
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1286–1304
December 7-11, 2022 ©2022 Association for Computational Linguistics

Outlier Dimensions that Disrupt Transformers are Driven by Frequency

Giovanni Puccetti1, 2, 4, Anna Rogers3,4, Aleksandr Drozd4, Felice Dell’Orletta2

1 Scuola Normale Superiore, Pisa, Italy
2 Istituto di Linguistica Computazionale “Antonio Zampolli”, Pisa, ItaliaNLPLab - www.italianlp.it

3 Center for Social Data Science, University of Copenhagen, Denmark
4 RIKEN Center for Computational Science, Japan

giovanni.puccetti@sns.it, arogers@sodas.ku.dk,
alex@blackbird.pw, felice.dellorletta@ilc.cnr.it,

Abstract

While Transformer-based language models are
generally very robust to pruning, there is the
recently discovered outlier phenomenon: dis-
abling only 48 out of 110M parameters in
BERT-base drops its performance by nearly
30% on MNLI. We replicate the original evi-
dence for the outlier phenomenon and we link
it to the geometry of the embedding space. We
find that in both BERT and RoBERTa the mag-
nitude of hidden state coefficients correspond-
ing to outlier dimensions correlates with the fre-
quency of encoded tokens in pre-training data,
and it also contributes to the “vertical” self-
attention pattern enabling the model to focus
on the special tokens. This explains the drop
in performance from disabling the outliers, and
it suggests that to decrease anisotropicity in
future models we need pre-training schemas
that would better take into account the skewed
token distributions.

1 Introduction

The current Transformer-based language models
are heavily overparametrized, which explains why
it is possible to prune these models by up to 30-40%
(Gordon et al., 2020; Sanh et al., 2020; Prasanna
et al., 2020; Chen et al., 2020, inter alia) without a
significant drop in performance. However, it has re-
cently been shown that multiple Transformer-based
language models (LMs) are highly sensitive to re-
moval of outlier dimensions (Kovaleva et al., 2021):
the parameters (weights and biases) in the output
element of a Transformer layer, the magnitude of
which is unusually large within the layer (consis-
tently in the same dimension across the model lay-
ers). For BERT model family the output element is
the LayerNorm, as shown in Figure 1.

Although these parameters constitute less than
0.0001% of the full BERT (Devlin et al., 2019)
model, removing them significantly degrades
BERT’s performance. Puccetti et al. (2021) find
that the same parameters are particularly relevant

Figure 1: The Transformer Layer architecture diagram
with outliers at the normalization layer (LayerNorm).

in several linguistic probing tasks. These dimen-
sions affect the vector representation of different to-
kens in the same way, making the embedding space
less isotropic and thus reducing its representational
power (Liang et al., 2021). Outlier dimensions
have also been found to make model quantization
challenging (Bondarenko et al., 2021; Dettmers
et al., 2022) as they need to be treated separately
from others when defining quantization schemes.
Thus there are both conceptual and practical rea-
sons supporting a deeper study of this phenomenon.

What is not clear at this point is the mechanism
behind the emergence of outliers. We replicate the
original findings in BERT and RoBERTa, and we
contribute new evidence directly linking the out-
lier phenomenon with the frequency of encoded
tokens in the pre-training data, as well as the
self-attention pattern focusing on special tokens.
We also present evidence for two kinds of outliers:
some of them affect the Masked Language Model
(MLM) performance the most in the middle layers
(where the correlation with token frequency is at
its peak), and for others the impact grows towards
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bert-base-uncased cola mnli mnli-mm mrpc qnli qqp rte sst2 stsb

baseline 56.9 +/- 1.5 84.5 +/- 0.2 84.8 +/- 0.4 84.3 +/- 1.1 91.4 +/- 0.1 91.1 +/- 0.1 66.3 +/- 1.6 92.8 +/- 0.5 89.0 +/- 0.3

1 random removed 56.5 +/- 1.5 84.5 +/- 0.2 84.8 +/- 0.4 84.5 +/- 0.9 91.3 +/- 0.1 91.1 +/- 0.1 66.6 +/- 1.7 92.8 +/- 0.4 89.0 +/- 0.3
w/o 308 47.3 +/- 1.2 81.4 +/- 1.1 82.2 +/- 1.1 54.0 +/- 12.3 88.9 +/- 0.8 89.1 +/- 1.6 62.1 +/- 3.2 90.8 +/- 1.1 56.9 +/- 17.4
w/o 381 33.8 +/- 9.4 73.2 +/- 2.1 73.8 +/- 2.0 64.6 +/- 15.2 80.3 +/- 1.5 79.8 +/- 3.2 55.8 +/- 1.6 87.9 +/- 1.0 78.1 +/- 4.8

2 random removed 56.4 +/- 1.5 84.5 +/- 0.2 84.8 +/- 0.4 84.3 +/- 0.9 91.3 +/- 0.1 91.1 +/- 0.1 66.6 +/- 1.7 92.8 +/- 0.5 88.9 +/- 0.3
w/o 308 & 381 15.9 +/- 4.2 58.4 +/- 3.3 59.0 +/- 3.5 55.1 +/- 16.3 74.5 +/- 1.3 74.6 +/- 4.6 55.3 +/- 4.5 76.0 +/- 2.4 35.7 +/- 15.3

Table 1: Average BERT scores over 5 runs on GLUE benchmarks with the effect of outlier removal. The rows 1
random removed and 2 random removed show the average over 5 removals of random non outliers (1 or 2 at a time
respectively) for 5 different fine-tuned models

the final layers (although correlation with token
frequency decreases). This work contributes to
mechanistic understanding of Transfromer-based
LMs, and it might be useful for future research on
decreasing anisotropy in pre-trained LMs.

2 Methodology

According to Kovaleva et al., outliers are parame-
ters (both weights and biases) in the final element of
a Transformer layer (LayerNorm for BERT family,
final MLP for GPT-2), which have unusually high
magnitude1 within the layer. Outlier dimensions
are those dimensions at which outlier parameters
are found consistently across the model layers.

The reason Kovaleva et al. study these param-
eters is that when they are disabled, the model
performance on downstream tasks is greatly re-
duced. Since not all parameters that can be iden-
tified by magnitude and position criteria have that
effect, we add this property to the definition. In this
work the term outlier dimension refers to the di-
mensions with parameters meeting the magnitude
criteria across layers and having at least 5x more
damaging effect on accuracy on a representative
downstream task, for which we choose MNLI (see
§3.1).

