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Abstract

In this paper, we revisit the solving bias when
evaluating models on current Math Word Prob-
lem (MWP) benchmarks. However, current
solvers exist solving bias which consists of data
bias and learning bias due to biased dataset and
improper training strategy. Our experiments
verify MWP solvers are easy to be biased by
the biased training datasets which do not cover
diverse questions for each problem narrative
of all MWPs, thus a solver can only learn
shallow heuristics rather than deep semantics
for understanding problems. Besides, an
MWP can be naturally solved by multiple
equivalent equations while current datasets
take only one of the equivalent equations
as ground truth, forcing the model to match
the labeled ground truth and ignoring other
equivalent equations. Here, we first introduce
a novel MWP dataset named UnbiasedMWP
which is constructed by varying the grounded
expressions in our collected data and anno-
tating them with corresponding multiple new
questions manually. Then, to further mitigate
learning bias, we propose a Dynamic Target
Selection (DTS) Strategy to dynamically select
more suitable target expressions according
to the longest prefix match between the
current model output and candidate equivalent
equations which are obtained by applying
commutative law during training. The results
show that our UnbiasedMWP has significantly
fewer biases than its original data and other
datasets, posing a promising benchmark
for fairly evaluating the solvers’ reasoning
skills rather than matching nearest neigh-
bors. And the solvers trained with our DTS
achieve higher accuracies on multiple MWP
benchmarks. The source code is available at
https://github.com/yangzhch6/UnbiasedMWP.

1 Introduction

Math Word Problem (MWP) solving is a long-
standing challenging task in Natural Language Pro-

∗Corresponding author.

Context: There are 22 packets of instant noodles on the shelf. The 

packets of candy is 4 times that of instant noodles.

Question: How many packets are instant noodles less than candy?

Problem

Solution Expression: ( N0 * N1 ) - N0

( N0 * N1 ) - N0

( N0 * N1 ) - N0

(a)

QuestionContext Solver ( N1 * N0 ) - N0(b)

69.4%

83.3%QuestionContext Solver

Context Solver

Figure 1: Illustration of solving bias in MWP. A typical
MWP problem can be divided into context and question.
(a) shows that 69.4% of the problems in Math23K can
be answered by the solver (Bert2Tree) without looking
at the question, verifying its severe data bias. (b) shows
that the current training procedure ignores the equivalent
expressions, indicating the possible learning bias.

cessing (NLP) and has attracted lots of attention
recently (Upadhyay and Chang, 2017; Upadhyay
et al., 2016; Huang et al., 2018; Wang et al., 2017,
2018, 2019; Qin et al., 2020; Huang et al., 2021;
Shen et al., 2021; Qin et al., 2021; Wu et al., 2021).
An automatic MWP solver should not only under-
stand the problem’s semantic information but also
reason the grounded mathematical relationships
implicit in the problem, so that it can transform
natural language into solution expression.

More recently, deep learning methods (Wang
et al., 2017, 2018; Huang et al., 2021; Shen
et al., 2021; Wu et al., 2021) have made great
progress in MWP solving and achieved im-
pressive results on several popular benchmarks,
such as Math23K (Wang et al., 2017) and
MAWPS (Koncel-Kedziorski et al., 2016). How-
ever, there exists some severe possible solving bias
in these benchmarks, consisting of data bias and
learning bias. Here, the data bias is introduced
since the training dataset does not fully cover di-
verse questions for each problem narrative of all
MWPs, leading to the situation that a solver only
learns shallow heuristics rather than deep seman-
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tics for understanding problems. Besides, even the
question of an MWP is deleted, a solver still can
solve it correctly, as shown in Figure 1(a). On
the other hand, an MWP can be solved by mul-
tiple equivalent equations while current popular
datasets only take one of the equivalent equations
as the ground truth output for each sample, forcing
the model to learn the labeled ground truth and ig-
nore other equivalent equations which may be more
suitable for a solver to learn, leading to learning
bias during training. As shown in Figure 1(b), if
a solver may generate an answer-corrected expres-
sion that is different from ground-truth expression,
it will be thought an error and the loss between the
answer-corrected expression and the ground-truth
expression will be back-propagated to the solver
during training, leading to over-correct the solver.
This learning bias makes it harder to learn to reason
out answer-corrected expressions.

