
and denote its flattened version as mn ∈ RL. For
the corresponding text, we extract a set of noun
phrases P = {pz}|P|z=1 with an external language
tool2 and calculate the similarity αz,n between each

1We give an illustration in Suppl.
2https://spacy.io/
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noun phrase pz and the object category cn in the
linguistic space:

αz,n = Cos(Eext(pz), Eext(cn)), (2)

where Cos(·, ·) indicates cosine distance function
and Eext represents an off-the-shelf language em-
bedding (e.g. BERT). Using them as supervision,
we design two novel pretext tasks to distill object-
level knowledge below.

Object-guided Masked Vision Modeling
(OMVM) The first task aims to learn more
explicit object concepts in the E2E pretraining.
Specifically, we sample an object each time and
mask out its features in the Transformer input,
and enforce the network to generate external
object RoI features and semantic labels. To
learn better cross-modal alignment, we propose
a knowledge-guided masking strategy, which
samples noun phrase-related object regions to
mask based on the (normalized) similarity score
αz,n. The selected object region is denoted with
its binary mask, category and RoI features, as
(m∗, c∗, f∗).

We design two learning objectives, Masked Re-
gion Classification (MRC) and Masked Region Fea-
ture Regression (MRFR) as below

LOMVM =E(I,D)∼XLMRC(c∗,V\m∗ ,W)

+LMRFR(f∗,V\m∗ ,W)
(3)

To calculate the losses LMRC and LMRFR, we
first compute the object representation hm∗ for the
masked region at the final layer, which is average-
pooled overHV based on its binary mask m∗. For
MRC, a multi-layer FC network ΦMRC is adopted
to predict its object category. Thus, LMRC=
CE(ΦMRC(hm∗), c∗) is the standard cross-entropy
loss. In addition, we take another FC network
ΦMRFR to learn the object concept in feature space
directly by minimizing the L2 distance, LMRFR =
||ΦMRFR(hm∗)− f∗)||22.

Phrase Region Alignment (PRA) The second
task, PRA, mainly focuses on learning cross-modal
alignment at object-level, which aims to pull pos-
itive phrase-region pairs closer and push negative
pairs away. Here we utilize the similarity αz,n be-
tween the noun phrase and object category in the
linguistic space as a guidance.

Concretely, we first compute the object represen-
tation hmn for each proposal and the phrase rep-
resentation hpz , both of which are obtained from

the final layer states of the Transformer. Specif-
ically, hmn is average-pooled over HV based on
binary mask mn while hpz = 1

|pz |
∑

j∈pz hwj rep-
resents average states of word tokens within pz .
We define the cross-modal similarity as α̂z,n =
Cos(hpz ,hmn).

The task PRA minimizes the KL-divergence
between the cross-modal similarities α̂z =
{Softmax(α̂z,n)}Nn=1 and the phrase-label similar-
ities αz = {Softmax(αz,n)}Nn=1 as below:

LPRA = 1
|P|

∑
zDKL(α̂z||αz) (4)

Finally, denoting the mask setM = {mn}Nn=1, we
have the overall PRA loss function as follows:

LPRA = E(I,D)∼XLPRA({αz,n}|P|,Nz,n=1,M,P,V,W) (5)

Masked Language Modeling (MLM) We take
the same masking strategy (15% prob. to mask) as
in BERT (Devlin et al., 2018) to randomly mask
out the input word tokens. Here, MLM aims to
predict the original word index in vocabulary space
for each masked token based on the whole image
and its surrounding language context via the Trans-
former. Hence a cross-entropy loss is adopted:

LMLM = −E(I,D)∼X logP (wj |V,W\j) (6)

Image-Text Matching (ITM) In ITM, the multi-
layer Transformer is trained to distinguish whether
the input image-text pairs are semantically matched
based on the final layer [cls] token representation
hcls. To construct the training samples, we ran-
domly replace the text for each image-text pair with
another text from dataset with a probability of 0.5.
Thus, the output label can be defined as y ∈ {0, 1}
where y = 1 indicates matched pair. The training
objective for the ITM task is to minimize binary
cross-entropy loss:

LITM = −E(I,D)∼X logP (y|V,W) (7)