To disable the outliers, unless stated otherwise,
we set to zero both the LayerNorm weight and bias
parameters for all layers (24 parameters in total
for one outlier dimension in BERT and RoBERTa-
base)2. See App. A for the full list of outliers
identified for all models in this study.

We use the notation O to refer to specific Lay-
erNorm outlier parameters (in BERT model fam-
ily): e.g. O381 to indicate “an outlier with index
381”. Since outlier indices are a constant for a

1The original definition of outliers is not entirely formal,
and needs to be further specified for particular models: the
magnitude of the outliers was within 2 standard deviations
from the mean for RoBERTa, and within 3 for BERT.

2Note that this is equivalent to zeroing out the outlier of
the hidden state generated by that layer.

given model, in this study we will also discuss hid-
den state outlier dimensions: the coefficient of the
hidden state with the same index as the outlier.

We experiment with BERT-base (Devlin et al.,
2019) ("bert-base-uncased"), RoBERTa-base (Liu
et al., 2019b) ("roberta-base") and Vision Trans-
former (Kolesnikov et al., 2021) ("google/vit-base-
patch16-224-in21k") from the transformers li-
brary3. For the experiments on pre-training dynam-
ics we rely on the checkpoints with seed 1 provided
by Sellam et al. (2022)4.

Hardware, implementation and energy expendi-
ture details are outlined in App. B. We release the
code to replicate our experiments5.

3 Outliers Phenomenon in Transformers

3.1 Replicating Prior Evidence

We start by replicating Kovaleva et al.’s exper-
iments identifying the outliers for BERT- and
RoBERTa-base (O308 and O381, O77 and O588
respectively), and their effect on downstream task
performance.

Table 1 shows the average performance and stan-
dard deviation of BERT-base over 5 fine-tuning
runs for eight GLUE6 tasks. Thus we successfully
replicate the original experiment on model degrada-
tion after7 removal of the outliers. Since the effect
is consistent across GLUE tasks, we use MNLI as
a representative downstream task in the remaining

3https://github.com/huggingface/transformers
4https://github.com/google-research/language/

tree/master/language/multiberts
5https://github.com/gpucce/outliersvsfreq/

tree/main
6We consider 8 GLUE (Wang et al., 2018) tasks: CoLA

(Warstadt et al., 2018), SST (Socher et al., 2013), MRPC
(Dolan and Brockett, 2005), STSB (Cer et al., 2017), MNLI
(Williams et al., 2018a), QNLI (Rajpurkar et al., 2016a) and
RTE (Bentivogli et al., 2009). We exclude WNLI task, which
BERT is unable to “learn” (Prasanna et al., 2020).

7Kovaleva et al. (2021) also show that if the outliers are re-
moved before fine-tuning, the model is able to recover without
any negative effects.

1287

https://github.com/huggingface/transformers
https://github.com/google-research/language/tree/master/language/multiberts
https://github.com/google-research/language/tree/master/language/multiberts
https://github.com/gpucce/outliersvsfreq/tree/main
https://github.com/gpucce/outliersvsfreq/tree/main


Outliers removed CIFAR10 CIFAR100

Full model 98.6 92.5

1 random dimension 98.6 92.5
O759 98.6 92.3
O187 98.6 90.5

2 random dimensions 98.6 92.4
O759 + O187 98.5 84.9

Table 2: Outlier removal effect for Visual Transfromer.

experiments. We also confirm that RoBERTa-base
behaves similarly (see App. C).

3.2 Outliers in Other Transformers

Kovaleva et al. (2021) focus exclusively on
Transformer-based LMs. To establish whether out-
liers could be something specific to pre-training on
language data, we investigate the presence of out-
liers in the Vision Transformer (ViT) (Kolesnikov
et al., 2021). Table 2 shows ViT accuracy on
CIFAR10 (Krizhevsky et al.) and CIFAR100
(Krizhevsky, 2009): image classification tasks with
a choice between 10 and 100 possible labels respec-
tively. Using the magnitude and position criteria
we identify candidates O759 and O187, and we
experiment with disabling one or both of them, as
well as randomly selected dimensions as a control.
For this model, the accuracy on MNLI can’t be
used as a measure for outliers, instead we use the
accuracy on CIFAR100.

We see that, for CIFAR100, with both outliers
disabled the model experiences ≈ 7% loss in accu-
racy, but that does not happen for CIFAR10. The
reason for that could be that CIFAR10 is a much
simpler task, on which the model achieves above
98.5% accuracy. If the model succeeds in posi-
tioning the small number of classes sufficiently far
apart in the representation space, then even the
loss of outliers might be insufficient to disrupt that.
If that is the reason for discrepancy between CI-
FAR10 and CIFAR100, then perhaps the 100-class
classification is still an easier problem than the
GLUE tasks, for which BERT degrades in perfor-
mance significantly more (see Table 5).

We also explored two other Transformer-based
models: ESM trained on protein sequences (Rao
et al., 2020) and Wav2Vec trained on audio data
(Baevski et al., 2020). We found no evidence for
outliers there. This could be due to the fact that
both of these models have a very small “vocabulary”
(30-40 “tokens” vs tens of thousands for LMs).

Figure 2: The accuracy on MNLI-matched of the check-
points for BERT-base (seed 1) by Sellam et al. (2022)
for full model or with each outlier removed.

3.3 Emergence of Outliers in Pre-Training

Kovaleva et al. (2021) pre-train a BERT-medium
model for up to 250,000 steps. They find that out-
liers emerge relatively early in pre-training (step
50,000), and at about the same time LM perplexity
starts to improve. A limitation of this experiment
is a relatively small model, and the fact that both
observed events coincide with the warm-up ending.

We examine the full BERT-base checkpoints
released by Sellam et al. (2022), who pre-train
five models from scratch with different random
initializations. For each model they release the
checkpoints for every 20,000 steps between 0 and
200,000 steps, and after that – for every 100,000
steps up to 2,000,000. We use the seed numbered as
1 (zero indexed). Like BERT-base and RoBERTa-
base (§2), we find that this BERT also has two out-
liers, O218 and O674, the same for all the check-
points for this seed.

