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Abstract

In this paper, we propose a novel SQL guided
pre-training framework STAR for context-
dependent text-to-SQL parsing, which lever-
ages contextual information to enrich natu-
ral language (NL) utterance and table schema
representations for text-to-SQL conversations.
Concretely, we propose two novel pre-training
objectives which respectively explore the
context-dependent interactions of NL utter-
ances and SQL queries within each text-to-SQL
conversation: (i) schema state tracking (SST)
objective that tracks and explores the schema
states of context-dependent SQL queries in the
form of schema-states by predicting and up-
dating the value of each schema slot during
interaction; (ii) utterance dependency tracking
(UDT) objective that employs weighted con-
trastive learning to pull together two semanti-
cally similar NL utterances and push away the
representations of semantically dissimilar NL
utterances within each conversation. In addi-
tion, we construct a high-quality large-scale
context-dependent text-to-SQL conversation
corpus to pre-train STAR. Extensive experi-
ments show that STAR achieves new state-of-
the-art performance on two downstream bench-
marks (SPARC and COSQL), significantly out-
performing previous pre-training methods and
ranking first on the leaderboard. We believe
the release of the constructed corpus, code-
base and pre-trained STAR checkpoints would
push forward the research in this area. For
reproducibility, we release our code and data
at https://github.com/AlibabaResearch/
DAMO-ConvAI/tree/main/star.

1 Introduction

Text-to-SQL parsing (Zhong et al., 2017; Yu et al.,
2018; Wang et al., 2022; Qin et al., 2022b) aims
to translate natural language (NL) questions into
executable SQL queries, which enables the users
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Can you show me campuses 
in year 2000?

Can you also show me county 
a6er year 2000?

Turn 1

Turn 2

Turn 3

Turn 4

SELECT campus FROM Campuses 
WHERE year = 2000

SELECT campus, county FROM 
Campuses WHERE year > 2000

X

slot value

Campuses.county NONE

What are the degrees on the 
campuses list?

SELECT degrees FROM Campuses 
JOIN Degrees

Which one in the university 
conferred the least number in  
year 2000 ?

SELECT degrees FROM Campuses 
JOIN Degrees WHERE 
Campuses.year = 2000 ORDER BY 
Degrees.degrees LIMIT 1

Degrees.campus
WHERE =
NONE

······ ······
Degrees.degrees

Campuses.year

SELECT

Campuses.county NONE

Degrees.campus
WHERE =
SELECT

Degrees.degrees

Campuses.year

NONE
······ ······
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Degrees.campus
WHERE >
SELECT

Degrees.degrees

Campuses.year

NONE
······ ······

Campuses.county NONE

Degrees.campus
NONE
NONE

Degrees.degrees

Campuses.year

SELECT
······ ······

Database Schema
id campus county year

…
year campus degrees …
… … … …

Degrees
Campuses

Figure 1: An example of cross-domain context-
dependent Text-to-SQL conversation. Here, each
database schema refers to the table/column names of
databases and each schema state refers to a slot-value
pair, whose slot is a column/table name (e.g., De-
grees.campus) and its value is a SQL keyword (e.g.,
SELECT). “x” indicates that the semantic/intent is
switched between Turn2 and Turn3 utterances.

who are unfamiliar with SQL to query databases
with natural language. Pre-trained language mod-
els (PLMs) have proved to be powerful in enhanc-
ing text-to-SQL parsing and yield impressive per-
formances, which benefit from the rich linguistic
knowledge in large-scale corpora. However, as re-
vealed in previous works (Yin et al., 2020; Yu et al.,
2021a; Qin et al., 2022a), there are intrinsic dis-
crepancy between the distributions of tables and
plain texts, leading to sub-optimal performances of
general PLMs such as BERT (Devlin et al., 2019),
ROBERTA (Liu et al., 2019), ELECTRA (Clark
et al., 2020). Recently, some studies (Yu et al.,
2021a,b; Shi et al., 2021; Deng et al., 2021; Liu
et al., 2021a,b) alleviate the above limitation by de-
signing tailored tabular language models (TaLMs)
for text-to-SQL parsing, which simultaneously en-
code NL questions and tables.

