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Abstract

Causal transformer language models (LMs),
such as GPT-3, typically require some form
of positional encoding, such as positional em-
beddings. However, we show that LMs with-
out any explicit positional encoding are still
competitive with standard models, and that this
phenomenon is robust across different datasets,
model sizes, and sequence lengths. Probing
experiments reveal that such models acquire an
implicit notion of absolute positions throughout
the network, effectively compensating for the
missing information. We conjecture that causal
attention enables the model to infer the num-
ber of predecessors that each token can attend
to, thereby approximating its absolute position.
Our findings indicate that causal LMs might
derive positional awareness not only from the
explicit positioning mechanism, but also from
the effects of the causal mask.

1 Introduction

The attention mechanism (Bahdanau et al., 2015)
of the transformer (Vaswani et al., 2017) is agnos-
tic to the position and order of tokens in the input
sequence. It is therefore common practice to in-
ject positional information via absolute positional
embeddings (Vaswani et al., 2017; Radford et al.,
2018) or relative bias factors (Shaw et al., 2018;
Raffel et al., 2020; Press et al., 2022). Here, we
demonstrate that transformer language models with-
out any explicit positional information can and do
learn an implicit notion of absolute positions that
is sufficient to achieve competitive performance.
We compare the performance of language mod-
els trained with no explicit positional informa-
tion (NoPos language models) to those trained
with three different position-aware mechanisms,
namely: sinusoidal embeddings (Vaswani et al.,
2017), learned embeddings (Gehring et al., 2017),
and ALiBi (Press et al., 2022). Results show that
NoPos models are competitive with position-aware
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Figure 1: Transformer language models trained without
explicitly encoding positional information (NoPos) ap-
proach the performance of models trained with various
positional encoding methods. All models have 1.3B
parameters, and are trained on an excerpt of the Pile.

models consistently across datasets, model sizes,
and input sequence lengths (e.g., Figure 1).

To shed light on our findings, we probe into
the position-awareness of NoPos language models,
compared to models that use relative or absolute
position mechanisms. Specifically, we train classi-
fiers to predict the position of a token given its rep-
resentation across different layers in the network.
Our probes reveal that the NoPos model achieves
similar mean absolute distance between the pre-
dicted and the expected positions, as a model with
learned absolute position embeddings.

We hypothesize that this surprising behavior is
tied to the causal attention mask, which implicitly
injects positional information into the self-attention
layer in order to preserve the autoregressive nature
of language models. Intuitively, a model that is
able to count the predecessors of a given token
can essentially infer its absolute position. To test
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our hypothesis, we run similar experiments for
masked language models (MLM) (Devlin et al.,
2019), which use order-invariant attention (since
no causal mask is applied). Indeed, bidirectional
models fail to converge when position information
is absent, substantiating our hypothesis. To con-
clude, our main contributions are:

* We demonstrate the robustness of the NoPos
model (compared to position-aware models)
with respect to model size, dataset and se-
quence length.

* We provide an analysis of the trained NoPos
model, and show that it encoded absolute po-
sitions.

¢ We show that the success of NoPos models is
unique to causal language models.

2 Positional Encodings

Transformer models consist of interleaved self-
attention and feed-forward layers, which are both
order-invariant. Therefore, to convey the order of
the input tokens, some form of positional informa-
tion is explicitly introduced into the model. Abso-
lute positions are commonly encoded as vectors
(one for each position), which are then added to
the input tokens’ embeddings and fed to the first
layer of the transformer. Relative positions are typ-
ically encoded as biases (added to attention scores)
within the self-attention layers. In this work, we
consider three popular methods as baselines:

Learned. Embeddings trained to represent abso-
lute positions (Sukhbaatar et al., 2015; Gehring
et al., 2017). Learned positional embeddings are
commonly used in MLMs (Devlin et al., 2019; Liu
etal., 2019) as well as in large autoregressive lan-
guage models, such as GPT-3 (Brown et al., 2020).

Sinusoidal. Constant vectors computed by a non-
parametric function of the input token’s absolute
position. Sine and cosine functions of different
frequencies are used, such that each dimension
of the positional encoding corresponds to a sinu-
soid. Sinusoidal embeddings were introduced in
Vaswani et al. (2017) for machine translation, and
are also used in language modeling (Baevski and
Auli, 2019).