We investigate the main outlier effect: the drop
in performance of the model fine-tuned on our
chosen representative downstream task, MNLI-
matched (Williams et al., 2018b). Figure 2 shows
the accuracy for all the checkpoints from seed 1,
comparing the full model with the model with
O218, O674, and both O218 and O674 removed.
The expected effect is clearly observed after step
80000 for O218 and O218 + O674, but not O674
alone. This is consistent with the findings of Ko-
valeva et al. (2021) who also report various size of
effects for outliers identified purely by magnitude.
The results for MNLI-mismatched are similar and
available in App. D.

After step 80,000 the full model steadily in-
creases in accuracy, reaching 83.5% at step 106.
Training for 106 more steps only achieves ≈ 1%
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gain, illustrating the diminishing returns effect with
further pre-training. The performance without out-
liers degrades over time, but at the later stages of
pre-training (not observed by Kovaleva et al.) that
trend is not steady: after ≈ 106 steps the model ac-
curacy with either O218 or O218 + O674 removed
slowly grows over time, often with high variance
between the “neighboring” checkpoints.

Another observation from Fig. 2 is that after
the first 106 steps8 , the difference between the ac-
curacy of the model without the most disrupting
outlier O218 and O674 increases. This suggests
that the dynamics for the two outliers are different:
while one gains importance from the early stages
of pre-training, the other one rises after more op-
timization steps9. This may be related to the dif-
ferent behavior for the hidden state dimensions
corresponding to the two outliers, which we will
present in §4.

4 What Do the Outliers Impact?

4.1 Effects on Masked Language Modeling

So far we know that disabling the outliers neg-
atively affects BERT downstream task perfor-
mance (Fig. 2), but it is unclear why that happens.
Since LMs rely on statistical patterns of token co-
occurrence, token frequency in pre-training data10

could be expected to affect the learned represen-
tations. We investigate whether outlier removal
affects what kinds of tokens (in terms of their fre-
quency in pre-training data) the MLM predicts.

Figure 3 shows the frequency of tokens pre-
dicted by the model over 200, 000 sentences from
Wikipedia. We use the standard masking strategy:
15% tokens masked randomly. For BERT-base we
observe that the model with disabled outliers con-
sistently predicts more tokens that were highly
frequent in the training data, and fewer tokens
that were rare. RoBERTa shows a similar behaviour

8Interestingly, the number of 106 steps is also the number
of training steps mentioned in the original BERT paper (De-
vlin et al., 2019), and even the models by Sellam et al. (2022)
(also from Google) do not match the originally reported per-
formance at the original amount of pre-training. Sellam et al.
(2022) state that they need to train for twice longer to reach
comparable performance on all the tasks from GLUE (Wang
et al., 2018) and SQuAD (Rajpurkar et al., 2016b).

9Figure 2 shows the accuracy with different classification
heads initialization. See App. D for the similar case with fixed
initialization.

10To estimate the frequency in the pre-training data we use
a corpus similar to BERT pre-training data: it contains the
Book Corpus (Zhu et al., 2015) and Wikipedia dump from
November 1st 2021.

(a) Without Outliers (b) Full Model

Figure 3: A log-log scatter plot of token generation
frequency vs true token frequency in data in MLM. The
x-axis represents the number of time a token has been
masked and the y-axis the times it has been predicted.
The color shows the token appearances in pre-training
data. In (a) for the bert-base-uncased model with zeroed
out outliers and in (b) for the full pre-trained model.

(see App. C for the details).
We also considered if the outliers impact the dis-

tribution of POS tags of the predicted tokens. We
found that disabling O381 is the most disruptive
and that, similarly to O308, it pushes the model
towards predicting more nouns, punctuation, sym-
bols and adpositions (see App. E for details).

4.2 Token Frequency Vs Performance
If outlier removal impacts the MLM ability to pre-
dict tokens it observed less often in pre-training
(§4.1), could it also impact the model encoding of
tokens more/less frequently seen in pre-training?

The LayerNorm outliers are an intrinsic property
of the model itself. For this experiment we need
to consider the interaction between the model and
its input data. Hence we consider the hidden state
outlier dimensions: the hidden state parameters at
the dimensions corresponding to the outlier dimen-
sions. They are the most affected by the outlier
removal, since zeroing out a LayerNorm parameter
removes precisely this component.

In this experiment we encode the validation set
of Wikitext-v2 (Merity et al., 2016) by BERT-base,
and we measure the Pearson correlation between
pre-training data frequency of encoded tokens, and
the magnitude of the hidden state parameters cor-
responding to the outlier dimensions (O308 and
O381) in each layer (see App. B for more details).
The results are presented in Fig. 4. We also track
across all layers the main outlier effect (perfor-
mance degradation when the outliers are disabled)
in MLM and MNLI tasks, as shown in Fig. 5.

We find that for the hidden state parameters cor-
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(a) With special tokens (b) Without special tokens

Figure 4: BERT-base encoding Wikitext-v2 validation
set: Pearson correlation between magnitude of hidden
state parameters corresponding to outlier dimensions,
and frequency of encoded tokens in pre-training data.

responding to both O308 and O381 the correlation
between their magnitude and encoded token fre-
quency is much higher than for random dimensions,
but they exhibit different layer-wise trends for that
correlation vs impact on model performance:

Case 1: the magnitude of the hidden state pa-
rameters corresponding to the outlier dimen-
sions is directly proportional to both its corre-
lation with the encoded token frequency, and
performance drop after removal of LayerNorm
outlier parameters. For the hidden state dimen-
sion corresponding to O381, the correlation of the
hidden state parameter magnitude with the encoded
token frequency is closer to zero at the initial and
final layers, and high in the middle layers (this
trend continues until layer 9 when special tokens
are included). Fig. 5b shows that the removal of
O381 has largest impact (in both MNLI and MLM)
in layers 4-6. Coincidentally, Fig. 4b shows that
layers 4-6 are also the layers where the magnitude
of hidden state dimension corresponding to O381
correlates with token frequency the most.