4 Experiments

4.1 Experiment Setup
Pretraining Corpus: Following the E2E pre-
training strategy (Huang et al., 2021, 2020; Xu
et al., 2021), we take indomain datasets: MSCOCO
(Lin et al., 2014) and VG (Krishna et al., 2016) as
pretraining datasets since it is widely used in liter-
ature. In total, two datasets comprise about 200K
images and 5.6M image-text pairs, where each im-
age is associated with multiple captions.
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Table 1: Evaluation results on the multi-modal downstream tasks. Indomain denotes MSCOCO and Visual Genome corpus
while outdomain stands for Conceptual Caption and SBU corpus. Text corpus includes BookWiki and OpenWebText while
image corpus contains OpenImages and unlabeled COCO. AT means using adversarial training during both pretraining and
finetuning stages. Blue number denotes experiments with additional text premise input. - denotes the result is not available

Models Pretraining corpus Backbone AT
Flickr30k-IR Flickr30k-TR SNLI-VE NLVR2 VQA2.0

R@1 / R@5/ R@10 R@1 / R@5 / R@10 val / test dev / test-p test-dev / -std
two-step pretraining

ViLBert (Lu et al., 2019) Conceptual Cap. ResNet101 x 58.20 / 84.90 / 91.52 - - - 70.55 / 70.92
VL-Bert (Su et al., 2020) Conceptual Cap. ResNet101 x - - - - 71.79 / 72.91

VisualBert (Li et al., 2019) MSCOCO ResNet152 x 71.33 / 84.98 / 86.51 - - 67.40 / 67.00 70.80 / 71.00
Unicoder-VL(Li et al., 2020a) outdomain ResNet101 x 71.50 / 90.90 / 94.90 86.20 / 96.30 /99.00 - - -

LXMERT (Tan et al. 2019) indomain ResNet101 x - - - 74.90 / 74.50 72.42 / 72.54
VLP (Zhou et al., 2021) outdomain ResNext101 x - - - - 70.50 / 70.70

UNITER (Chen et al., 2020) indomain+outdomain ResNet101 x 72.52 / 92.36 / 96.08 85.90 / 97.10 / 98.80 78.59 / 78.28 75.85/75.80 72.70 / 72.91
OSCAR (Li et al., 2020b) indomain+outdomain ResNet101 x - - - 78.07 / 78.36 72.16 / 73.44
VILLA (Gan et al., 2020) indomain+outdomain ResNet101 X 74.74 / 92.86 / 95.82 86.60 / 97.70 / 99.20 79.47 / 79.03 78.39 / 79.30 73.59 / 73.67
Ernie-ViL (Yu et al., 2020) outdomain ResNet101 X 74.44 / 92.72 / 95.94 86.70 / 97.80 / 99.00 - - 72.62 / 72.85

UNIMO (Li et al., 2021)
indomain+outdomain+

ResNet101 X 74.66 / 93.40 / 96.08 89.70 / 98.40 / 99.10 80.00 / 79.10 - 73.79 / 74.02
text-corpus+ image-corpus

end-to-end pretraining
Pixel-Bert (Huang et al., 2020) indomain ResNet50 x 59.80 / 85.50 / 91.60 87.00 / 98.90 / 99.50 - 71.70 / 72.40 71.35 / 71.42

E2E-VLP (Xu et al., 2021) indomain ResNet101 x - - - 75.23 /- 72.43 / -
ViLT (Kim et al., 2021) indomain+outdomain ViT-B x 64.40 / 88.70 / 93.80 83.50 / 96.70 / 98.60 - 75.70 / 76.13 71.26 / -

SOHO (Huang et al., 2021) indomain ResNet101 x 72.50 / 92.70 / 96.10 86.50 / 98.10 / 99.30 85.00 / 84.95 76.37 / 77.32 73.25 / 73.47
KD-VLP (ours) indomain ResNet101 x 78.20 / 94.56 / 97.02 91.40 / 98.90 / 99.40 78.21(88.18) / 77.87(88.21) 77.36 / 77.78 74.20 / 74.31

Table 2: Evaluation of image retrieval (IR) and text retrieval (TR) task on MSCOCO dataset and the performance of VCR task.