ALiBi. Attention with LInear Blases (Press et al.,
2022) injects information about the relative dis-
tances between tokens by adding negative biases

to attention scores, which grow linearly with the
distance between each pair of tokens.

3 Experiment Setup

Intuitively, encoding positional information explic-
itly is crucial for enabling transformer language
models to predict the next token in a sequence. To
test this intuition, we compared the validation set
perplexity of models trained from scratch with no
explicit positional information (denoted as NoPos)
to those trained with the various positional encod-
ing methods discussed in Section 2. We investi-
gated the canonical WikiText-103 setting (Merity
et al., 2017; Baevski and Auli, 2019), as well as a
newer, large-scale setting based on the Pile corpus
(Gao et al., 2020) on model architectures inspired
by Brown et al. (2020), where we cover a spectrum
of models sizes and sequence lengths.

The Canonical Setting (WikiText-103). The
WikiText-103 corpus (Merity et al., 2017) consists
of over 100 million words extracted from a set
of high-quality Wikipedia articles. The corpus is
tokenized at the word level, resulting in a vocab-
ulary of over 267K tokens. For this corpus, we
used the adaptive embedding transformer model of
Baevski and Auli (2019), which contains 16 trans-
former layers with 1024 model dimensions, 4096
feed-forward dimensions, and 8 attention heads.
Overall, this model has 247M parameters in total.
We trained with their exact optimization hyperpa-
rameters, as implemented in fairseq (Ott et al.,
2019), with the exception of the input sequence
length, which was shortened to 512 tokens (instead
of 3072), as in Press et al. (2022). See App. C for
detailed hyperparameters.

The Large-Scale Setting (The Pile). The Pile
(Gao et al., 2020) is an 800GB English text dataset
composed of Common Crawl and 22 other diverse
sources. For our experiments, we used 2 out of
30 shards;! of these, we filtered out the GitHub
and DM Mathematics sources and removed the
shortest 1% and longest 1% of examples from each
source to reduce noise. We used GPT-2’s tokenizer
(Radford et al., 2019) to convert the text into token
sequences over a vocabulary of 50K tokens. We
randomly sampled a validation set of 2000 doc-
uments (2.6M tokens) from the corpus, while the
remaining 15M documents (21B tokens) comprised

'Shards 00 and 01 can be downloaded from: https://
the-eye.eu/public/Al/pile/train/
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WikiText-103  The Pile
NoPos 20.97 13.10
Learned 20.42 13.05
Sinusoidal 20.16 12.93
ALIiBi 19.71 12.51

Table 1: Validation set perplexity of transformer lan-
guage models trained with various positional encoding
methods. The WikiText-103 setting (Merity et al., 2017)
uses the model of Baevski and Auli (2019) on sequences
of 512 tokens, while the Pile settings (Gao et al., 2020)
uses a more recent 1.3B parameter architecture (Brown
et al., 2020) over 1024 token sequences.

the training set. The baseline model in this setting
follows the 1.3B parameter architecture of Brown
et al. (2020), also known as GPT-3 XL: 24 trans-
former layers with 2048 model dimensions, 8192
feed-forward dimensions, and 32 attention heads.
The default input sequence length is 1024 tokens.
We refer to App.C for detailed hyperparameters.

To demonstrate the consistency of our results
in different settings, we perform two scaling ex-
periments. We first scale the model size by ex-
perimenting with the small (125M parameters),
medium (350M parameters), large (760M parame-
ters) and the XL (1.3B parameters) variants of the
Brown et al. (2020) architecture on the Pile set-
tings. In addition, we evaluate the effect of varying
the sequence length using the XL (1.3B parameter)
model. Specifically, we experiment with sequences
of lengths {256, 512, 1024, 2048}.

Last, to shed additional light on differences be-
tween the NoPos model to other methods, we com-
pare the model’s performance on different parts of
the sequence. Details of this analysis and results
are given in App. A.