Case 2: the magnitude of the hidden state pa-
rameters corresponding to the outlier dimen-
sions, and their correlation with the encoded
token frequency are both inversely proportional
to the performance drop after removal of Layer-
Norm outlier parameters. For O308 the pattern
is the opposite: the magnitude of its correspond-
ing hidden state parameter strongly correlates with
encoded token frequency at the initial layers, but
not in the final ones. However, Fig. 5b shows that
the removal of this LayerNorm outlier has a larger
impact on MLM loss on the final layers11. As a re-

11The main discrepancy in this pattern is the frequency
correlation of the hidden state dimension corresponding to

(a) MNLI-m performance (b) MLM loss (in wikitext-v2)

Figure 5: BERT-base: effect of disabling outliers on
MNLI-matched and MLM loss.

sult, the removal of O308 is less harmful for most
downstream tasks as shown in Table 1 because fine-
tuning mostly affects the layers closer to the output
(Liu et al., 2019a; Kovaleva et al., 2019), there-
fore it cancels a part of the effect of disabling this
parameter.

To confirm that this is not a pattern specific to
BERT we also perform the same experiments for
RoBERTa-base, and we find that it also has the
two kinds of outliers with the direct and inverse
relationship to performance drop (O588 and O77
respectively). The data for these experiments is
available in App. C.

Since BERT encodes sequences always starting
with ‘[CLS]’ and ending with ‘[SEP]’, these spe-
cial tokens could store positional information, and
they are also highly frequent. Therefore we repeat
the experiment discarding them (Fig. 4b), but the
overall trend is not affected.

4.3 What Happens to Attention?
In §4.2 we showed that there is a correlation be-
tween the magnitude of the hidden state parameters
corresponding to outlier dimensions, and the to-
ken frequency in the pre-training data. Prior work
(Clark et al., 2019; Kovaleva et al., 2019) showed
that BERT self-attention often “points” to highly
frequent tokens, including the special tokens and
punctuation marks. Given this, our next question
is whether the outliers also affect the self-attention
patterns. As argued by Dong et al. (2021), attention
alone would map tokens to very low dimensional
spaces, and in that case the outlier phenomenon
would be consistent with such a mapping.

We find that there is indeed such an effect. To
illustrate it we encode a MNLI sample with BERT-

O308, and its MLM loss at the last layer. However, the lower
loss can be a consequence of the parameter not affecting any
following Transformer layer.
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Figure 6: The self-attention patterns at the 10th layer of the full ‘bert-base-uncased’ pre-trained model vs the same
model with removed LayerNorm outliers.
Encoded example from MNLI: [CLS] Thebes held onto power until the 12th Dynasty, when its first king, Amenemhet
I who reigned between 1980 1951 b.c. established a capital near Memphis.[SEP] The capital near Memphis lasted
only half a century before its inhabitants abandoned it for the next capital. [SEP]

base. Fig. 6 shows the self-attention maps for the
12 heads of the 10th layer12, directly comparing
the self-attention in a full model vs a model with
the outlier dimensions removed.

The most conspicuous difference is the fact that
the vertical bars in the self-attention maps of the
full model vanish once the outliers are zeroed out.
This “vertical” attention pattern has been reported
before (Kovaleva et al., 2019), and in BERT it of-
ten corresponds to attention to special tokens and
punctuation. It may seem that without the outliers
the diagonal patterns become more salient, but in
fact they are also present with the intact outliers,
and their increased saliency in the plot is simply an
effect of softmax normalization.

Figure 6 only shows a single example. To estab-
lish whether this effect is stable, we encode 1500
sequences from Wikitext-v2 validation set and mea-
sure the Pearson correlation between average verti-
cal attention value of each token (the average over
attention columns in the encoded sequence), and
the magnitude of the hidden state parameters corre-
sponding to the outlier dimensions. In cases of the
“vertical” self-attention pattern, the average vertical
attention value would be relatively high.

Figure 7 shows the results of this experiment,
which we repeat with and without BERT special
tokens (‘[CLS]’ and ‘[SEP]’). As a control, Fig. 7c
and Fig. 7f show the average correlation over a
sample of hidden state parameters at random di-
mensions. For the randomly picked weights the
correlation is ≈ 0, which is expected (since these
vectors have length 768, the individual dimensions

12We choose the 10th layer because prior work suggests that
the layers closer to the output are more affected by fine-tuning
(Kovaleva et al., 2019), and also encode more task-specific
information (Liu et al., 2019a).

of randomly sampled vectors should have a negli-
gible contribution).

Compared to random dimensions, the hidden
state parameters at dimensions corresponding to
both O308 and O381 have on average a signifi-
cantly higher correlation between their magnitude
and average self-attention query values. This con-
firms that the pattern shown in Fig. 6 is prevalent,
and the tokens with high hidden state outlier di-
mension value tend to also have high average value
over attention columns, i.e. they are attended to
by most other tokens.

An unexpected pattern is represented by the neg-
ative correlations in Fig. 7a and Fig. 7d at initial
and final layers. We argue that at early layers this
happens because the vertical patterns are less fre-
quent, while at the final ones because the outliers in
those layers are less relevant. The trend is similar
to what we observed in Fig. 4.

We also observe several trends that mirror the
observations from §4.2:

• The hidden state parameter value correspond-
ing to O308 has a higher correlation with av-
erage vertical attention value since the initial
layers (except the very first) which decreases
at the final layers. For parameters correspond-
ing to O381, the correlation grows at layer
4-5 and then vanishes at the final one. Both of
these trends are consistent with Fig. 4 showing
the correlation to frequency.

• Special tokens affect these trends: Fig. 7d
and Fig. 7e show that excluding them does
not fundamentally change the pattern, but the
results become less stable across heads.

• Both Fig. 4 and Fig. 7 show large variation
as the information flows through the model,
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(a) O308

Including Special Tokens

(b) O381 (c) Random coefficients

(d) O308

Excluding Special Tokens

(e) O381 (f) Random coefficients

Figure 7: Each figure shows the correlation between the average vertical attention values in BERT-base self-
attention heads, and the magnitude of hidden state parameters at the dimensions corresponding to outlier dimensions.
The correlation is computed over examples from Wikitext-v2. Fig. (c) and (f) show the average over 10 random
dimensions.

which suggests that the effect is not entirely
formed at the model input.

Overall the results of this experiment suggest
that the relationship between the outlier phe-
nomenon and encoded token frequencies in pre-
training data also affects the self-attention mech-
anism of BERT. In particular, it affects the “verti-
cal” attention pattern in which a token is attended
to by most other tokens, and which was previously
reported for the high-frequency special tokens. We
confirmed that RoBERTa self-attention exhibits a
similar pattern (see App. C).

