
Findings of the Association for Computational Linguistics: NAACL 2022, pages 1389 - 1400
July 10-15, 2022 ©2022 Association for Computational Linguistics

RAIL-KD: RAndom Intermediate Layer Mapping for
Knowledge Distillation

Md Akmal Haidar1∗ Nithin Anchuri1,2∗ Mehdi Rezagholizadeh1

Abbas Ghaddar1 Philippe Langlais2 Pascal Poupart3
1 Huawei Noah’s Ark Lab

2 RALI/DIRO, Université de Montréal, Canada
3 David R. Cheriton School of Computer Science, University of Waterloo
{mehdi.rezagholizadeh,abbas.ghaddar}@huawei.com
felipe@iro.umontreal.ca, ppoupart@uwaterloo.ca

Abstract
Intermediate layer knowledge distillation
(KD) can improve the standard KD technique
(which only targets the output of teacher
and student models) especially over large
pre-trained language models. However,
intermediate layer distillation suffers from
excessive computational burdens and engi-
neering efforts required for setting up a proper
layer mapping. To address these problems,
we propose a RAndom Intermediate Layer
Knowledge Distillation (RAIL-KD) approach
in which, intermediate layers from the teacher
model are selected randomly to be distilled
into the intermediate layers of the student
model. This randomized selection enforces
that all teacher layers are taken into account
in the training process, while reducing the
computational cost of intermediate layer
distillation. Also, we show that it acts as a
regularizer for improving the generalizability
of the student model. We perform extensive
experiments on GLUE tasks as well as on
out-of-domain test sets. We show that our
proposed RAIL-KD approach outperforms
other state-of-the-art intermediate layer KD
methods considerably in both performance
and training-time.

1 Introduction

Pre-trained Language Models (PLMs), such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2020) and XLNet (Yang et al., 2019) have shown
remarkable abilities to match and even surpass hu-
man performances on many Natural Languages Un-
derstanding (NLU) tasks (Rajpurkar et al., 2018;
Wang et al., 2018, 2019). However, the deploy-
ment of these models in real world applications
(e.g. edge devices) come with challenges, mainly
due to large model size and inference time.

In this regard, several model compression tech-
niques such as quantization (Shen et al., 2019;

∗ Work done while at Huawei.

Zafrir et al., 2019; Kumar et al., 2022; Prato
et al., 2020), pruning (Guo et al., 2019; Gordon
et al., 2020; Michel et al., 2019),matrix factoriza-
tion (Tahaei et al., 2021; Lioutas et al., 2020), op-
timizing the Transformer architecture (Fan et al.,
2019; Wu et al., 2020b; Lu et al., 2020), and knowl-
edge distillation (Sanh et al., 2019a; Jiao et al.,
2019; Sun et al., 2020b; Wang et al., 2020a; Rashid
et al., 2021; Passban et al., 2021; Jafari et al., 2021;
Rezagholizadeh et al., 2021) have been developed
to reduce the model size and latency, while main-
taining comparable performance to the original
model.

KD, which is the main focus of this work, is a
neural model compression approach that involves
training a small student model with the guidance of
a large pre-trained teacher model. In the original
KD technique (Buciluǎ et al., 2006; Hinton et al.,
2014; Turc et al., 2019), the teacher output predic-
tions are used as soft labels for supervising the train-
ing of the student. There has been several attempts
in the literature to reduce the teacher-student per-
formance gap by leveraging data augmentation (Fu
et al., 2020; Li et al., 2021; Jiao et al., 2019; Kamal-
loo et al., 2021, 2022), adversarial training (Zaharia
et al., 2021; Rashid et al., 2020, 2021), and interme-
diate layer distillation (ILD) (Wang et al., 2020b,a;
Ji et al., 2021; Passban et al., 2021).

When it comes to BERT compression, ILD leads
to clear gains in performances (Sanh et al., 2019a;
Jiao et al., 2019; Wang et al., 2020a) due to its abil-
ity to enhance the knowledge transfer beyond logits
matching. This is done by mapping intermediate
layer representations of both models to a common
space1, and then matching them via regression (Sun
et al., 2019) or cosine similarity (Sanh et al., 2019a)
losses. One major problem with ILD is the ab-
sence of an appropriate strategy to select layers
to be matched on both sides, reacting to the skip

1In some cases, the representations are directly matched if
the teacher and student have the same hidden size.

1389

Model Layer Mapping Complexity Limitation
PKD (Sun et al., 2019) Extra Hyperparameter O(m) Extensive Search
CKD (Wu et al., 2020a) Extra Hyperparameter O(m) Extensive Search
ALP-KD (Passban et al., 2021) Attention O(m× n) Slow Training time
CoDIR (Sun et al., 2020a) Contrastive Learning O(K ×m) Slow Training time
RAIL-KDl (our) Random Selection O(m) -
RAIL-KDc (our) Random Selection O(m) -

Table 1: Main characteristics and limitation of different approaches that tackle the skip and search problem. Concat
indicates if the approach support concatenated layers distillation. n and m refer to the teacher and student layer
number respectively, while K refers to number of negative samples of CoDIR.

and search problem (Passban et al., 2021). Some
solutions in the literature mostly rely on layer com-
bination (Wu et al., 2020a), attention-based layer
projection (Passban et al., 2021) and contrastive
learning (Sun et al., 2020a). While these solutions
are all effective to some extent, to the best of our
knowledge, there is no work in the literature doing
a comprehensive evaluation of these techniques in
terms of both efficiency and performance.