Models Backbone
MSCOCO-IR(1K) MSCOCO-TR(1K) MSCOCO-IR(5K) MSCOCO-TR(5K) VCR

R@1 / R@5 / R@10 R@1 / R@5 / R@10 R@1 / R@5 / R@10 R@1 / R@5 / R@10 Q→A QA→R Q→AR
two-step pretraining

Unicoder-VL(Li et al., 2020a) ResNet101 69.70 / 93.50 / 97.20 84.30 / 97.30 / 99.30 46.70 / 76.00 / 85.30 62.30 / 87.10 / 92.80 72.60 74.50 54.40
UNITER (Chen et al., 2020) ResNet101 - - 50.30 / 78.50 / 87.20 64.40 / 87.40 / 93.10 74.56 77.03 57.76

OSCAR (Li et al., 2020b) ResNet101 - - 54.00 / 80.80 / 88.50 70.00 / 91.10 / 95.50 - - -
VILLA (Gan et al., 2020) ResNet101 - - - - 75.54 78.78 59.75
VL-Bert (Su et al., 2020) ResNet101 - - - - 73.80 74.40 55.20
end-to-end pretraining

Pixel-Bert (Huang et al., 2020) ResNet50 64.10 / 91.00 /96.20 77.80 /95.40 / 98.20 41.10 / /69.70 / 80.50 53.40 / 80.40 / 88.50 - - -
ViLT (Kim et al., 2021) ViT-B - - 42.70 / 72.90 / 83.10 61.50 / 86.30 / 92.70 - - -

SOHO (Huang et al., 2021) ResNet101 73.50 / 94.50 / 97.50 85.10 / 97.40 / 99.40 50.60 / 78.00 / 86.70 66.40 / 88.20 / 93.80 - - -
KD-VLP (ours) ResNet101 75.21 / 94.89 / 97.99 88.62 / 98.18 / 99.44 56.64 / 82.17 / 89.49 74.28 / 92.86 / 96.28 76.70 78.63 60.54

Implementation Details: We follow BERT to
tokenize caption into word tokens by using Word-
Piece, and resize the image into (800, 1333) as
prior works. For model architecture, a widely-used
ResNet101 for visual encoding and 12-layer Trans-
former for multi-modal fusion are adopted for a fair
comparison. Both networks are initialized with Im-
ageNet and BERT pretrained parameters. Besides,
following the majority of two-step methods, we
apply the widely-used object detector BUTD (An-
derson et al., 2018) to generate object proposals as
well as their RoI embeddings as our supervision.

For model learning, we optimize the entire net-
work by using SGD for CNNs with a learning rate
of 1e-2 and AdamW for Transformer with a learn-
ing rate of 1e-4, as suggested in SOHO. The train-
ing iterations are up to 100K with batch-size 512
in each. The learning rate decays 10 times at 20K,
40K respectively. All experiments are conducted
on 16 NVIDIA V100 GPUs with mixed-precision
training to reduce memory cost about 7 days.
4.2 Downstream Tasks
As in prior works, we evaluate our approach by
finetuning it over a set of well-established VL un-
derstanding tasks, including image-text retrieval,
visual entailment (VE), natural language visual rea-

soning (NLVR2), VQA, and VCR. During fine-
tuning, we compound a specific learnable head
with the pretrained visual backbone and Trans-
former, then finetune the entire network with down-
stream task-specific loss in an E2E fashion. In
this work, we mainly compare performance with
SOHO, Pixel-Bert, E2E-VLP, and ViLT since they
are the E2E pretraining as ours. Besides, several
representative two-step pretraining approaches are
also selected to compare without loss of generality.
Next, we will depict results analysis for each task
and leave finetuning experiment setups in Suppl.

Image-Text Retrieval aims retrieval an image
when give a specific caption, or vice versa. As
in Tab.1&2, we achieve superior performances in
all evaluation settings on both datasets, especially
outperforming SOHO by 5.65% and 4.90% R@1
in Flickr30k-IR/-TR, 1.71% and 3.52% R@1 in
MSCOCO-IR/-TR 1K test set as well as 6.04%
and 7.88% in the 5K test set. It is worthing noting
that we outperform the two-step pretraining SOTA
approach UNIMO by a moderate margin, despite
that they use additional outdomain datasets, text
corpus, image collections, and adversarial training.