4.4 What Causes the Outliers?
We have now identified a correlation between the
magnitude of hidden state parameters correspond-
ing to outlier dimensions, and the frequency of the
encoded tokens in the pre-training data. However,
it is unclear whether the relationship is causal.

To establish that, we pre-train13 from scratch 3
versions of BERT-medium as defined by Turc et al.
(2019), with the following tokenization schemes:

• SENTENCE: We split sentences using a Spacy
sentencizer14, and add a ‘[SEP]’ token at
the end of each sentence and at the end of
each encoded sequence. This is similar to
the “full sentences” tokenization used to train
RoBERTa (Liu et al., 2019b).

• CHUNK: We add a single ‘[SEP]’ token at
the end of each sequence of 256 tokens rather

13Except for the tokenization strategy, the training for each
model is similar to the original BERT (Devlin et al., 2019)
with two exceptions: (a) the Wikipedia corpus is a more recent
version, from 01/03/2022, (b) the max sequence length is
256 (instead of 512) and batch size 128 instead of 256 due
to computational constraints (these appear to have limited
effect on the MNLI benchmark). All models were trained for
327,500 steps.

14https://spacy.io/
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SENTENCE CHUNK SENTENCE_FREQ

Full Model 79.6 79.2 76.8

Minus O378 66.9 47.4 -
Minus O281 78.8 - -
Minus O353 - - 75.8
Minus O362 - - 74.4

Table 3: Accuracy on MNLI-matched for each pre-
training setting of BERT-medium.

than each sentence. The main effect that we
expect from this is that the amount of ‘[SEP]’
tokens is reduced roughly by a factor of 10.

• SENTENCE_FREQ: Each sentence is fol-
lowed by the ‘[SEP]’ token, but we replace
50% of occurrences of regular tokens with fre-
quency above 1.e-5 in the training corpus with
a random token with a frequency below 1.e-5
in 50% of their occurrences15.

Note that the RoBERTa-like SENTENCE tok-
enization is different from the classic BERT ap-
proach, where each encoded sequence always con-
tains exactly 2 ‘[SEP]’ tokens in each encoded se-
quence. The RoBERTa approach would make this
token more frequent for the sequences containing
more than one sentence, and hence also more ap-
propriate for testing our frequency hypothesis.

Both CHUNK and SENTENCE_FREQ condi-
tions corrupt the linguistic structure of the input,
and so the trained MLM quality could be expected
to drop as it acquires worse knowledge. But this
setting will let us (a) identify the impact of token
frequency on the outlier phenomenon, (b) disentan-
gle the effect between frequent tokens in general
and the ‘[SEP]’ token.

All three models started from the same initial-
ization but were fed different data according to the
tokenization schemes. We find that SENTENCE
model developed outliers O281 and O378, whereas
in CHUNK the detrimental effect is only clear for
O378. The SENTENCE_FREQ model developed
two outliers: O353 and O362.

Table 3 shows all three BERT-medium models
evaluated on MNLI-matched validation set as ei-
ther the full model or with their respective outliers
removed one by one. SENTENCE model is the best
performing overall, but CHUNK is only .4 points
behind as the full model. Both of them develop

15Due to high computational costs of BERT pre-training
we only experiment with one possible value of the threshold
(1.e-5). When exactly tokens become “high frequency” for
BERT-type MLMs remains a question for future work.

a very damaging outlier O378, whereas the effect
of O281 is less pronounced in SENTENCE and in-
significant in CHUNK. Moreover, the single outlier
in CHUNK is more damaging for the model. One
possible explanation is that when the model has
only one outlier, it likely relies on it more, which
would result in higher performance degradation
when it is disabled.

As expected, the SENTENCE_FREQ model that
was fed the noisiest data performs worse than the
other two (by ≈ 3%). But interestingly, it also does
not develop any outliers as damaging as O378 is
for the other two models.

We conclude that the frequency distribution of
tokens in pre-training data contributes to the outlier
phenomenon, and the ‘[SEP]’ token is a part of that
effect (since high frequency is one of the factors
that characterizes it).

5 Discussion

5.1 Outliers in Transformer Pre-training

Prior work (Kovaleva et al., 2021) showed that
the outliers are present in a large number of
Transformer-based LMs. We provide complemen-
tary evidence for the Vision Transformer (Table 2).
However, we were unable to identify outliers in pro-
tein and audio Transformers, which we attribute to
significantly smaller vocabulary size. This finding
hints towards the training data distribution being at
the core of the outlier phenomenon.

Kovaleva et al. (2021) also show that outliers
emerge early in pre-training (after 50K steps for
BERT-medium). We extend that experiment by
investigating the fully pre-trained BERT-base by
Sellam et al. (2022), we find that the impact of
outliers on the model grows up steadily until step
106. After that step the outlier effect is inconsistent
between checkpoints, and the full model perfor-
mance saturates. An interesting question for future
work is what happens after outlier removal stops
degrading model performance (around step 106),
and whether it could be used as an early stopping
criterion.

Transformer-based language models (LMs) have
been shown to exhibit anisotropic behavior in their
representations of both tokens and sentences (Etha-
yarajh, 2019; Gao et al., 2019; Rajaee and Pilehvar,
2021; Timkey and van Schijndel, 2021). While
pervasive, this is an undesirable property because
it reduces the average distance between tokens em-
beddings, and thus makes it more difficult to distin-
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guish between tokens in the embedding space.
One consequence of the outliers growth over pre-

training is that the attempts to remove anisotropy
at the downstream task level (Rajaee and Pilehvar,
2021), although effective in some cases, could be
only partially addressing the problem. In that case
it might be more productive to change pre-training
so as to better account for the skewed token fre-
quency distribution (Li et al., 2021b).

5.2 Outliers and Token Frequency
Li et al. (2021a) and Gao et al. (2019) show that em-
beddings of low frequency tokens lie further away
from high frequency ones in the embedding space.
In §4.2 we showed how the outlier parameters in-
fluence the hidden state geometry proportionally to
token frequency, and how this is more sensitive at
earlier layers. This is consistent with findings of
Li et al. (2021a) who show that the different geom-
etry of frequent and non-frequent tokens is more
evident for the layers closer to the input. Indeed,
we observe this effect for O381 in BERT-base and
O588 in RoBERTa-base (see Fig. 4).