A case in point is that the aforementioned solu-
tions to the layer skip and search problem do not
scale to very deep networks. We propose RAIL-KD
(RAndom Intermediate Layer KD), a simple yet
effective method for intermediate layer mapping
which randomly selects k out of n intermediate lay-
ers of the teacher at each epoch to be distilled to the
corresponding student layers. Since the layer selec-
tion is done randomly, all the intermediate layers of
the teacher will have a chance to be selected for dis-
tillation. Our method adds no computational cost
to the training, still outperforming all aforemen-
tioned methods on the GLUE benchmark (Wang
et al., 2018). Moreover, we observe larger gains
when distilling from large teacher models, as well
as when student models are evaluated on out-of-
domain datasets. Last, we report the results on 5
random seeds in order to verify the contribution
of the random selection process, thus making the
comparison fair with previous methods. The main
contributions of our paper are as follows:

• We introduce RAIL-KD, a more efficient
and scalable intermediate layer distillation ap-
proach.

• To the best of our knowledge, we are the first
to perform a comprehensive study of the ILD
techniques in terms of both efficiency and per-
formance.

• We consider the distillation of models such as

BERT and RoBERTa, and compare different
up-to-date distillation techniques on out-of-
domain test sets.

2 Related Work

In recent years, a wide range of methods have
tried to expand knowledge transfer of transformer-
based (Vaswani et al., 2017) NLU models beyond
logits matching. DistillBERT (Sanh et al., 2019a)
added a cosine similarity loss between teacher
and student embeddings layers. TinyBERT (Jiao
et al., 2019), MobileBERT (Sun et al., 2020b), and
MiniLM (Wang et al., 2020b) matched the inter-
mediate layers representations and self-attention
distributions of the teacher and the student.

In PKD, Sun et al. (2019) used determinis-
tic mapping strategies to distill a 12-layer BERT

teacher to a 6-layer BERT student. PKD-LAST and
PKD-SKIP refer to matching layers {1− 5} of the
student with layers {7 − 11} and {2, 4, 6, 8, 10}
of the teacher respectively. However, these works
ignored the impact of layer selection, as they used
a fixed layer-wise mapping.2

Researchers have found that tuning the layer
mapping scheme can significantly improve the per-
formance of ILD techniques (Sun et al., 2019).
Nevertheless, finding the optimal mapping can be
challenging, which is referred to as the layer skip
and search problems by Passban et al. (2021). To
address the layer skip problem, CKD (Wu et al.,
2020a) is built on top of PKD by partitioning all
the intermediate layers of the teacher to the number
of student layers. Then, the combined represen-
tation of the layers of each partition is distilled
into a number of subset corresponding to the num-
ber of student layers. However, finding the optimal

2e.g. matching the first (or last) k layers of the student
with their corresponding teacher layers.

1390

Figure 1: Proposed RAIL-KD technique for efficient intermediate layer distillation. (a) This version shows a layer-
wise projection which is indicated as RAIL-KDl in the paper. (b) This variant named RAIL-KDc, concatenates the
intermediate representations of each network before distillation.

partitioning scheme requires running exhaustive ex-
periments. Given teacher and student BERT models
with n and m layers respectively (where n >> m),
it is not trivial to choose the teacher layers that can
be incorporated in the distillation process and how
we should map them to the student layers (search).

ALP-KD (Passban et al., 2021) overcomes this
issue by computing attention weights between each
student layer and all the intermediate layers of the
teacher. The learned attention weights for each stu-
dent layer are used to obtain a weighted representa-
tion of all teacher layers. Although ALP-KD has
shown promising results on 12-layer BERT-based
compression, attending to all layers of the teacher
adds considerable computational overhead to the
training phase. This can become computationally
prohibitive when scaling to very large models such
as RoBERTa-large (Liu et al., 2020) or GPT-2 (Rad-
ford et al., 2019). Alternatively, CoDIR (Sun et al.,
2020a) exploited contrastive learning (Tian et al.,
2019) to perform intermediate layers matching be-
tween the teacher and the student models with no
deterministic mapping. Similar to ALP-KD, this
approach also requires excessive training time due
to the contrastive loss calculation and the use of
negative samples from a memory bank.

Table 1 summarizes the main characteristics of
the existing state-of-the-art intermediate layer dis-
tillation techniques (PKD, CKD, and CoDIR) used

for pre-trained language models compared with our
proposed RAIL-KD. First, PKD and CKD treat the
mapping as an extra hyperparameter that requires
extensive experiments in order to find the optimal
mapping. Second, ALP-KD (Passban et al., 2021)
and CoDIR (Sun et al., 2020a) use the attention
mechanism and contrastive learning respectively
to address the issue, but at the expense of extra
computational cost.

Our proposed RAIL-KD method does not add
any computational cost to the distillation process,
while empirically outperforming previous methods.
For instance, RAIL-KD is roughly two-times faster
than CoDIR in a 24 to 6 layer compression. In ad-
dition, it does not require extensive experiments to
find the optimal mapping scheme. In this work, we
position ourselves to works that tackle the skip and
search problem.3 In other words, we don’t com-
pare with works like TinyBERT (Jiao et al., 2019)
or MiniLM (Wang et al., 2020b), which use ex-
tra losses like self-attention distribution matching.
However, we expect that these methods, as well as
state-of-the-art (Rashid et al., 2021; He et al., 2021)
ones can take full advantage of RAIL-KD, since
they use a deterministic layer mapping scheme.