4 Results

Table 1 compares the performance of training LMs
with different position encoding methods. We ob-
serve that NoPos LMs approach the performance of
the other models, with gaps of 0.55 (WikiText-103)
and 0.05 (the Pile) perplexity from models with
learned positional embeddings. In the Pile setting,
performance differences between NoPos, Learned,
and Sinusoidal are small both in absolute terms
and with respect to their difference with ALiBi. In
the WikiText-103 setting, performance gaps are
wider but still modest with respect to random seed

variance.” These results strongly suggest that train-
ing transformer language models without explicit
positional encoding is indeed possible.

Table 2 explores the effects of scaling the num-
ber of parameters in the Pile setting. While smaller
models benefit from fixed, non-parametric posi-
tional encodings (Sinusoidal and ALiBi), these per-
formance gaps narrow in larger models. Table 3
shows the effect of varying the sequence length
in the same setting. In this experiment, the gaps
between NoPos, Learned, and Sinusoidal remain
almost constant, while the benefit of using ALiBi
increases as sequences become longer. Overall, we
show that transformer language modeling without
explicit positional encoding is robust to the selec-
tion of corpus, model size, and sequence length.

As training models at the 1.3B parameter scale is
resource-intensive, we publicly release our trained
models for future research and analysis.’

Model Size 125M 350M 760M 1.3B
NoPos 22.15 1687 1429 13.10
Learned 22.04 16.84 1421 13.05
Sinusoidal 2149 1658 14.04 12.93
ALIiBi 1994 1566 1353 1251

Table 2: Validation set perplexity on the Pile, as a func-
tion of positional encoding method and model size. All
models operate on sequences of 1024 tokens. Smaller
models benefit from fixed, non-parametric positional en-
codings (Sinusoidal and ALiBi), but these performance
gaps diminish as the models scale up.

SeqLength 256 512 1024 2048
NoPos 1498 13.82 1310 12.87
Learned 1494 1377 1305 12.72
Sinusoidal  14.84 13.66 1293 12.62
ALiBi 1465 1337 1251 12.06

Table 3: Validation set perplexity on the Pile, as a func-
tion of positional encoding method and sequence length.
All models have 1.3B parameters. The performance dif-
ferences between NoPos, Learned, and Sinusoidal are
consistently small, while ALiBi slowly becomes more
beneficial as sequences become longer.

In a Concurrent work, Scao et al. (2022) makes
a similar observation in one of their ablation exper-
iments and further show that NoPos models gain

For context, Press et al. (2020) report that training the
sinusoidal model with inputs of length 3072 on WikiText-103
with 5 different seeds can result in gaps of up to 0.9 perplexity
between runs (0.34 standard deviation).

3https://github.com/adihaviv/NoPos
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Figure 2: Through probing, we find that the NoPos
model behaves similarly to models that use absolute
learned position embeddings. We evaluated perfor-
mance using mean absolute distance on 1.3B parameter
models trained on the Pile.

competitive performances for downstream tasks as
well. Specifically, they evaluated 27 diverse down-
stream tasks. They showed that the NoPos model
reached an average accuracy of 41.23% over all
tasks, comparing to Learned and ALiBi who gained
41.72% and 43.70% respectively.

5 Analysis

In this section, we examine whether the NoPos
model is able to encode positional information and
show that such information is essential for its suc-
cess.

NoPos models acquire positional information
Do NoPos LMs learn some form of positional en-
coding to compensate for the absence of explicit
positional modeling? To answer this question, we
probe each layer of our trained models* for posi-
tional information. Specifically, we use the tokens’
last hidden representation after each transformer
layer, produced by the evaluated LM, and train a
2-layer feed-forward ReLU network to predict the
absolute position (0 to 1023) of each token (i.e., as
a multiclass classification problem). Notably, we
do not change the weights of the evaluated LMs
and thus, do not provide any position information

*We used the 1.3B parameter models trained over 1024-
token sequences of the Pile (Section 3).

of the tokens to the LM in this experiment, which
ensures the validity of our findings.

Each layer’s probe was trained separately (hy-
perparameters are provided in App. C). As a soft
accuracy metric, we measured the mean absolute
distance between the probe’s prediction and the
token’s actual position.