To mitigate the solver bias for pushing advanced
models to learn underlying reasoning skills rather
than solely matching nearest results, we first build
a novel MWP dataset, UnbiasedMWP, to cover di-
verse questions for each problem narrative of all
MWPs. It is constructed by varying the grounded
expressions in our collected data and annotating
them with corresponding new questions manually,
thus mitigating data bias. Then, to mitigate the
learning bias, we propose a Dynamic Target Selec-
tion (DTS) Strategy to dynamically select the most
suitable target expression by applying the longest
prefix match between the current model output and
candidate equivalent equations obtained by apply-
ing commutative law during training. Our exper-
imental result shows that our UnbiasedMWP has
significantly fewer biases than its original data and
other datasets, and the solvers equipped with our
equivalent expression matching loss can achieve
higher accuracy on multiple MWP benchmarks
such as Math23K and our UnbiasedMWP. Our
main contributions are in two folds:

• We propose a large-scale data-unbiased
dataset named UnbiasedMWP consisting of
10264 MWPs with diverse questions. The
dataset is constructed by varying the grounded
expressions and annotated corresponding
questions. With this dataset, we can force
a model to learn deep semantics rather than
shallow heuristics for solving an MWP.

• We propose a Dynamic Target Selection
(DTS) Strategy to dynamically select a more
suitable target expression, thus eliminating the

learning bias caused by ignoring equivalent
expressions during the training procedure. Ex-
perimental results demonstrate that the models
trained with DTS achieve better performances
on multiple benchmarks. Our DTS can im-
prove the baseline model up to 1%, 2.5%, and
1.5% on Math23K, UnbiasedMWP-Source,
and UnbiasedMWP-All, respectively.

2 UnbiasedMWP dataset

In this section, we introduce the construction pro-
cedure of our UnbiasedMWP dataset. Based on the
newly-collected raw data, we design a pipeline for
pre-processing and rewriting questions according
to formula variations, which is strictly performed
by the annotators to obtain unbiased data.

2.1 Data Collection and Pre-processing

To collect UnbiasedMWP, we crawl 2907 exam-
ples from an online education website1. During
pre-processing, the number mapping (Wang et al.,
2017) is deployed to replace the numbers in solu-
tion expression with symbolic variables (e.g., N0,
N1). Then, the workers are asked to split the prob-
lem text into two parts: context (a narrative impli-
cated with numerical relationships) and question (a
short text that requires the solution of a mathemati-
cal relationship).

2.2 Expression Variation

As shown in Figure 1, a neural network model can
solve problems even without questions, this shows
that a solver solves problems mainly by relying on
shallow heuristics rather than deep semantic under-
standing. Besides, current popular and large-scale
datasets do not fully cover any possible questions
for the context in each MWP, which also results
in data bias. To mitigate this issue, we annotate
each narrative with various possible questions to
construct an unbiased MWP benchmark by enumer-
ating various expressions according to the number
in the context, asking workers to design questions
for each expression. If an expression can not be
assigned with a suitable question, we remove it.

To enumerate various possible expressions, we
design three types of variation to create different
expressions for each context: Variable assortment
(Va) variations: Selecting two variables from the
context and combining them with the operators

1https://damolx.com/
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N2 * (N0 + N1) N2 * (N0 + N1)

N2 * (N1 + N0)

(N0 + N1) * N2

(N1 + N0) * N2

(a) From one expression to equivalent expression list



+N2

N0 N1



+N2

N1 N0

(b) One of the example generation procedure

Figure 2: Equivalent Expression Tree Generation. (a)
shows the results of generation, (b) shows one of the
generation examples.