3This only concerns works that perform intermediate layer
distillation

1391

3 RAIL-KD

The RAIL-KD method is sketched in Figure 1.
RAIL-KD transfers intermediate knowledge of a
pre-trained teacher T with n intermediate layers
to a student model Sθ with m intermediate layers.
In contrast to traditional intermediate layer distilla-
tion techniques which keep the selected layers of
the teacher for distillation fixed during training, in
RAIL-KD, at each epoch, a few intermediate layers
from the teacher model are selected randomly for
distillation. Here for simplicity, we set the number
of selected intermediate layers of the teacher model
equal to that of the student model.

Let (X, y) denote a training sample X =
(x0, · · · , xL−1) which is a sequence of L tokens
and y its corresponding label. In Figure 1, our
Random Selection operator is applied to the inter-
mediate layers of the teacher to randomly select m
out of n layers. The intermediate layer representa-
tions of the m selected layers of the teacher and the
student model corresponding to the X input can
be described as HTX = {HT

1,X , · · · , HT
m,X} and

HSθX = {HSθ
1,X , · · · , H

Sθ
m,X} respectively, where

HT
i,X = ∪L−1k=0{hTi,xk} ∈ RL×d1 and HSθ

i,X =

∪L−1k=0{h
Sθ
i,xk
} ∈ RL×d2 . Here, d1 and d2 indicate

the hidden dimension of the layers of the teacher
and the student models respectively. To obtain
HT
i,X and HS

j,X , we need to find the individual rep-
resentation of each token xk at each layer i, which
is indicated as hTi,xk and hSi,xk for the teacher and
student networks respectively.

At this stage, we need to obtain an aggregated
representation of the sequence X at each layer.
In this regard, one can either use the <CLS>
token representation or use the mean-pooling of
the sequence representations of the layer. Since
in Sun et al. (2020a), the mean-pooling represen-
tation shows better results, we adopt it to compute
the sentence representation of each layer. Mean-
pooling is a row-wise average over HT

i,X , HSθ
i,X to

get h̄Ti,X ∈ Rd1 h̄Sθi,X ∈ Rd2 (Sun et al., 2020a):

h̄Ti,X =
1

L

L−1∑

k=0

hTi,xk ; h̄Sθi,X =
1

L

L−1∑

k=0

hSθi,xk (1)

After obtaining aggregated layer representations for
both the student and teacher networks, our RAIL-
KD proposal is to randomly select m layer rep-
resentations from the teacher through training to
perform the intermediate layer distillation (ILD).

RAIL-KD does ILD in two different forms: using
layer-wise distillation (see Fig. 1(a)) or by concate-
nating layer representations (see Fig. 1(b)) which
are described in the following two sub-sections.

3.1 Layer-wise RAIL-KD

In this setting, the representations h̄Ti,X ∈ Rd1 and
h̄Sθi,X ∈ Rd2 are projected into a same-size lower-

dimensional space ĥTi,X , ĥ
Sθ
i,X ∈ Ru using (d1 × u)

and (d2×u) linear mappings respectively. Assume
that the set A = {aκ|aκ ∼ {1, 2, ..., n}, 1 ≤ κ ≤
m} contains indices of selected m layers from the
teacher, then to calculate the layer-wise loss we
have:

LRAIL-KDl =

∑

X∈X

∑

i∈A
αi

(
||

ĥTi,X

||ĥTi,X ||2
−

ĥSθi,X

||ĥSθi,X ||2
||22

)
(2)

where X denotes the training set, and αi is a hyper-
parameter to assign a custom weights to the layer-
wise distillation loss. It is worth mentioning that in
our experiments we set αi = 1.

3.2 Concatenated RAIL-KD

In this setting, intermediate layer representa-
tions are concatenated and then distilled: h̄TX =

[h̄Ti,X]i∈A, h̄SθX = [h̄Sθj,X]mj=1 which are further
mapped into the same lower-dimensional space
ĥTX , ĥ

Sθ
X ∈ Ru using (md1 × u) and (md2 × u)

linear mappings to calculate the concatenated dis-
tillation loss.

LRAIL-KDc =
∑

X∈X
|| ĥTX
||ĥTX ||2

− ĥSθX

||ĥSθX ||2
||22 (3)

Any type of loss such as contrastive (Sun et al.,
2020a), or mean-square-error (MSE) (Passban
et al., 2021; Sun et al., 2019) can be applied for our
RAIL-KD approach.

3.3 Training Loss

The intermediate representation distillation loss
LRAIL-KD is combined with the original KD loss
LKD, which is used to distill the knowledge from
the output logits of the teacher model T to the out-
put logits of the student model Sθ, and the original
cross-entropy loss LCE. The total loss function for
training the student model is:

L = λ1LCE + λ2LKD + λ3LRAIL-KDl/c (4)

1392

where λ1, λ2, and λ3 are hyper-parameters of our
model to minimize the total loss, and λ1 + λ2 +
λ3 = 1.

4 Experimental Protocol

4.1 Datasets and Evaluation

We evaluate RAIL-KD on 8 tasks from the GLUE
benchmark (Wang et al., 2018): 2 single-sentence
(CoLA and SST-2) and 5 sentence-pair (MRPC,
RTE, QQP, QNLI, and MNLI) classification tasks,
and 1 regression task (STS-B). Following prior
works (Sun et al., 2019; Passban et al., 2021; Jiao
et al., 2019; Sun et al., 2020a), we use the same
metrics as the GLUE benchmark for evaluation.
Moreover, to further show the generalization capa-
bility of our RAIL-KD method on out-of-domain
(OOD) across tasks, we use Scitail (Khot et al.,
2018), PAWS (Paraphrase Adversaries from Word
Scrambling) (Zhang et al., 2019), and IMDb (Inter-
net Movie Database) (Maas et al., 2011) test sets
to evaluate the models fine-tuned on MNLI, QQP,
and SST-2 tasks respectively.