Visual Entailment (VE) predicts whether an
image semantically entails the text and requires
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Table 3: Ablation study of various proposed pretext tasks. Image-text Retrieval task is conducted on MSCOCO 1K test set.

Models Pretext Tasks
MSCOCO-TR(1K) MSCOCO-IR(1K) SNLI-VE NLVR2 VQA2.0

R@1 / R@5 / R@10 R@1 / R@5 / R@10 val / test dev / test-p test-dev / -std
baseline ITM+MLM 57.99 / 87.80 / 94.66 73.10 / 93.42 / 97.32 73.44 / 73.40 62.13 / 62.08 66.62 / 66.68

- ITM+MLM+StandardMVM 58.22 / 87.59 / 94.60 73.58 / 93.66 / 97.63 74.00 / 73.46 63.26 / 62.75 66.66 / 66.86
- ITM+MLM+RandomMVM 58.18 / 87.12 / 94.68 73.60 / 94.80 / 97.50 73.99 / 74.58 64.02 / 64.68 66.90 / 66.05
- ITM+MLM+OMVM 60.32 / 88.65 / 95.15 74.83 / 94.34 / 97.74 74.54 / 75.12 66.23 / 66.76 67.95 / 68.21

KD-VLP (ours) ITM+MLM+OMVM+PRA 61.10 / 89.40 / 95.50 76.70 / 95.00 / 98.00 74.62 / 75.22 66.71 / 67.59 68.19 / 68.43

Figure 2: (a) demonstrates the comparison of different masking vision strategies where the first row presents the 15% Bert-like
masking strategy adopted by all previous works and the second row shows our knowledge-guided masking strategy. Red masks
denotes the masked regions. (b) demonstrates a comparison of word-to-image attention maps. The bright region denotes higher
attention scores between word and visual tokens.

fine-grained reasoning ability in a model. In Tab.1,
we achieve we achieve 78.21% accuracy in val
set and 77.87% in test set. It is worth noting that
SOHO takes additional text premise as input, which
leads to large improvements. For a fair compari-
son, we also implement that setting and outperform
SOHO by a sizeable margin.

NLVR2 aims to determine whether a natural cap-
tion is true about a pair of photographs, which is
full of semantic diversity, compositionality chal-
lenges. We outperform SOHO, Pixel-bert, ViLT
and E2E-VLP by a clear margin as in Tab.1, and
performs comparably with two-step pretraining.

VQA requires requires a richer multi-modal un-
derstanding to solve the free-form and open-ended
questions. In Tab.1, the results present a clear im-
provement compared with E2E pretraining meth-
ods while surprisingly outperform the strong two-
step pretraining methods by a slight margin.

VCR requires higher-order cognition and
commonsense reasoning about the world.
We achieve superior accuracy, specifically
76.70%/78.63%/60.53% in three different problem
setting. It is worth noting that we set up the first
end-to-end benchmark for the challenging VCR
task without relying on detection during inference.
Besides, we outputform VL-BERT and OSCAR by
a clear margin and work comparably with VILLA,
which adopts advanced adversarial training and

more outdomain corpus.
Overall, our approach outperforms the previous

E2E pretraining by a sizeable margin, which indi-
cates the superiority of our object-aware E2E multi-
modal representation. In addition, we also per-
forms better or comparably with previous state-of-
the-art two-step pretrainig, like UNIMO, VILLA,
Ernie-ViL, which even adopt more outdomain cor-
pos, sophisticated adversarial training.

4.3 Ablation Study & Visualization Analysis
In this section, we validate the effectiveness of each
pretext task and provide qualitative visualization
analysis. To save experimental cost, we adopt a
light-weighted ResNet-18 and 3-layer Transformer
network to conduct the ablation study.

Baseline: The baseline takes standard ITM and
MLM to train the entire model. In Tab.3, it still
achieves decent results over various VL tasks.

Object-guided masked vision modeling: As in
Tab.3, compared with baseline, OMVM presents
a clearly consistent improvement over all down-
stream tasks. It suggests that OMVM can enhance
the end-to-end multi-modal representations with
explicit object concepts learning. In addition, the
knowledge-guided masking strategy further helps
establish cross-modal correspondence.