"+,−, ∗, /", such as n0 + n1, n0 − n1, etc. Sub-
expression (Sub) variations: From the original
expression, we choose all sub-expressions of it
and change the operators to get new expressions.
Whole-expression (Whole) variations: We get
new expressions by changing the operators in the
original expression. Besides, workers also can pro-
pose new expressions and annotate them.

Various expressions are first acquired by apply-
ing the variation processing. Then, we ask workers
to write a practical question for each meaningful
expression variation. For those meaningless expres-
sions that can not be annotated with any practical
question, we filtered out them. The details of data
split and statistics are listed in the appendix.

3 Dynamic Target Selection Strategy

During the common MWP training procedure,
only one expression is used as ground truth while
the equivalent expressions are ignored. Consider
the following case: the ground truth label is
"(N1 ∗ N0) − N0" while the model output is
"(N0 ∗ N1) − N0". Although they are mathe-
matical equivalent, the model output is judged to
be incorrect. Therefore, models are prone to be
biased during training. To address this issue, we
generate the equivalent expressions of the original
ground truth expression and then select an equiv-
alent expression matching the longest prefix with
the current model output as target expression in the
training procedure.

3.1 Equivalent Expression Tree Generation

To generate equivalent expressions, we consider
swapping sub-expressions on the two sides of sym-
metric binary operators such as: + and ×. Firstly,
we construct an expression tree for each expression

Algorithm 1: Equivalent Expression Tree
Generation

Function: Variation(tree, root, equList)
Input: Expression tree: tree; Root node of the input

tree: root;
Output: Equivalent expression list: equList.

if root is null then
return

Variation(tree, root.left, equList)
Variation(tree, root.right, equList)
if root.value is symmetric operator then

swap(root.left, root.right)
equList.append(tree)
Variation(tree, root.left, equList)
Variation(tree, root.right, equList)
swap(root.left, root.right)

return

following (Xie and Sun, 2019). Then, we recur-
sively examine each operator node from bottom to
up and swap the left and right sub-trees of the node
if it is a symmetric operator, and then we add the
result new tree to a list. Finally, we iterate all the
trees in the list into infix or prefix expressions to
get multiple equivalent expressions. The genera-
tion procedure is illustrated in Algorithm 1. An
example of the generation is illustrated in Figure
2 (b), we exchange the position of ’N0’ and ’N1’,
and get a new equivalent expression. An example
of generated equivalent expressions is shown in Fig.
2 (a).

3.2 Dynamic Target Selection (DTS)
During the training procedure, the solver may
generate the correct start part expression which
matches the prefix of one of the equivalent expres-
sions but not matches the prefix of the ground truth
labeled in the dataset. If we still use the ground
truth as the target to train the solver, this will lead
to oversize error to correct the model prediction,
leading to sub-optimal learning and learning bias.
To mitigate this issue, we dynamically choose a
new equivalent target expression as a training tar-
get that can match the current model output with
the longest prefix. In this way, the loss will not be
oversized so that we can make the solver easier to
solve problems correctly.

4 Experiments

4.1 Experimental Setup
Datasets. We conduct experiments on Math23K
(Wang et al., 2017) dataset and our UnbiasedMWP
dataset. We use UnbiasedMWP-Source to repre-
sent the initial collection of samples while using
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Math23K UnbiasedMWP
-Source

UnbiasedMWP
-All

Methods Ori Del_q Ori Del_q Ori Del_q

Math-EN 68.4 55.2 62.0 42.5 52.5 20.4
Group-Attn 69.5 57.9 61.5 42.0 53.1 20.1
GTS 75.6 61.9 64.5 49.0 63.6 25.1
Graph2Tree 77.4 63.2 65.0 50.0 64.0 25.0
Bert2Tree 83.3 69.4 73.0 55.0 78.1 22.5

Table 1: Experimental results on Math23K,
UnbiasedMWP-Source, and UnbiasedMWP-All.
Ori indicates the original data and the Del_q indicates
data with the question removed.