To the best of our knowledge, this is the first
work to demonstrate the link not only between the
geometry of the hidden states and frequency of
encoded tokens in pre-training data, but also the
model performance.

5.3 Outliers and Positional Embeddings
Concurrently with the demonstration of the outlier
phenomenon by Kovaleva et al. (2021), Luo et al.
(2021) attributed the high-magnitude weights to a
different source: positional embeddings rather than
LayerNorm weights. The positional embeddings
could be expected to have more impact in the ear-
lier layers. Our work contributes to the dispute by
showing that two different behaviours are present
in both BERT-base and RoBERTa-base: one outlier
dimension in the hidden states is disruptive in lay-
ers 4-6 (O381 for BERT and O588 for RoBERTa)
while the other one at the layers 10-11 (O308 for
BERT and O77 for RoBERTa). This suggests that
both mechanisms may play a role.

5.4 Outliers and Self-Attention
Kovaleva et al. (2019) identify 5 frequent self-
attention patterns, 4 of which include vertical
lines corresponding to special tokens. We showed
(Fig. 7) that the presence of special tokens increases
the correlation (in absolute value) between the av-
erage query value and the magnitude of the hidden

state dimensions corresponding to outlier dimen-
sions. This suggests that the outlier phenomenon
contributes to the vertical attention patterns identi-
fied by Kovaleva et al. (2019). From the computa-
tional perspective this is consistent with the atten-
tion being a bilinear form. Moreover, the relation
between the outliers and the vertical self-attention
pattern (often “pointing” to the highly frequent
special tokens and punctuation) also hints at the
relation between outliers and the token distribution
in the pre-training data.

At the same time, the correlation remains evident
in the final layers even when special tokens are
ignored, indicating that the outliers also contribute
to the attention shape more broadly. This is in line
with Kobayashi et al. (2020) who argue that vertical
patterns in attention do not indicate that no other
information is encoded (hence simply norming the
self-attention makes other relations more salient).

6 Conclusion

To the best of our knowledge, this is the first work
to directly link the outlier dimension phenomenon
in Transformer-based models (in particular BERT
and RoBERTa) to encoded token frequency in pre-
training data. We also find that the magnitude of
hidden state dimensions corresponding to outliers
correlates with the vertical self-attention pattern,
which enables the attention to the classification
tokens. Furthermore, we find that there are two
types of outliers: some of them affect the MLM
performance the most in the middle layers (where
the correlation with token frequency is also at its
peak), and for others the impact grows towards the
final layers (even though the correlation with token
frequency decreases).

Our findings suggest that outliers are due not to
the Transformer architecture per se, but rather to
the highly skewed token frequency distribution in
textual pre-training data. In that case, to mitigate
anisotropy we might need to design a pre-training
scheme that better accounts for such distributions.

7 Limitations

This work establishes a relation between the outlier
phenomenon in Transformer-based language mod-
els and the frequency of tokens in the corpus used
for pre-training. We focus on two of the most popu-
lar Transformers (BERT-base and RoBERTa-base)
and show that our key observations hold for both
of them, but there are hundreds of other possible
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Transformer-based LM architectures and modifi-
cations to pre-training regimes and tokenization
that could be explored in future work. That being
said, we believe that a thorough examination of the
most common models, such as presented in this
paper, is pre-requisite to establishing the methods
and hypotheses for a large-scale study.

Methodologically, our experiments have the fol-
lowing limitations:

• We identify a correlation between frequency
of the encoded tokens in the pre-training cor-
pus, and the magnitude of the coefficients
within the hidden states of Transformer layers
which correspond to the outlier dimensions
(§4.2). A limitation of this experiment is that
it only establishes that there is mutual influ-
ence between token frequency and outliers.
We cannot exclude the presence of covariates
or claim that the token distribution is the rea-
son behind the outlier phenomenon.

• To establish whether there is also a causal rela-
tion, we show that pre-training a bert-medium
model with changes in the tokenization re-
duces the impact of outlier removal (§4.4).
This experiment does show that we can almost
remove the outliers effect by changing the to-
ken distribution, however, these changes by
themselves degrade the quality of the model
and its downstream task performance, and
therefore the reduced outlier removal effect
could be partly due to the model being overall
less performant. This also raises a follow-up
question for future work: do the special to-
kens have such a connection to the outlier phe-
nomenon partly because of their special role,
or simply due to the fact that they are among
the most frequent tokens in the pre-training
corpus?

• We find that outliers have a strong impact on
the shape of attention heads, most notably the
“vertical” patterns (§4.3), and we hypothesize
that the outlier removal effect on downstream
task performance may thus be explained by
the inability of the model to “focus” on the
special tokens, which according to prior work
is a key role of the “vertical” self-attention
patterns. This hypothesis merits further inves-
tigation.

8 Broader Impacts

This work focuses on the analysis of two popu-
lar Transformer-based LMs of the BERT family
(BERT- and RoBERTa-base). This work relies on
established benchmarks, does not collect new hu-
man subjects data and presents no new models. Its
broader impacts center on improving the mecha-
nistic understanding of training Transformer-based
LMs, which could lead to developing better mod-
els in the future. We also presented evidence of
outlier phenomenon in Vision Transformer, which
suggests that vision and multimodal Transformers
may also be vulnerable to attacks involving direct
modification of outlier weights.

Experiments were conducted using a private in-
frastructure, which has a estimated carbon effi-
ciency of 0.37 kgCO2eq/kWh (average carbon ef-
ficiency in Japan, where the machine is based, for
the year 2020). Including experiments that were
discarded and failed runs, we estimate that a cumu-
lative of 200 hours of computation was performed
on hardware of type RTX A6000 (TDP of 300W).
Total emissions are estimated to be 22.2 kgCO2eq.
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Model name Outlier 1 Outlier 2

"bert-base-uncased" 308 381
"roberta-base" 77 588
"multiberts-seed-1" 218 674
"google/vit-095base-patch16-224-in21k" 187 759
"BERT-medium (ours)" 281 378

Table 4: The outliers identified for each model used in
the paper

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV).