4.2 Implementation Details

We run extensive experiments on 3 different teach-
ers in order to ensure a fair comparison with a wide
range of prior works, and also to show the effective-
ness of RAIL-KD. We experiment with the 12-layer
BERT-base-uncased (Devlin et al., 2019) model as
teacher (BERT12) and the 6-layer DistilBERT (Sanh
et al., 2019a) as student (DistillBERT6) to compare
with PKD (Sun et al., 2019) and ALP-KD (Pass-
ban et al., 2021). Also, we consider 24-layer
RoBERTa-large (Liu et al., 2020) and 6-layer Dis-
tilRoberta (Sanh et al., 2019b) as the backbone for
teacher (RoBERTa24) and student (DistilRoberta6)
respectively to compare results when n >> m.
Furthermore, we perform evaluation using the 12
layers RoBERTa-base (RoBERTa12) model as a
teacher to be able to directly compare our figures
with the ones of CoDIR.

We re-implement PKD (Sun et al., 2019) and
ALP-KD (Passban et al., 2021) approaches using
the default settings proposed in the respective pa-
pers. We used early stopping based on performance
on the development set, while making sure that the
figures are in line with the ones reported in the
papers. More precisely, the best layer setting for
PKD teacher BERT12 is {2, 4, 6, 8, 10} to distill
into DistilBERT6. For DistilRoBERTa6, we choose
the intermediate layers 4, 8, 12, 16, 20 from the

teacher RoBERTa24 model for distillation that we
found to work the best on the development set.

Using ALP-KD, we compute attention weights
for the intermediate layers of the teacher (i.e., 1 to
11 for BERT12 and 1 to 23 for RoBERTa24 models)
to calculate the weighted intermediate representa-
tions of the teacher for each intermediate layer of
the student model (i.e., 1 to 5 layers of the stu-
dent models). Since, the hidden dimensions of
the RoBERTa24 and DistilRoBERTa6 are differ-
ent, we linearly transform them into same lower-
dimensional space. We train the PKD and ALP-KD
models following (Sun et al., 2019; Passban et al.,
2021).

For RAIL-KDl, at each epoch we randomly se-
lect 5 layers from the intermediate layers of the
teacher (i.e., from layers 1 to 11 for BERT12 model
and 1 to 23 for RoBERTa24 model). Then, we sort
the layer indexes and perform layer-wise distilla-
tion (Figure 1(a)) for RAIL-KDl. For RAIL-KDc,
we concatenated the representations of the sorted
randomly selected intermediate layers and then per-
form concatenated representation distillation (Fig-
ure 1(b)).

We use a linear transformation to map the in-
termediate representations (layer-wise or concate-
nated representations) into 128-dimensional space
(u = 128) and normalize them before comput-
ing the loss LRAIL-KDl/c for both BERT12 and
RoBERTa24 distillations. We fixed αi = 1,
λ1, λ2, λ3 = 1/3 for our proposed approaches 4.
We search learning rate from {1e-5, 2e-5, 5e-5, 4e-
6}, batch size from {8, 16, 32}, and fixed the epoch
number to 40 for all the experiments. we run all
experiments 5 times and report average score, in or-
der to validate the credibility of our results. We ran
all the experiments on a single NVIDIA V100 GPU
using mixed-precision training (Micikevicius et al.,
2018) and PyTorch (Paszke et al., 2019) frame-
work.

5 Results

Table 2 shows the performances of models trained
on GLUE tasks, and evaluated on their respective
DEV and TEST sets for 12-layer to 6-layer distilla-
tion. BERT12 and DistilBERT6 are used as back-
bone for the teacher and student models respec-
tively. The baselines are fine-tuned without KD
(w/o KD) and with Vanilla KD. Moreover, we di-

4We didn’t find a significant improvement when changing
these values.

1393

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

DEV

Teacher 61.3 93.0 90.6 88.4 91.0 84.7 91.5 68.2 83.7
w/o KD 53.3 90.1 90.0 86.5 90.4 82.3 89.1 61.7 80.4
Vanilla KD 55.8 90.3 90.3 86.6 90.5 82.7 89.6 68.5 81.9
PKD 56.1 91.3 90.7 87.4 91.2 83.3 90.2 69.3 82.5
ALP-KD 56.8 90.8 90.6 87.5 91.0 83.4 90.2 70.4 82.7
RAIL-KDl 58.8 92.8 91.0 87.8 91.2 83.5 90.3 70.4 83.2
RAIL-KDc 57.2 91.9 90.8 87.9 91.4 83.5 90.1 72.2 83.2

TEST

Teacher 52.0 92.9 87.8 82.3 88.9 84.3 90.7 66.0 81.0
w/o KD 50.7 91.7 87.2 80.4 88.3 81.4 88.4 57.6 78.6
Vanilla KD 50.9 91.0 87.7 81.0 88.5 82.2 88.7 60.6 79.2
PKD 50.6 92.0 87.2 81.7 89.1 82.7 89.0 60.6 79.5
ALP-KD 50.2 90.8 87.6 81.9 89.0 82.7 88.9 61.8 79.5
RAIL-KDl 51.3 92.3 87.9 82.1 89.2 82.6 89.0 60.8 79.7
RAIL-KDc 50.6 92.5 88.2 81.4 88.9 82.8 89.3 61.3 79.8

Table 2: DEV and TEST performances on GLUE benchmark when BERT12 and DistillBERT6 are used as backbone
for the teacher and students variants respectively. Bold mark describes the best results.