UnbiasedMWP-All to represent the initial collec-
tion of samples and their various variations.
Baselines. We validate our UnbiasedMWP dataset
and DTS training strategy with multiple models:
Math-EN (Wang et al., 2018): a seq2seq model
with equation normalization for reducing target
space. GROUPATT (Li et al., 2019): a solver
borrowing the idea of multi-head attention from
Transformer (Vaswani et al., 2017). GTS (Xie and
Sun, 2019): a tree-structured neural network in a
goal-driven manner to generate expression trees.
Graph2Tree (Zhang et al., 2020): an enhanced
GTS with quantity graph. BERT2Tree: a strong
baseline we constructed by replacing RNN encoder
with BERTEncoder(Cui et al., 2020) in GTS. More
details can be referred to the appendix.

4.2 Experimental Results

Bias Analysis on MWP Datasets We conduct
similar experiments in (Patel et al., 2021) by re-
moving question text on Math23K datasets and
our collected UnbiasedMWP source data to show
the solver mainly relied on shallow heuristics. As
shown in Table 1, the experimental results on
Math23K and UnbiasedMWP-Source show that
all models still perform well even lack the ques-
tion information. This suggests the patterns in the
context have a strong correlation with the output
expression, thus causing the model to learn bias
in MWPs. We also conduct the same experiments
on the UnbiasedMWP-All dataset. From Table 1,
we can observe that the accuracies of the MWP
without questions (Del_q) are significantly lower
on UnbiasedMWP-All than the other two datasets.
This shows that our UnbiasedMWP can force the
solver to solve an MWP with less bias.
Robustness Analysis To further validate the advan-
tages of our different variation data and how to im-
prove a solver’s robustness, we train two solvers on
UnbiasedMWP-Source (Src) and UnbiasedMWP-

Train
Test Src Src+Va Src+Sub Src+Whole All

Src 73.0 37.3 49.7 53.1 34.9
All 75.5 82.4 79.5 71.1 78.1

Table 2: Comparison of results using different training
and testing set. Va, Sub, and Whole stand for the three
variations mentioned in Section 2.2. All denotes com-
bining all three variations (Va + Sub + Whole) on source
(Src) dataset.

Methods DTS Math23K
UnbiasedMWP

-Source
UnbiasedMWP

-All

GTS % 75.6 64.5 63.6
GTS ! 76.4 65.5 63.7

Graph2Tree % 77.4 65.0 64.0
Graph2Tree ! 77.8 65.5 64.6
Bert2Tree % 83.3 73.0 78.1
Bert2Tree ! 84.3 75.5 79.6

Table 3: Comparison of experimental results with or
without DTS of GTS-based (Xie and Sun, 2019) model.

All (All) and compare their performances on dif-
ferent test sets (Src, Src+Va, Src+Sub, Src+Whole,
and All). From Table 2, we can observe that the
solver trained with different variation data is more
robust than the solver trained only with the initially
collected samples on various test sets. This shows
that our UnbiasedMWP can mitigate the learning
bias of an MWP solver.
Analysis on DTS strategy We conduct our DTS
training strategy on Math23K and UnbiasedMWP.
As shown in Table 3, our DTS training strat-
egy helps several models achieve better perfor-
mance. Especially, our DTS improves the ac-
curacy of the Bert2Tree model from 83.3% to
84.3% on Math23K, from 73.0% to 75.5% on
UnbiasedMWP-Source, and from 78.1% to 79.6%
on UnbiasedMWP-All. In summary, the experi-
mental results verify the validity of our DTS strat-
egy.

5 Conclusion
In this paper, we revisit the solving bias in MWP.
To mitigate the data bias caused by lacking ques-
tion diversity, we construct a data set called Un-
biasedMWP by variating the expressions in new-
collected data. The experimental results illustrate
that the solver trained on UnbiasedMWP is more
robust than on our collected data. To mitigate the
learning bias caused by loss overcorrect with tak-
ing only one ground-truth, we proposed a strategy
to generate the equivalent expressions and select
the longest prefix with the current model output
during training, called Dynamic Target Selection
(DTS). Experimental results show that our DTS
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helps several models achieve better performance.
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A Appendix

A.1 Data Split

To ensure that the model does not see the context
from the /testing set during training, We first split
the training, validation, and testing set on our newly
collected source dataset. Then we further apply the
expression variation (mentioned in Section 2.2) to
expand the data on different subsets. The size of
the split of our collected data and variation data is
shown in Table 4.