Despite the remarkable progress of previous
TaLMs, they still suffer from technical challenges
in the context-dependent setting. First, existing
TaLMs merely explore contextual information to
enrich utterance representations without consid-
ering the interaction states determined by history
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SQL queries, which are relevant to the user in-
tent of current utterance. Nevertheless, the trace
and usage of historical SQL information can con-
tribute greatly to model the current SQL query, as
SQL conveys user intent in a compact and precise
manner. As shown in Figure 1, the second SQL
query is more likely to select the contents from
the “Compuses” table since the first SQL query
mentioned that table. Although tracking schema
states is essential to keep track of user requests
for context-dependent text-to-SQL parsing, how
to model, track and utilize schema states through-
out a conversation has not yet been explored in
previous TaLMs. Second, context-dependent text-
to-SQL parsing needs to effectively process context
information so as to help the system better parse
current NL utterance, since users may omit previ-
ously mentioned entities as well as constraints and
introduce substitutions to what has already been
stated. Taking Figure 1 as an example, the sec-
ond utterance omit the implicit constraint of “cam-
puses in year 2000” as mentioned in the first utter-
ance. However, most prior TaLMs primarily model
stand-alone NL utterances without considering the
context-dependent interactions, which result in sub-
optimal performance. Although SCORE (Yu et al.,
2021b) model the turn contextual switch by pre-
dicting the context switch label between two con-
secutive user utterances, it ignores the complex
interactions of context utterances and cannot track
the dependence between distant utterances. For
instance, in Figure 1, SCORE fails to capture the
long term dependency between the first and the
fourth utterances since there is a switch between
the second and the third utterances.

In this paper, we propose a novel pre-training
framework STAR for context-dependent text-to-
SQL parsing, which explores the multi-turn inter-
actions of NL utterances and SQL queries within
each conversation, respectively. First, we propose
a schema state tracking (SST) objective to keep
track of SQL queries in the form of schema-states,
which predicts the value (a SQL keyword) of each
schema slot of the current SQL query given the
schema-state representation of previously predicted
SQL query. By introducing the schema-states to
represent SQL queries, we can better capture the
alignment between the the historical and current
SQL queries, especially for the long and complex
SQL queries. Second, we propose an utterance de-
pendency tracking (UDT) objective to capture com-

plex semantic dependency of sequential NL ques-
tions, which employs weighted contrastive learning
to pull together semantically similar NL utterances
and push away dissimilar NL utterances within
each conversation. A key insight is that the utter-
ance corresponding to similar SQL will be more
semantically relevant, as SQL is a highly structured
indication of user intent. Concretely, we propose
two novel similarity functions (SQL semantic simi-
larity and SQL structure similarity) to comprehen-
sively construct appropriate positive and negative
NL question pairs.

We summarize our main contributions as follows.
(1) To the best of our knowledge, we are the first to
propose a schema state tracking (SST) objective for
context-dependent TaLM, which tracks and updates
the schema states of the context-dependent SQL
queries in the form of schema states. (2) We pro-
pose an utterance dependency tracking (UDT) ob-
jective to capture complex semantic information of
sequential NL questions, which employs weighted
contrastive learning with two novel SQL-oriented
similarity functions to pull together two seman-
tically similar NL utterances and push away the
representations of dissimilar NL utterances within
each conversation. (3) We construct a high-quality
large-scale context-dependent text-to-SQL conver-
sation corpus to pre-train STAR. Experiments show
that STAR achieves new state-of-the-art perfor-
mance on two downstream benchmarks (SPARC
and COSQL) and ranking first on the leaderboard.

2 Task Definition

In this section, we first provide the formal task def-
inition for context-dependent text-to-SQL parsing.
Let U = {u1, . . . , uT } denote the utterances in a
context-dependent text-to-SQL conversation with
T turns, where ui represents the i-th NL question.
Each NL sentence ui contains ni tokens, denoted
as ui = [w1, . . . , wni ]. In addition, there is a cor-
responding database schema s, which consists of
N tables {Ti}Ni=1. The number of columns of all
tables in the schema is m. We use si to denote the
name of the i-th item in schema s. At current turn
t, the goal of text-to-SQL parsing is to generate the
SQL query ot given the current utterance ut, histor-
ical utterances {u1, . . . , ut−1}, schema s, and the
last predicted SQL query ot−1. STAR primarily
consists of a stack of Transformer layer, which con-
verts a sequence of L input tokens x = [x1, ..., xL]
into a sequence of contextualized vector represen-
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Figure 2: The overview of the proposed STAR framework consisting of two novel pre-training objectives: (a) the
utterance dependency tracking and (b) the schema state tracking. For brevity, we do not show the masked language
modeling objective here.

tations h = [h1, . . . ,hL].

3 Pre-training Objectives

As illustrated in Figure 2, we propose two
novel pre-training objectives SST (Schema State
Tracking) and UDT (Utterance Dependency
Tracking) to explore the complex context interac-
tions of NL utterances and SQL queries within each
text-to-SQL conversation, respectively. In addi-
tion, we also employ the MLM (Masked Language
Modeling) objective to help learn better contextual
representations of the conversations. Next, we will
introduce the pre-training objectives in detail.