Figure 2 shows that even though NoPos model
starts, as expected, with no positional information
in the first layer (on par with a random baseline),
it becomes position-aware within four layers and
appears to contain more positional information than
ALiBi. By the middle layer, NoPos can predict
absolute positions about as well as the model with
learned positional embeddings. Finally, we observe
that all models shed off a significant amount of
positional information in the final layers, in line
with the findings of Voita et al. (2019). Overall,
the probe reveals that the NoPos models learn an
implicit notion of absolute positions.

To elucidate what positional information the No-
Pos model learns, we visualize the predictions of
the probe. We examine a sample of 100 predictions
from the validation set of the best-performing probe
trained over the NoPos model. Figure 3 shows the
predictions over the 512 token sequences sampled
randomly from the validation set and a single exam-
ple from the same set. We observe that the probe
is more accurate at the beginning of the sequence,
but becomes fuzzier as it progresses.

Positional information matters NoPos is able to
infer absolute positions, but are they necessary? We
answer this using a trained NoPos model. Instead
of computing the loss over the entire sequence, we
select a single random token, shuffle the previous
tokens that it is conditioned on, and compare to
a baseline where the prefix remains intact. We
find that in the case where the suffix is shuffled,
the average token-level loss increases dramatically
(from ~4 to ~11). Details of this experiment are
given in App. B.

This finding indicates that the NoPos model in-
deed uses the positional information it acquires, as
otherwise we would expect similar loss values in
these two settings.

6 Conjecture

How do transformers without explicit positional
encoding learn absolute positions? We conjecture
that the causal attention in autoregressive trans-
former language models allows them to predict the
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Figure 3: A visualization of the absolute position predic-
tions of a probe trained over a NoPos language model.
The blue line shows the mean of the generated predic-
tions for every target position and the blue area repre-
sents the 95%-confidence interval. The predictions for
a single random sequence are depicted as green dots.

number of attendable tokens at each position, i.e.
the number of tokens in the sequence that precede
the current one. Such a mechanism could effec-
tively encode the absolute position of each token
into its vector representation. Indeed, our analysis
(Section 5) reveals that some notion of absolute
positions exists in the hidden layers of language
models even when they are trained without explicit
positional encoding, and that this information is ac-
quired throughout the first few layers. On the other
hand, bidirectional transformer encoders (which
are used in masked language modeling, e.g. Devlin
et al. 2019) do not contain causal attention masks
or any other limitation on the attention mechanism;
thus, they should be unable to learn absolute po-
sitions without explicit positional encoding. We
tested this corollary by training a masked language
model based on ROBERTa large (Liu et al., 2019)
on the Pile (see App. C for hyperparameters). Ta-
ble 4 shows that, indeed, the NoPos model has
significantly worse perplexities than the position-
informed baselines. This result echoes the find-
ings of Sinha et al. (2021), who also observed that
MLMs without positional embeddings suffer sig-
nificant performance degradation.

7 Related Work

While there has been ample research on positional
encoding variants, there has been relatively little
prior work that investigate models’ ability to infer

MLM Perplexity

NoPos 147.18
Learned 4.06
Sinusoidal 4.07
ALIiBi 4.00

Table 4: Validation set perplexity of masked language
models (Devlin et al., 2019) trained with various po-
sitional encoding methods on an excerpt of the Pile
(Gao et al., 2020). The model architecture is based
on RoBERTa large (Liu et al., 2019), and processes
128 tokens per sequence. While position-aware models
converge to very low perplexities, training without posi-
tional encodings (NoPos) fails.

positions implicitly. Prior to our work, Irie et al.
(2019) explored transformer language models for
speech recognition and found that such models,
when trained without positional encoding, outper-
form those trained with sinusoidal embeddings. In
addition, a focused language modeling experiment
by Stella Rose Biderman® showed that the NoPos
method attains similar results to other position em-
bedding methods; however, that experiment was on
a small 350M parameter model trained on a small
character-level dataset (enwik8). Here we show
that this result holds across multiple datasets and
model sizes, provide an analysis of the model’s
internal representations, and hypothesize how this
phenomenon could occur.