A.2 Examples of data variation

Figure 3 shows some examples of our data varia-
tion.

Split UnbiasedMWP
-Source

UnbiasedMWP
-All

Train 2507 8895
Validation 200 684
Test 200 685

Table 4: Size of UnbiasedMWP data split.

Context: There were 892 tourists in the morning, 255 left at noon, 

and 304 came in the afternoon. 

Question: How many tourists were there at this time?

Example 1

Solution Expression: ( 892 - 255 ) + 304

Variation:

(1) How many times as many tourists arrive in the afternoon as 

leave at noon? —— 304 / 255

(2) How many more tourists came in the afternoon than left at 

noon? —— 304 - 255

(3) How many times as many tourists come in the morning as in 

the afternoon? —— 892 /=/ 304

(4) How many more tourists came in the morning than in the 

afternoon? —— 892 - 304

(5) How many tourists came to the science park on this day?  —

— 892 + 304

(6) How many tourists were left at noon? —— 892 - 255 

Context: The school has 26 basketballs. There are 4 fewer 

volleyballs than 12 times as many basketballs.

Question: How many volleyballs are there?

Example 2

Solution Expression: ( 26 * 12 ) - 4

Variation:

(1) How many volleyballs and basketballs are there?  —— 26 + 

( ( 26 * 12 ) - 4 )

(2) How many more volleyballs are there than basketballs?  ——

( ( 26 * 12 ) - 4 ) - 26

Context: 6 groups from class A of a primary school donated $624 

to the earthquake-stricken area, while 5 groups from Class B 

donated A total of $705 yuan.

Question: What is the average donation per group in Class A?

Example 3

Solution Expression: 624 / 6

Variation:

(1) How much did the two classes contribute altogether? ——

624 + 705

(2) How many times did Class A donate as much as class B? —

— 624 / 705 

(3) How much more did Class B donate than Class A? —— 705 

– 624

(4) How much does the average group in Class B donate? ——

705 / 5

(5) How much more per group did Class B donate than class 

A? —— ( 705 / 5 ) - ( 624 / 6 )

(6) How many times did the average group in Class B donate as 

much as the average group in Class A? —— ( 705 / 5 ) / ( 624 

/ 6 )

Figure 3: Some examples of our data variation.
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A.3 Data statistic

We analyze the proportions of data of different pre-
fix expression lengths in UnbiasedMWP dataset
and the result is shown in Table 5. We analyze our
UnbiasedMWP to count the size of different vari-
ation data, the statistical result is shown in Table
6. Note that the count of All data is not equal to
the sum of the above rows in the table, because
there will be some overlap between the variation
data obtained in the three data variation methods
mentioned in Section 2.2.

Expression Length 3 5 7 9 11 >11

Count 6357 2560 1011 215 90 31

Table 5: Statistics analyse on prefix expression length.

Count

Source 2907
Variable assortment 5083
Sub-expression 2843
Whole expression 2205
All data 10264

Table 6: Statistics analyse on variation data.

We also analyze the accuracy of data of differ-
ent prefix expression lengths for Bert2Tree model
shown in Table 7. Experimental results show that
the longer the expression, the lower the accuracy.

Expression Length 3 5 7 >= 9

Count 85.3 74.3 60.30 26.5

Table 7: Performance of Bert2Tree on different prefix
expression length of UnbiasedMWP-All.