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

DEV

Teacher 68.1 96.4 91.9 92.3 91.5 90.1 94.6 86.3 88.9
PKD 62.3 91.6 90.9 88.9 91.6 84.4 91.1 71.1 84.0
ALP-KD 62.7 91.7 91.1 89.1 91.4 84.3 90.8 71.1 84.0
RAIL-KDl 65.4 93.8 90.1 89.4 91.9 84.8 92.0 72.9 85.1
RAIL-KDc 65.3 93.7 91.4 89.4 92.0 84.8 92.0 72.9 85.2

TEST

Teacher 68.1 96.4 91.9 92.3 91.5 90.2 94.6 86.3 85.3
PKD 50.2 89.4 88.9 84.5 92.3 84.0 90.2 62.7 80.3
ALP-KD 53.6 89.6 89.2 84.6 92.8 83.6 90.4 64.4 81.0
RAIL-KDl 53.4 89.5 88.9 84.8 93.6 84.5 91.1 63.5 81.2
RAIL-KDc 53.6 89.6 89.6 84.8 93.4 83.9 91.6 63.8 81.3

Table 3: DEV and TEST performances on GLUE benchmark when RoBERTa24 and DistillRoberta6 are used as
backbone for the teacher and student variants respectively. Bold mark describes the best results.

Model CoLA SST-2 MRPC QQP MNLI QNLI RTE Avg.

RoBERTa12 62.0 95.3 90.1 89.4 87.2 93.2 72.7 84.6

CoDIR 53.6 93.6 89.4 89.1 83.2 90.4 65.6 81.0
RAIL-KDc 54.2 93.6 88.4 89.5 83.9 91.7 64.5 81.2

Table 4: GLUE test results of RAIL-KDc when using Roberta12 and DistilRoBERTa6 as backbone for teacher and
students. Results of CoDIR are directly copied from their paper (Sun et al., 2020a).

1394

rectly compare RAIL-KDlc results with PKD and
ALP-KD as more competing techniques.

First, we observe that the performance gap be-
tween ILD methods and vanilla-KD is tight (0.8%
and 0.3% on DEV and TEST sets respectively).
Moreover, as we expect, ALP-KD performs bet-
ter on DEV and similar on TEST compared to PKD
with 0.2% improvement on the DEV results. Sec-
ond, results show that RAIL-KD outperforms the
best ILD methods by a margin of 0.5% and 0.3%
on average on DEV and TEST sets respectively. We
notice that, except on RTE TEST, our RAIL-KD
variants obtained the highest per-task performances.
Third, we observe that RAIL-KD variants perform
very similarly, which indicates that our method
is effective on concatenated as well as layer-wise
distillation.

Similar trends are seen on the 24- to 6-layer
model compression experiments, which are re-
ported in Table 3. In this experiment, we used
Roberta24 and DistillRoberta6 as teacher and stu-
dents models respectively. Overall, RAIL-KD out-
performs the best baseline by 1.2% and 0.3% on
DEV and TEST sets respectively. Interestingly, the
gap on DEV compared with PKD and ALP-KD
is larger than the one reported on BERT12 exper-
iments, and PKD TEST socres are much lower
from that of ALP and RAIL-KD. This might be
because PKD skips a large number of intermediate
layers on RoBERTa24, and the computational cost
of ALP-KD attention weights over a large number
of teacher layers might produce smaller weights on
Roberta24 compared to BERT12.

Furthermore, we demonstrate the effective-
ness of RAIL-KD by directly comparing it with
CoDIR (Sun et al., 2020a), the current state-of-
the-art ILD method. It uses the contrastive objec-
tive and a memory bank to extract a large num-
ber of negative samples for contrastive loss cal-
culations. Table 4 shows GLUE test results of
both approaches when distilling RoBERTa12 to
DistillRoberta6. CoDIR results are adopted from
their paper, and we followed their experimental
protocol by not reporting scores on STS-B. On
average, RAIL-KD performs on par with CoDIR
(+0.2%) and outperforms it on 5 out of 8 datasets,
while being almost two-times faster as shown in
the next section.

5.1 Training Speed-up

Table 5 shows the training time speed up against
the teacher of different techniques on 8 GLUE
tasks. We measured the speed up by calculating
the student_train_time/teacher_train_time
using RoBERTa24 and DistilRoBERTa6 as back-
bone for teacher and student respectively. We used
this configuration because CoDIR pretrained stu-
dent models are not available and we can only run
CoDIR code out-of-the-box.

Model Teacher PKD ALP CoDIR RAILl RAILc

Speed-up 1.00× 1.89× 1.75× 1× 1.89× 1.96×

Table 5: Training time speedup against the teacher for
different techniques using the same setting of Table 4.

Our results indicate that random layer mapping
not only delivers consistently better results than
the deterministic mapping technique such as PKD,
but it has less computational overhead during train-
ing (two-times faster than CoDIR), while avoiding
extensive search experiments to find an optimal
mapping. Furthermore, using attention for layer se-
lection (ALP-KD) or contrastive learning (CoDIR)
leads to slightly worse performance result than ran-
dom selection.