To further investigate the OMVM task, we ran-
domly mask a box region with 15% probability
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Figure 3: Performance gains in different model size

rather than sampling a region based on the nor-
malized similarity score αz,n, denoted as Random-
MVM. The other pretraining details are the same
as in OMVM. We observe a significant perfor-
mance drop over all downstream tasks, especially
in image-text retrieval and NLVR2. It indicates
that simple RandomMVM will result in inefficient
multi-modal representation learning because there
is a high probability that the selected region has no
relationship with the associated description.

In addition, we also explore the similar masked
feature regression task as in UNITER by randomly
masking out the image grid features as in BERT
and then requiring the Transformer to reconstruct
its original features rather than the external object
RoI embeddings, denoted as StandardMVM. The
results show that such StandardMVM fails to fa-
cilitate multi-modal representation learning in the
E2E framework.

Phrase-region alignment: The OMVM above
mainly focuses on instance-level knowledge dis-
tillation by absorbing external object RoI features
and semantic labels. Different from that, PRA aims
to establish positive object-phrase correspondence
while suppressing the negative ones under the guid-
ance of similarities between noun phrases and ob-
ject labels in linguistic space. As in Tab. 3, we
significantly improve 0.78% R@1 of MSCOCO-
TR and 1.87% in MSCOCO-IR. In addition, PRA
shows slight improvements for more challenging
fine-grained reasoning tasks, like VE, NLVR2, and
VQA. The results indicate that PRA is beneficial to
multi-modal representation learning.

Visualization analysis: In Fig.2(a), our
knowledge-guided masking strategy always masks
out the phrase-related image regions, which can
facilitate multi-modal learning. On the contrary,
previous works, like SOHO, VILLA ..., mask
out background regions or part of the object
region with a high probability, which have no
relationship with the corresponding description

Table 4: Performance with different object detectors

Models Detectors Categories NVLR-dev VQA-test dev
SOHO - - 64.62 66.69

KD-VLP (ours) FRCNN on COCO 80 65.86 67.14
KD-VLP (ours) BUTD 1600 66.71 68.19

Table 5: Individual contribution of each pretext task

Models Pretext Tasks NVLR-dev VQA-test dev
baseline ITM+MLM 62.13 66.62

- ITM+MLM+MRC 64.44 67.27
- ITM+MLM+MRFR 64.23 67.36
- ITM+MLM+PRA 63.78 67.17

KD-VLP (ours) ITM+MLM+MRC+MRFR+PRA 66.71 68.19

and result in inefficient cross-modal alignment.
Fig.2(b) demonstrates the word-to-image attention
maps. Compared to SOHO, our method can
attend more accurately to image regions for the
corresponding word. Surprisingly, even the word
"smiling" can locate the baby’s face correctly,
which suggests that our approach not only learns
better noun-region alignment but also helps
establish high-order correspondence, like actions.
(see Suppl. for more visualization.)

Influence of object detector: We adopt the de-
fault BUTD detector in a typical 2-step pretraining
method for a largely fair comparison. To inves-
tigate the influence of object detectors, we also
conduct pretraining with objects knowledge ex-
tracted from FRCNN-RN101 pretrained on COCO.
In Tab.4, we observe a performance drop compared
with the model pretrained with BUTD, which sug-
gests large object knowledge space will facilitate
multimodal pretraining. Besides, although with
COCO detector, we still outperform SOHO by a
clear margin, indicating the superiority of object
knowledge in E2E pretraining framework.

Contribution of each pretext task: In Tab.5,
we show the individual contributions of our pro-
posed tasks. MRC, MRFR, PRA pretext tasks all
help facilitate multi-modal representation learning
and improve the performance compared with the
baseline model as a result.

Impact of object knowledge distillation in dif-
ferent model sizes: We take SOHO as a strong
baseline and compare it at different model sizes
(ResNet18 + 3-layer Transformer, ResNet101 +
12-layer Transformer) to investigate the impact of
object knowledge distillation. Fig.3 demonstrates
the performance gains over some representative
vision-language tasks. It shows that object con-
cepts learning always helps multi-modal represen-
tation learning no matter what model size it is. In
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VE and text-retrieval, the larger model even im-
proves significantly than the light-weighted model
and shows more capacities to learn external object
semantics knowledge.