A.4 Implementation details

Pytorch3 is used to implement our our MWP solver
on Linux with NVIDIA RTX1080Ti GPU card.
Our Bert2Tree model is constructed by replac-
ing the encoder in GTS model with the Chinese
Bert(Cui et al., 2020). The learning rate is set as
5e−5 and 1e−3 for Bert encoder and tree-decoder
respectively. Adam is set as the optimizer of
Bert2Tree while β1 = 0.9, β2 =0.999, and ϵ =
1e−8. The batch size is 32. Dropout weight is
set as 0.5 with weight decay 1e−5. For the other
four models, Math-EN, Group-Attn, GTS and
Graph2Tree, we follow their original parameter
settings in (Hong et al., 2021). Since the data pre-

3http://pytorch.org

processing code in Graph2Tree is not open, we do
not evaluate this model on our own data.

In the experiments, we train Bert2Tree for
100 epochs on Math23K while 50 epochs on
our UnbiasedMWP-Source and UnbiasedMWP-
All data, because Math23K is a larger benchmark
dataset whch contains 23K samples. For the Del_q
experiments, We intercept the last sentence (ques-
tion) by detecting punctuation marks in Math23K
which may cause some very small errors but does
not affect the overall results of the experiment. For
our UnbiasedMWP dataset, we directly use the
context to do the Del_q experiment.

A.5 Related Work

Math Word Problem Solving
In recent years, deep learning models especially

Seq2Seq models(Wang et al., 2017; Li et al., 2019;
Wang et al., 2018; Xie and Sun, 2019; Zhang et al.,
2020; Qin et al., 2021; Shen et al., 2021; Wu et al.,
2021), have made great progress in MWPs by learn-
ing to translate problem text in natural language
into mathematical solution expression. (Wang et al.,
2017) is the first to apply deep learning in MWPs
and propose a widely used dataset called Math23K.
(Li et al., 2019) propose a group attention mech-
anism to extract multi-dimensional features. (Xie
and Sun, 2019) propose a tree decoder to decode
expression as prefix order. Based on (Xie and Sun,
2019), (Zhang et al., 2020) improve the encoder em-
bedding by fusing a graph encoder’s output. (Qin
et al., 2021) propose a framework by applying mul-
tiple auxiliary tasks to improve the problem em-
bedding and the ability to predict commonsense
constants. (Shen et al., 2021) devise a new ranking
task for MWP and propose the Generate & Rank,
a multi-task framework based on a generative pre-
trained language model. (Wu et al., 2021) propose a
novel Edge-Enhanced Hierarchical Graph-to-Tree
model (EEH-G2T), in which the math word prob-
lems are represented as edge-labeled graphs.

Challenging Datasets and Adversarial Examples
of MWP More challenging datasets in MWP are
proposed in recent years, Ape210K (Zhao et al.,
2020) provides a large-scale benchmark for evalu-
ating MWP solvers, HMWP (Qin et al., 2020) is a
Chinese MWP benchmark including examples with
multiple-unknown variables requiring non-linear
equations to solve.

Although solvers have achieved impressive per-
formance on these datasets, the robustness of the
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solvers is questioned in (Kumar et al., 2021). Be-
sides, (Patel et al., 2021) also points out that
MWP solvers rely on shallow heuristics to achieve
high performance and propose SVAMWP dataset.
SVAMWP is more reliable and robust for measur-
ing the performance of MWP solvers, because it
raises the requirement for the model’s sensitivity to
question text through applying variations over word
problems. Unlike SVAMWP, our variations are
applied to expressions to get different expression-
question pairs.

A.6 Analysis on Effects of PLM
We conduct experiments on our UnbiasedMWP
dataset as shown in Table 1. In the experiments, for
models without PLMs such as Math-EN (Wang
et al., 2017), GROUPATT (Li et al., 2019), GTS
(Xie and Sun, 2019), Graph2Tree (Zhang et al.,
2020), they perform worse on UnbiaseMWP-All
dataset than on UnbiasedMWP-Source dataset,
whereas for Bert2Tree model with Bert (Cui
et al., 2020), it performs significantly better on
UnbiasedMWP-All dataset. This shows that the
UnbiasedMWP-ALL dataset with diverse questions
is more likely to confuse the model, because the
context of the sample remains unchanged and only
changes the question. However, Bert2tree can bet-
ter distinguish the difference between diverse ques-
tions through the pre-trained language model.
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