5.2 Impact of Random Layer Selection

To evaluate the impact of random layer selection on
the performance of RAIL-KD, we report the stan-
dard deviation of the DistilBERT6 student models
(Table 2 models) on the 8 GLUE tasks. As Table 6
shows, the variances of RAIL-KD is in the same
range for each task, for instance, RAIL-KD vari-
ance is at the same scale compared with PKD and
ALP-KD on CoLA and MRPC, and even lower on
RTE. This indicates that the gains of RAIL-KD
are significant, and are not due to chance in our
random selection of layers to distill.

5.3 Out-of-Distribution Test

We further validate the generalization ability
of student models by measuring their robust-
ness to in-domain and out-of-domain evalua-
tion. We do so by evaluating models fine-
tuned on MLI, QQP and SST-2 and then evalu-
ated on SciTail, PAWS, and IMDB respectively.
These datasets contains counterexamples to bi-
ases found in the training data (McCoy et al.,
2019; Schuster et al., 2019; Clark et al., 2019).
Performances of BERT12/Roberta24 teacher and

1395

Figure 2: Cosine similarity between the intermediate layer representations of the BERT12 teacher and DistillBERT6

student models computed on the SST-2 dataset.

Figure 3: Distribution of attention weights learned by DistilBERT6 ALP-KD on CoLA (left), RTE (middle), and
MRPC (right). x-axis and y-axis are the teacher and student layer index respectively.

CoLA SST-2 MRPC STS-B

PKD ±0.14 ±0.54 ±0.24 ±0.64
ALP-KD ±0.95 ±0.33 ±0.70 ±0.93
RAIL-KDl ±0.49 ±0.29 ±0.25 ±0.50
RAIL-KDc ±0.51 ±0.34 ±0.40 ±0.81

QQP MNLI QNLI RTE

PKD ±0.53 ±0.33 ±0.49 ±1.50
ALP-KD ±0.27 ±0.41 ±0.30 ±1.30
RAIL-KDl ±0.64 ±0.27 ±0.65 ±0.40
RAIL-KDc ±0.14 ±0.32 ±0.25 ±0.23

Table 6: Standards deviation (5 runs) of DistilBERT6

ILD models on 8 GLUE tasks.

DistilBERT6/DistilRoBERTa6 student variants are
reported in Table 7. Also, we compute the un-
weighted average score of the three tasks.

First, we notice high variability in models rank
and some inconsistencies in performances across
tasks when compared with in-domain results. This
was also reported in prior works on out-of-domain
training and evaluation (Clark et al., 2019; Ma-
habadi et al., 2020; Utama et al., 2020; Sanh et al.,
2020). Still, RAIL-KD clearly outperforms all
baselines across tasks. Surprisingly, we observe
that PKD and ALP-KD perform poorly (on all three
tasks) compared to the Vanilla KD baseline.

Interestingly, we observe that RAIL-KDl per-
forms consistently better (1.1% on average) than

Model SciTail PAWS IMDB Avg.

Teacher 70.3/82.7 43.3/43.3 84.6/88.9 66.0/71.6
w/o KD 68.7/74.9 36.5/34.7 81.3/85.8 62.2/65.1
Vanilla KD 68.6/76.1 42.2/36.6 82.0/86.1 64.3/66.3
PKD 68.0/74.8 39.9/36.5 80.9/85.4 62.9/65.6
ALP-KD 66.9/74.7 40.7/35.7 78.7/82.8 62.1/64.4
RAIL-KDl 68.6/76.6 39.0/36.9 83.2/87.3 63.6/67.0
RAIL-KDc 68.7/75.6 43.7/36.2 85.0/85.9 65.8/65.9

Table 7: Out-of-domain performances of models
trained on MNLI, QQP, SST-2 and evaluated on SciTail,
PAWS, and IMDB respectively. BERT12/Roberta24 and
DistilBERT6/DistilRoBERTa6 are used as backbone
for the teacher and students respectively. For each set-
ting, we report the unweighted average score on the 3
tasks.

RAIL-KDc on Roberta24 compression, while
RAIL-KDc performs better (1.1% on average) on
BERT12. These results suggest that layer-wise dis-
tillation approach is more effective than concate-
nated distillation when we have a large capacity
gap (layer number) between the teacher and the
student, and vice versa.

6 Analysis

We run extensive analysis to better understand
why RAIL-KD performs better than the other base-
lines. We visualize the layer-wise cosine similarity
between the intermediate representations of the

1396

teacher and the student networks. Figure 2 shows
the cosine similarity score between three interme-
diate layer representations of BERT12 teacher (i.e.
layers 2, 4 and 6) and the first three layer represen-
tations of the student for PKD, ALP-KD, RAIL-
KDl/c students on 100 samples randomly selected
from the SST-2 dataset. Due to space constraints,
we only plot the scores for the first three layers of
the student model. Similar trends are seen from the
other layers.

We found that RAIL-KD allows the student to
mimic teacher layers similar to PKD and much bet-
ter than ALP-KD, despite that the mapping scheme
varies at each epoch. Moreover, we observe that
ALP-KD results have less similarity scores in the
upper intermediate layers. PKD gives lower sim-
ilarity scores in the lower layers while improving
in the upper layers. In contrast, our approach gives
more stable similarity scores for all layers while
getting closer to the teacher representation in the
upper layers.