A Outliers For Each Model

As described in §2 the outliers are zeroed out in the
LayerNorm layers, in §2 we mention that the defi-
nition of outliers is not entirely formal: while the
weights magnitude let us identify a small subset of
weight among which we can search for outliers, we
need to fine tune the model on a downstream task,
we use MNLI although all tasks in GLUE would
work, to identify which weights are the most harm-
ful. Table 4 lists the two most damaging outliers
for each model we used in the paper.

B Replicability

In this section we describe in detail all the experi-
ments carried out within this work, together with
the code used to make them this should allow for
an effective reproduction of our results. All experi-
ments are carried out using a NVidia A6000 with
48 gbyte of memory.

• For the results in Table 1 we fine tune bert-
base-uncased for 4 epochs on each task with
a 2.e-5 learning rate and 256 maximum se-
quence length. We measure the respective
metric for each GLUE task (as defined by
Wang et al. (2018)) on the validation set. Both
models and datasets are loaded through hug-
gingface https://huggingface.co/. For
the computation with removed outliers, what
we do is we compute the same metric as for
the full model after manually setting to 0 the
chosen LayerNorm weight and bias param-
eters in all layers. A similar procedure is
adopted to compute the values in Table 2.
Fine tuning on the largest datasets within the
glue benchmarks (mnli, qnli, qqp), with the

hyperparameters described above on average
requires approximately 4000 seconds. The re-
maining datasets among the glue benchmarks
are between 10 to 100 times smaller and re-
quire a proportionally scaled amount of time.

• The token counts in Fig. 8 are obtained
through Wikipedia and book corpus by di-
rectly using a bert-base-uncased and roberta-
base tokenizers on the whole corpus and
counting each token occurrence.

• The results in Fig. 4 are obtained as follows:
for each token in the data (as part of an en-
coded sequence) we compute the hidden states
through a bert-base-ucased model and pick
the hidden state parameter at the outlier index
therefore getting a single numerical value for
each token. We also associate to each token its
frequency in the pre-training corpus and we
measure the Pearson correlation coefficient
between this two lists of values.

• The results in 5 are obtained by setting Lay-
erNorm weight and bias parameters at the
given outlier index for a given layer to 0. For
Fig. 5a this is done for a model fine-tuned
on MNLI train set and we measure the accu-
racy on MNLI matched, for Fig. 5b this is
done to a pre-trained only model by measur-
ing the MLM loss on the wikitext-v2 valida-
tion set (the masking probabilities are kept as
in the original BERT paper). This process is
repeated for each layer in the model.

• The results in Fig. 7 are obtained as follows:
for each sample in the wikitext-v2 validation
set (a single sequence containing n tokens),
we encode it with bert-base-uncased. This
provides us with attention matrices with size
n× n we take the average over the columns,
thus getting a single numerical value for each
token. As above, for each token we also col-
lect the hidden state value at the outlier dimen-
sion, a single numerical value (for each layer)
for each token, and finally we measure the
correlation between these two values. In par-
ticular since for each layer there are 12 heads
we compute 12 correlations at each layer.

• The scores in Table 3 are obtained as for Ta-
ble 1 on three instances of bert-medium archi-
tecture pre-trained with different tokenization
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(a) Without Outliers (b) Full Model

Figure 8: A log-log scatter plot of token generation
frequency vs true token frequency in data in MLM. The
x-axis represents the number of time a token has been
masked and the y-axis the times it has been predicted.
The color shows the token frequency in pre-training data
(wikipedia + book corpus). In (a) for the roberta-base
model with zeroed out outliers and in (b) for the pre-
trained model.

Outliers cola mnli-mm mnli mrpc qnli qqp rte sst2 stsb

baseline 58.3 87.4 87.6 87.3 92.7 91.4 69.0 95.0 89.1

77 51.5 85.4 85.5 80.1 89.8 90.4 65.0 93.9 83.7
588 7.4 61.5 59.4 70.8 56.6 64.2 54.2 70.3 19.1

588, 77 12.6 45.9 44.9 70.3 50.6 61.2 51.6 68.8 5.4

Table 5: Full RoBERTa scores on GLUE benchmarks
with outlier effects.

strategies. The pretraining of this model is
performed with 256 max length, 128 batch
size and 1.e-4 learning rate.

Experiments were conducted using a private in-
frastructure, which has a estimated carbon effi-
ciency of 0.37 kgCO2eq/kWh (average carbon ef-
ficiency in Japan, where the machine is based, for
the year 2020). Including experiments that were
discarded and failed runs, we estimate that a cumu-
lative of 200 hours of computation was performed
on hardware of type RTX A6000 (TDP of 300W).
Total emissions are estimated to be 22.2 kgCO2eq.

C RoBERTa Experiments

The results we showed for BERT-base similarly
hold for RoBERTa-base. The generation distri-
bution with removed outliers, Fig. 8a, shows that
a single token on the top right, the "</s>" token,
is generated a larger number of times (log scale),
making this coherent with the results for BERT.
We note that RoBERTa pre-training data is not the
same as we use16, however the core of the vocabu-

16For RoBERTa the token frequency in pre-training is
computed on Wikipedia + Book corpus plus an open
source version of OpenWebText (https://huggingface.co/

(a) With special tokens (b) Without special tokens

Figure 9: Correlation of outlier dimension magnitude
with token frequency over the Wikitext corpus for a pre-
trained RoBERTa-base model. In (a) the correlations
accounts for special tokens, in (b) they are excluded.

(a) MNLI-m performance (b) MLM loss (in wikitext-v2)

Figure 10: RoBERTa-base: effect of disabling outliers.

lary is shared and therefore the qualitative results
shown in Fig. 8 are reliable.

Table 5 shows the performance degradation with
outliers removed on all GLUE tasks. As shown
by Kovaleva et al. (2021) there is one more dam-
aging outlier O588 and a less damaging one O77,
when removed together they cause the largest per-
formance degradation. Fig. 9a and Fig. 10 show
that for RoBERTa patterns similar to those we see
for BERT in Fig. 4 and Fig. 5 appear.

In particular, O588 is more damaging when the
magnitude of the respective hidden state outlier
dimension correlates the most to token frequency.
In this case at layers 2-4 and at layer 10. In Fig. 9b
we observe a spike in correlation with frequency,
and Fig. 10b shows a similar one for MLM loss.
On the other hand, O77 shows that the less the
hidden state dimension corresponding to the outlier
correlates to frequency, the more the removal of
the LayerNorm outlier damages the model.