5 Conclusion

In this paper, we have proposed a novel self-
supervised VLP method that promotes learning
object-aware multi-modal representations in an
end-to-end framework. Our key idea is to perform
object knowledge distillation in both semantic and
feature space from external detectors in the pre-
training stage. In particular, we develop an object-
guided masked vision modeling task for distilling
external object knowledge, and a phrase-region
alignment task for learning better alignment of lin-
guistic entities and visual concepts. Compared
with prior works, we achieve competitive or supe-
rior performance without relying on sophisticated
object detectors during model finetuning and test
in downstream tasks.
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Appendix

In this supplementary material, we firstly discuss
the limitations of work, then give the detailed
dataset statistics of pretraining and each down-
stream task, and depict more advanced implemen-
tation details of the pretraining. In addition, we

also demonstrate how to generate a binary mask for
each object proposal, followed by detailed exper-
imental setups and finetuning strategies of down-
stream tasks. Besides, we also discuss the influence
of image size during pretraining stge. Finally, we
provide more qualitative visualization results for
better understanding.

A Limitations

In this paper, we only pretrain our proposed KD-
VLP framework on indomain datasets, including
MSCOCO and Visual Genome caption datasets. In
the future, we need to scale up our model pretrained
on more noisy web image-text pairs to make it to
learn more general knowledge.

B Experiments

B.1 Dataset Statistics

As shown in Tab.6 we summarize the dataset statis-
tics of pretraining and each downstream task, in-
cluding the number of image-text pairs and num-
ber of images for each dataset split. It is worth
mentioning that we select the MSCOCO & Visual
Genome image-text data as our pretraining datasets
since they are typical indomain datasets for many
downstream tasks and are widely adopted by prior
works.

Table 6: Dataset statistics of pretraining and downstream
tasks. The number in brackets indicates the number of images

task data sources training val test

pretraining
MSCOCO

5.1M(207K) 131K(7.1K) -
Visual Genome

VCR
MovieClips

213K(80K) 26.5K(9.9K) 25.2K(9.5K)
LSMDC

Image-text Flickr30k 145K(29K) 5K(1K) 5K(1K)
Matching MSCOCO 567K(113.2K) 25K(5K) 25K(5K)

Visual Flickr30k
52.9K(29.7K) 17.8K(1K) 17.9K(1K)

Entailemnt SNLI

VQA
MSCOCO

443.8(82.8K) 214.4K(40.5K) 447.8K(81.4K)
Abstract Scenes

NLVR2 Flickr30k 529.5K(29.8K) 17.9K(1K) 17.9(1K)

B.2 More Pretraining Details

In pretraining stage, we also adopt gradient accu-
mulation3 and gradient checkpointing4 techniques
to further reduce the GPU memory footprint and
increase the batch-size. In our experiments, the
gradient accumulation step size is set as 4.

B.3 Binary mask for each proposal

As shown in Fig.4, we generate a binary mask of
the same size of feature map for each proposal

3https://nvidia.github.io/apex/advanced.html
4https://pytorch.org/docs/stable/checkpoint.html
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Figure 4: Illustration of generating binary mask for each
proposal.

where locations within the bounding box fill 1 and
others fill 0.

B.4 Detailed experiment setup for each
downstream task

Image-Text Retrieval: The image-text retrieval
typically includes two sub-tasks: image-retrieval
(IR) aims to retrieval an image when given a
specific caption and text-retrieval (TR) is on
the contrary. We perform experiments on both
Flickr30k (Plummer et al., 2015) and MSCOCO
dataset. As in UNITER, we construct a mini-batch
for each GPU of a matched image-text pair, t-1 neg-
ative images, and t-1 negative texts where t is set
as 32. Besides, we take a fully-connected network
on top of hcls and adopt the binary cross-entropy
loss as supervision signal. The finetuning iterations
are up to 10K by following linear decay schedul-
ing with initial lr 7e-5 for Transformer, 1e-4 for
CNNs. Top-K (R@K, K ∈ {1, 5, 10}) recall is the
evaluation metric.