We further investigate the attention weights
learned by ALP-KD, and find out that they mostly
focus on few layers (sparse attention). Figure 3 il-
lustrates the distribution of weights, averaged on all
training samples of DistilBERT6 ALP-KD studnet
on CoLA (left), RTE (middle), and MRPC (right) 5.
The figure clearly shows (light colors) that most
of ALP weights are concentrated on top layers of
the teacher. For instance, layers 1,2,5 of the three
students mostly attend to the last layer of BERT12.
This is an indicator that ALP-KD overfits to the
information driven from last layers. In contrast,
the randomness in layer selection of RAIL-KD en-
sures a uniform focus on teacher layers. This may
explain the poor performance of ALP-KD on out-
of-domain evaluation compared with RAIL-KD.

From Figure 3, we see clearly that ALP-KD
mostly prefers the upper layers of the teacher. On
the other hand, the deterministic nature of PDK
allows it to match better particular layers of the
teacher (e.g. bottom ones as shown in Figure 2),
but PKD never sees the layers that are skipped
by the mapping. Consequently, it is expected that
even though PDK can mimic bottom layers well,
it is worse overall because it completely ignores
some layers of the teacher. Random layer selection
allow RAIL-KD to mimic all teacher layers while
delivering high performances.

5Similar trends found on other datasets.

7 Conclusion and Future Work

We introduced a novel, simple, and efficient in-
termediate layer KD approach that outperforms
the conventional approaches with performance im-
provement and efficient training time. RAIL-KD
selects random intermediate layers from the teacher
which equals to the number of intermediate layers
of the student model. The selected intermediate
layers are then sorted to distill their representations
into the student model. RAIL-KD yields better reg-
ularization, which helps performance. Furthermore,
our approach shows better performance for larger
model distillation with faster training time, which
opens up an avenue to investigate our approach for
super-large models.

Acknowledgments

We thank Mindspore6 for the partial support of
this work, which is a new deep learning computing
framework. We thank the anonymous reviewers for
their insightful comments.

References

Cristian Buciluǎ, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, pages 535–541.

Christopher Clark, Mark Yatskar, and Luke Zettle-
moyer. 2019. Don’t take the easy way out: En-
semble based methods for avoiding known dataset
biases. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4060–4073.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. https://arxiv.org/abs/1810.04805.

Angela Fan, Edouard Grave, and Armand Joulin. 2019.
Reducing transformer depth on demand with struc-
tured dropout. arXiv preprint arXiv:1909.11556.

Jie Fu, Xue Geng, Zhijian Duan, Bohan Zhuang,
Xingdi Yuan, Adam Trischler, Jie Lin, Chris Pal,
and Hao Dong. 2020. Role-wise data augmen-
tation for knowledge distillation. arXiv preprint
arXiv:2004.08861.

6https://www.mindspore.cn/

1397

https://www.mindspore.cn/

Mitchell A Gordon, Kevin Duh, , and Nicholas An-
drews. 2020. Compressing bert: Studying the ef-
fects of weight pruning on transfer learning. arXiv
preprint arXiv:2002.08307.

Fu-Ming Guo, Sijia Liu, Finlay S Mungall, Xue Lin,
and Yanzhi Wang. 2019. Reweighted proximal prun-
ing for large-scale language representation. arXiv
preprint arXiv:1909.12486.

Xuanli He, Islam Nassar, Jamie Kiros, Gholamreza
Haffari, and Mohammad Norouzi. 2021. Generate,
annotate, and learn: Generative models advance self-
training and knowledge distillation. arXiv preprint
arXiv:2106.06168.

Geoffrey Hinton, Oriol Vinyals, and Jeff. Dean. 2014.
Distilling the knowledge in a neural network. NIPS
Workshop, https://arxiv.org/abs/1503.02531.

Aref Jafari, Mehdi Rezagholizadeh, Pranav Sharma,
and Ali Ghodsi. 2021. Annealing knowledge distil-
lation. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 2493–2504,
Online. Association for Computational Linguistics.

Mingi Ji, Byeongho Heo, and Sungrae Park. 2021.
Show, attend and distill: Knowledge distillation via
attention-based feature matching. In Proceedings of
the AAAI Conference on Artificial Intelligence.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Ehsan Kamalloo, Mehdi Rezagholizadeh, and Ali
Ghodsi. 2022. When chosen wisely, more data
is what you need: A universal sample-efficient
strategy for data augmentation. arXiv preprint
arXiv:2203.09391.

Ehsan Kamalloo, Mehdi Rezagholizadeh, Peyman
Passban, and Ali Ghodsi. 2021. Not far away,
not so close: Sample efficient nearest neighbour
data augmentation via minimax. arXiv preprint
arXiv:2105.13608.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In AAAI.

Krtin Kumar, Peyman Passban, Mehdi Rezagholizadeh,
Yiusing Lau, and Qun Liu. 2022. From fully trained
to fully random embeddings: Improving neural ma-
chine translation with compact word embedding ta-
bles.

Tianda Li, Ahmad Rashid, Aref Jafari, Pranav Sharma,
Ali Ghodsi, and Mehdi Rezagholizadeh. 2021. How
to select one among all? an extensive empirical
study towards the robustness of knowledge distilla-
tion in natural language understanding.

Vasileios Lioutas, Ahmad Rashid, Krtin Kumar,
Md Akmal Haidar, and Mehdi Rezagholizadeh.
2020. Improving word embedding factorization for
compression using distilled nonlinear neural decom-
position. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 2774–2784.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Roberta: A robustly optimized fbertg pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Hou Lu, Huang Zhiqi, Shang Lifeng, Jiang Xin, Chen
Xiao, and Liu Qun. 2020. Dynabert: Dynamic
bert with adaptive width and depth. arXiv preprint
arXiv:2004.04037.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In ACL.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and
James Henderson. 2020. End-to-end bias mitiga-
tion by modelling biases in corpora. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8706–8716. Asso-
ciation for Computational Linguistics.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the Wrong Reasons: Diagnosing Syntactic
Heuristics in Natural Language Inference. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3428–
3448.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? in neurips.
In NeurIPS.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory Diamos, Erich Elsen, David Garcia, Boris
Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2018. Mixed pre-
cision training. In In International Conference on
Learning Representations.