For this model we also see an anti-pattern at
layer 4 (Fig. 10b): the loss with O77 is higher

datasets/openwebtext), however RoBERTa pre-training
data also include Stories and CC-news datasets not openly
available.
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(a) O77

Including special tokens

(b) O588 (c) Random coefficients

(d) O77

Excluding special tokens

(e) O588 (f) Random coefficients

Figure 11: Each figure shows the correlation between the average vertical attention values in RoBERTa-base
self-attention heads, and the magnitude of hidden state parameters at the dimensions corresponding to outlier
dimensions. The correlation is computed over examples from Wikitext-v2. Figures (c) and (f) show the average
over 10 random dimensions.

and the one with O588 is lower. However, Fig. 9a
shows that layer 4 is where the correlation includ-
ing special tokens is closest to zero, possibly due to
RoBERTa pre-training schedule including a larger
number of special tokens (Liu et al., 2019b).

The general pattern observed for BERT is kept,
however, while for BERT the worst layers in term
of performance are layers 4-5, for RoBERTa this
are layers closer to the input 1-2. One of the reasons
behind this difference could be that RoBERTa had
longer pre-training.

Finally we also replicate the analysis of atten-
tion patterns. Fig. 11 shows for RoBERTa the same
patters that Fig. 7 shows for BERT: for the hid-
den state parameters corresponding to the outlier
dimensions, the correlation values are very differ-
ent when compared to random ones, both when
including the special tokens or not.

D Outliers in Pre-Training

Figure 12: The accuracy on MNLI-mismatched of the
checkpoints for BERT-base (seed 1), provided by Sellam
et al. (2022).

Figure 12 shows the accuracy on MNLI-
mismatched, at various checkpoints for BERT-base
seed 1 provided Sellam et al. (2022). The results
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Figure 13: The accuracy on MNLI-matched of the
checkpoints for BERT-base (seed 1) by Sellam et al.
(2022) for full model or with each outlier removed. All
classification heads are equally initialized.

are very similar to what Fig. 2 shows for MNLI-
matched: early degradation around 80,000 steps,
almost steadily worsening until step 1,000,000, and
then fluctuating further on. The initialization of the
classification layer is not fixed across checkpoints.

In Fig. 13 and Fig. 14 we also replicate the ex-
periments while fixing the classification head seed
at initialization. In this case as well the results are
very close to those from Fig. 2 and Fig. 12. Specif-
ically, the fluctuating behaviour appearing after 1
million steps is very distinct in this case as well. It
is therefore not caused by changes in different fine-
tuning initialization but confirmed to be caused by
the number of pre-training steps.

An interesting question for future research on
this topic is, what is the influence of longer pre-
training on this phenomenon, does it get slowly
cancelled? Does adding pre-training data from
sources other than Wikipedia, the largest source
of data for the models we investigate, make the
outliers effect smaller or larger?

E POS Tag Distribution of Tokens
Predicted by BERT MLM with
Disabled Outliers

In this experiment we investigated the POS tags
of the tokens predicted by the BERT-base MLM
with disabled outlier dimensions. Fig. 15 shows
the distribution of tags over the replaced tokens.
Each row shows the percentage of tags of generated
tokens with respect to the tag of the masked token:
for example, the top row in Figure 15d shows that
ADJ tokens are replaced with 16% probability by
NOUN tokens, with 35% by ADJ tokens, with 10%
by PUNCT tokens and so on.

We have previously shown in Table 1 that out of

Figure 14: The accuracy on MNLI-mismatched of the
checkpoints for BERT-base (seed 1), provided by Sel-
lam et al. (2022). All classification heads are equally
initialized.

two outliers one damages the model performance
considerably more. This pattern is also observed
here. Fig. 15 shows that individually O381 has a
much larger effect than O308. We can also see the
qualitative difference between the outliers in the
distribution of POS tags of the generated tokens:
with only O381 disabled, the model becomes more
likely to generate nouns and punctuation signs,
while O308 does not produce so many changes.
However, O308 has a larger effect in combination
with O381, again pushing the model towards gen-
erating more nouns and punctuation, but also sym-
bols and adpositions.
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(a) Full model (b) Outlier 308 removed

(c) Outlier 381 removed (d) Outliers 308 and 381 removed

Figure 15: The shift in percentage between the POS tags generated through MLM for full BERT-base model(a) and
with different outliers removed, number 308 (b), number 381 (c) and together number 308 an number 381 (d).
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F Outliers vs Encoded Token Frequency:
the Case of Fine-Tuned Models

(a) With special tokens (b) Without special tokens

Figure 16: BERT-base (fine tuned on MNLI) encoding
Wikitext-v2 validation set data: the correlation between
magnitude of hidden state parameters corresponding to
outlier dimensions, and frequency of encoded tokens in
pre-training data.

To control how much fine-tuning affects the pat-
terns we study, we repeat the experiments with
models fine-tuned on MNLI, we proceed as fol-
lows: we fine-tune the model using a classification
head and then extract the hidden states at each layer
and use those in place of the ones of the pre-trained
model.

Figure 16 shows the same information as Fig. 4,
that is the correlation between the hidden states out-
lier dimension magnitude and the frequency of the
encoded tokens in pre-training data, for a BERT-
base model fine-tuned on MNLI. The overall pat-
terns is similar to using the pre-trained model, but
the correlation values generally decrease: the high-
est value is now 0.3 when it used to be 0.5 for the
pre-trained model. This agrees with the findings
from §4.4: the outliers are impacted by the model
training.

Investigating attention patterns, Fig. 17 reports
the same information as Fig. 7 for bert-base-
uncased model fine-tuned on MNLI. In this case
we see that the correlations stays high at layers
closer to the input data, while those closer to the
output have lower values, although in this case as
well the values are higher than they are for random
outliers Figs. 17c and 17f.
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(a) O308

Including special tokena

(b) O381 (c) Random coefficients

(d) O308

Excluding special tokena

(e) O381 (f) Random coefficients

Figure 17: Each figure shows the correlation between the average vertical attention values in a BERT-base fine
tuned on MNLI self-attention heads, and the magnitude of hidden state parameters at the dimensions corresponding
to outlier dimensions. The correlation is computed over examples from Wikitext-v2. Figures (c) and (f) show the
average over 10 random dimensions.
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