Visual Entailment (VE): VE task aims to pre-
dict whether an image semantically entails the text
and requires fine-grained reasoning ability in a
model. VE dataset is built upon SNLI (Bowman
et al., 2015) and Flickr30k. Each image-text pair is
assigned with one of three classes: entailment, neu-
tral, contradiction. As in UNITER, we formulate it
as 3-way classification problem based on hcls. The
batch size is 32 per GPU while other finetuning
strategies are the same.

Natural Language Visual Reasoning (NLVR2):
NLVR2 aims to determine whether a natural cap-
tion is true about a pair of photographs, which
is full of semantic diversity, compositionality chal-
lenges. We follow UNITER to construct two image-
text pairs for each sample and concatenate their
hcls features to infer true or false. All finetuning
strategies are the same as before except for a batch
size 12 per GPU.

Visual Question Answering (VQA): VQA re-
quires a richer multi-modal understanding to solve
the free-form and open-ended questions. VQA
dataset contains 204K images from MSCOCO,
614K free-from nature language question and
around 6M answers. It is typically formulated as
a 3192-way classification problem and supervised
by binary cross-entropy loss as in UNITER. The
batch size here is 32 per GPU while other finetun-
ing strategies are kept the same.

Visual Commonsense Reasoning (VCR):
Given a question for an image, VCR needs to 1.)
correctly answer (Q→A); 2.) provide a rationale
justifying its answer (QA→R); 3.) reason both
of them (Q→AR), which requires higher-order
cognition and commonsense reasoning about
the world. Following UNITER, we introduce a
second-stage pretraining over the VCR dataset due
to severe difference in dataset distribution com-
pared to indomain image-text corpus. In addition,
we also utilize a similar person grounding (Park
et al., 2020) pretext task to tightly align the person
tags in text and their visual locations. During
finetuning stage, we concatenate each question
along with each possible answer to form four
kinds of text inputs, and feed each of them into
Transformer network with corresponding image
embeddings. Finally, a binary cross-entropy loss
is adopted to supervise each pair. Since VCR
questions explicitly reference objects at specific
locations, we implement coreferencing between
text and image by replacing referenced entities
in the questions with their corresponding box
locations. In the second stage pretraining for VCR,
we reduce the learning rate to a constant 5e-05 and
trained for an additional 9K steps. Due to longer
sequence lengths in the VCR dataset, a training
batch-size of 224 is used. We also use a step size
of 2 for gradient accumulation. After pretraining,
we finetuned on the VCR task for 10K steps with a
learning rate of 1e-04 for both the Transformer and
the CNNs. Linear warmup of the learning rate is
applied for 1000 steps, followed by a linear decay
ending at a total of 10K steps.

B.5 Influence of image size

We adopt larger image size mainly for fair compar-
isons with most 2-step pretraining methods, Pix-
elBert and E2E-VLP as all of them use the size
(800, 1333). To investigate this, we pretrain our
method with size (600,1000) and report the results
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(a) Knowledge-guided masking strategy. Red mask denotes the masked region in an image

(b) Text-to-image attention maps. The bright region denotes higher attention scores between word tokens and image regions.

Table 7: Performance comparison of different image size
Models Image Size NVLR-dev VQA-test dev
SOHO (600,1000) 64.62 66.69

KD-VLP(ours) (600,1000) 66.52 68.04
KD-VLP(ours) (800,1333) 66.71 68.19

in Tab.7. We can see that our method has a mild
performance drop, but still outperforms SOHO by
a decent margin.

B.6 More Visualizations

As in Fig.5a, we observe that our knowledge-
guided masking strategy masks out the image re-
gions, which are highly related to the correspond-
ing sentences. This design can force Transformer
to infer object features and semantic labels based
on the surrounding visual context and its language
descriptions. On the contrary, SOHO randomly
masks out either background regions (Fig.5a(1)
& Fig.5a(2)) or local object parts (Fig.5a(3) &
Fig.5a(4)), which are not related to the correspond-
ing sentences with a high probability and result in
inefficient multi-modal representation learning.

As shown in Fig.5b, it shows that our object-
aware end-to-end multi-modal representations can
accurately establish the correspondence between

word tokens and visual tokens, which demonstrates
the superiority of our approach.

1600