Peyman Passban, Yimeng Wu, Mehdi Rezagholizadeh,
and Qun Liu. 2021. ALP-KD: attention-based layer
projection for knowledge distillation. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pages 13657–13665. AAAI
Press.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances

1398

https://aclanthology.org/2021.eacl-main.212
https://aclanthology.org/2021.eacl-main.212
http://arxiv.org/abs/2109.05696
http://arxiv.org/abs/2109.05696
http://arxiv.org/abs/2109.05696
http://arxiv.org/abs/2109.05696
https://ojs.aaai.org/index.php/AAAI/article/view/17610
https://ojs.aaai.org/index.php/AAAI/article/view/17610

in neural information processing systems, 32:8026–
8037.

Gabriele Prato, Ella Charlaix, and Mehdi Reza-
gholizadeh. 2020. Fully quantized transformer for
machine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1–14.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask
learners. https://cdn.openai.com/
better-language-models/language_
models_are_unsupervised_multitask_
learners.pdf.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789.

Ahmad Rashid, Vasileios Lioutas, Abbas Ghaddar, and
Mehdi Rezagholizadeh. 2020. Towards zero-shot
knowledge distillation for natural language process-
ing. arXiv preprint arXiv:2012.15495.

Ahmad Rashid, Vasileios Lioutas, and Mehdi Reza-
gholizadeh. 2021. Mate-kd: Masked adversarial
text, a companion to knowledge distillation. arXiv
preprint arXiv:2105.05912.

Mehdi Rezagholizadeh, Aref Jafari, Puneeth Salad,
Pranav Sharma, Ali Saheb Pasand, and Ali Ghodsi.
2021. Pro-kd: Progressive distillation by follow-
ing the footsteps of the teacher. arXiv preprint
arXiv:2110.08532.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019a. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Victor Sanh, Lysandre Debut, Julien Chaumond,
and Thomas Wolf. 2019b. Distilroberta, a dis-
tilled version of roberta: smaller, faster, cheaper
and lighter. https://huggingface.co/
distilroberta-base.

Victor Sanh, Thomas Wolf, Yonatan Belinkov, and
Alexander M Rush. 2020. Learning from others’
mistakes: Avoiding dataset biases without modeling
them. arXiv preprint arXiv:2012.01300.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel
Roberto Filizzola Ortiz, Enrico Santus, and Regina
Barzilay. 2019. Towards debiasing fact verification
models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3410–3416.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. 2019. Q-bert: Hessian based ultra
low precision quantization of bert. arXiv preprint
arXiv:1909.05840.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for bert model com-
pression. https://arxiv.org/abs/1908.09355.

Siqi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang
Wang, and Jingjing Liu. 2020a. Contrastive distil-
lation on intermediate representations for language
model compression. In EMNLP.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020b. Mobilebert:
a compact task-agnostic bert for resource-limited de-
vices. arXiv preprint arXiv:2004.02984.

Marzieh S Tahaei, Ella Charlaix, Vahid Partovi Nia,
Ali Ghodsi, and Mehdi Rezagholizadeh. 2021. Kro-
neckerbert: Learning kronecker decomposition for
pre-trained language models via knowledge distilla-
tion. arXiv preprint arXiv:2109.06243.

Yonglong Tian, Dilip Krishnan, and Phillip Isola.
2019. Contrastive representation distillation. arXiv
preprint arXiv:1910.10699.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna
Gurevych. 2020. Towards debiasing nlu models
from unknown biases. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 7597–7610.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. Advances in Neural Informa-
tion Processing Systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong,
and Furu Wei. 2020a. Minilmv2: Multi-
head self-attention relation distillation for com-
pressing pretrained transformers. arXiv preprint
arXiv:2012.15828.

1399

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://huggingface.co/distilroberta-base
https://huggingface.co/distilroberta-base

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020b. Minilm: Deep
self-attention distillation for task-agnostic compres-
sion of pre-trained transformers. arXiv preprint
arXiv:2002.10957.

Yimeng Wu, Peyman Passban, Mehdi Rezagholizadeh,
and Qun Liu. 2020a. Why skip if you can combine:
A simple knowledge distillation technique for inter-
mediate layers. https://arxiv.org/abs/2010.03034.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song
Han. 2020b. Lite transformer with long-short range
attention. arXiv preprint arXiv:2004.11886.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In NeuRIPS.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert.
arXiv preprint arXiv:1910.06188.

George-Eduard Zaharia, Andrei-Marius Avram,
Dumitru-Clementin Cercel, and Traian Rebedea.
2021. Dialect identification through adversarial
learning and knowledge distillation on romanian
BERT. In Proceedings of the Eighth Workshop
on NLP for Similar Languages, Varieties and
Dialects, VarDial@EACL 2021, Kiyv, Ukraine,
April 20, 2021, pages 113–119. Association for
Computational Linguistics.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
Paws: Paraphrase adversaries from word scrambling.
arXiv preprint arXiv:1904.01130.

1400

https://aclanthology.org/2021.vardial-1.13/
https://aclanthology.org/2021.vardial-1.13/
https://aclanthology.org/2021.vardial-1.13/