8 Conclusion

We show that, contrary to popular belief, transform-
ers language models do learn positional informa-
tion even when are not provided with any explicit
positional encoding. Our experiments systemati-
cally demonstrate that this phenomenon is robust
across different language modeling settings, and
that one can approximate the absolute position of
each token from the model’s internal representa-
tions to a surprising degree. However, this phe-
nomenon does not extend to transformer encoders
trained on the MLLM objective. We conjecture that
the causal attention mechanism, which limits atten-
tion in one direction of the sequence, is responsible
for implicitly imbuing the transformer with posi-
tional information.

Shttps://twitter.com/BlancheMinerva/status/
1394089508723900422
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9 Limitations

Our work explores language models in the 125M to
1.3B parameter range. We show that as parameter
count increases the gap between the NoPos method
and the other position methods narrows. This trend
leads us to believe that our findings should hold for
even larger models, but the current biggest models
are more than one hundred times bigger (in terms
of parameters) than our 1.3B parameter models,
and so the results in that setting can be unexpected.
In addition, training models at the 1.3B parameter
scale is resource-intensive and might hinder repro-
ducibility. We therefore release our trained models.
In Addition, when comparing the perplexity of No-
Pos to other models, although the margins are very
small, NoPos is always slightly worse, suggesting
that the inductive bias of positional encoding is
indeed important.
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A NoPos Performance Across Different
Segments of the Input

To shed more light on the findings shown in sec-
tion 4, we explore whether there are parts of the
sequence that the NoPos model better predicts com-
pared to other positional methods (e.g., is the No-
Pos model performs better at the beginning or the
end the sequence). We compute the model’s aver-
age loss in different parts of the sequences. Specifi-
cally, we split each input sequence into eight con-
secutive segments and compute the loss for each
segment separately.

We evaluate the NoPos and Sinusoidal models
trained on the WikiText-103 dataset, with an in-
put sequence length of 512, and use the standard
validation set. Figure 4 shows the results of this
experiment. The NoPos model performs similarly
or slightly worse than the baseline model on all
input parts.
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Figure 4: NoPos model shows similar performances on
each part of the sequence, comparing to the baseline
Sinusoidal position encoding.

B Word Order Analysis

Is positional information necessary for language
modeling, or does the order of the input tokens not
matter? To answer this, we conduct the following
experiment: instead of computing the loss on the
complete sequence, we pick a specific token in the
sequence. The next token prediction is conditioned
on the previous tokens in the sequence, and so we
shuffle the order of the tokens in the prefix and
compute the loss only for that specific token. We
repeat the experiment with the original, un-shuffled
prefix sequence as the baseline and compare the
results.

The experiment was conducted on the NoPos
model with an input sequence length of 512 using
the WikiText-103 dataset. We randomly sample
an index between 5 and 512 for the token we pick

from each input sequence from the validation set.

Figure 5 shows the results of this experiment for
100 different inputs. These results clearly show
that the transformer language model’s next word
predictions are not order-invariant.
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Figure 5: Shuffling input tokens (for causal langauge
modeling) leads to a massive degradation in token-level
loss.

C Hyperparameters

Table 5 provides the optimization hyperparameters
for each one of our experiments, and Table 6 shows
the model hyperparameters in the modern (Pile)
setting.
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WikiText-103 The Pile Probe Masked LM

Sequence Length 512 1024 1024 128
Optimizer NAG Adam  Adam Adam
Peak Learning Rate 1 2e-3 2e-3 le-3
Warmup Steps 16,000 500 500 500
Total Steps 286,000 10,000 10,000 10,000
Tokens per Batch 72,000 256,000 64,000 1,024,000
Dropout 0.3 0 0 0.1
Weight Decay 0 0.01 0.01 0.01

Table 5: The optimization hyperparameters used in this work. The NAG optimizer refers to Nesterov accelerated
gradient (Nesterov, 1983), and Adam refers to (Kingma and Ba, 2015).

125M 350M 760M 1.3B

Layers 12 24 24 24
Model Dimensions 768 1024 1536 2048
Feed-forward Dimensions 3072 4096 6144 8192
Attention Heads 12 16 16 32

Table 6: The models hyperparameters by size.
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