3.1 Schema State Tracking

The usage of context SQL information contributes
greatly to model the current SQL query. Inspired
by the dialogue state tracking (Ouyang et al., 2020;
Wang et al., 2021) which keeps track of user inten-
tions in the form of a set of dialogue states (i.e. ,
slot-value pairs) in task-oriented dialogue systems,
we propose a schema state tracking (SST) objective
in a self-supervised manner to keep track of schema
states (or user requests) of context-dependent SQL
queries, which aims to predict the values of the
schema slots. Concretely, we track the interaction
states of the text-to-SQL conversation in the form
of schema-states whose slots are column names
of all tables in the schema and their values are
from SQL keywords. Taking the SQL query in
Figure 3 as example, the value of the schema slot
[cars_data] is the SQL keyword [SELECT].

Formally, we first convert the last predicted SQL

query ot−1 into a set of schema states. Since
the names of schema states are names of all
schema, the values of those schema states that
do not appear in the last SQL query ot−1 are
set to [NONE], as shown in Figure 3. We repre-
sent the SQL query ot−1 with m schema-states
{(sit−1, v

i
t−1)}mi=1, where sit−1 denotes the schema-

state slot, vit−1 denotes the schema-state value of
the slot sit−1, and m represents the number of
schema. At the t-th turn, the goal of SST is to
predict the value vit of each schema-state slot sit of
the t-th SQL query given all the history utterances
{u1, . . . , ut−1}, the current utterance ut and the
schema-states {(sit−1, v

i
t−1)}mi=1 of the late query

ot−1. That is, at the t-th turn, the input It of the
SST task is as:

It =
[
{u1, . . . , ut}; {(sit−1, v

i
t−1)}mi=1

]
(1)

Note that the SQL queries within a conversation
share the same schema s, thus the schema-states of
the t-th and t − 1-th SQL queries have the same
schema-state slots (i.e., sit−1 = sit = si).

Since each schema state cit−1 = (sit−1, v
i
t−1)

contains multiple words, we apply an attentive
layer to obtain the representation of cit−1 =
(sit−1, v

i
t−1). Concretely, given the output contextu-

alized representation h
cit−1

t = [hl
t, . . . ,h

l+|cit−1|−1
t ]

(l is the start index of cit−1) of each schema state
cit−1, the attentive schema-state representation cit−1
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of the schema state cit−1 can be calculated as:

αj
t−1 = softmax (tanh(hl+j

t W1)v
⊤
1 ) (2)

cit−1 =

|cit−1|∑

j=1

αj
t−1h

l+j
t (3)

where v1 and W1 are trainable parameters. We
use the attentive schema-state representation cit−1

in the last SQL query to predict the value vit of the
current schema state cit:

P (cit|cit−1) = softmax(W2c
i
t−1 + b2) (4)

where W2 and b2 are trainable parameters.
Finally, the pre-training loss function of SST

is defined as the cross-entropy between the pre-
dicted schema-state value P (vit|cit−1) and the gold
schema-state value vit as follows:

LSST = − 1

m

m∑

i=1

cit logP (cit|cit−1) (5)

where m is the number of slot (schema).

3.2 Utterance Dependency Tracking

We propose an utterance dependency tracking
(UDT) objective to capture complex semantic de-
pendency of sequential NL questions within each
text-to-SQL conversation. A key challenge behind
UDT is how to construct appropriate positive and
negative labels by way of self-supervision.

Generally, it is intuitive that we can construct
negative utterance pairs by selecting NL utterances
from different conversations. However, it is non-
trivial to construct positive utterance pairs, since
the current utterance may be irrelevant to those of
the historical utterances with prominent contextual
shifts, as the second and third utterances shown in
Figure 1. Hence, we treat the NL utterances within
the same conversation as positive pairs, which are
assigned with different similarity scores. SQL is
a highly structured indication of user utterance,
so by measuring the similarity of current SQL to
historical SQL, pseudo-labels of utterance semantic
dependencies can be obtained to guide the STAR in
contextual modelling. Here we propose a method
to measure SQL similarity from two perspectives.

SQL Semantic Similarity To compute the sim-
ilarity of two SQL queries, we first convert each
SQL query into m schema-states as described in
Section 3.1, where the schema slots are names of
all schema and their values are from SQL key-
words. As illustrated in Figure 3, given two SQL
queries (denotes as ox and oy), we obtain the
schema states {(six, vix)}mi=1 and {(siy, viy)}mi=1 of

the SQL queries ox and oy respectively. Since all
the schema-states share the same schema slots, we
have six = siy. Then, we adopt the Jaccard simi-
larity (Niwattanakul et al., 2013) to compute the
semantic similarity of the SQL queries ox and oy
by comparing vix and viy. Mathematically, we com-
pute the SQL semantic similarity of ox and oy as:

fsemantic(ox, oy) =

∑m
i=1 Jaccard(v

i
x, v

i
y)

|ŝx,y|
(6)

Jaccard(vix, v
i
y) =

|vix ∩ viy|
|vix ∪ viy|

(7)

where |ŝx,y| represents the number of non-duplicate
schema states whose values are not [NONE] in ox
and oy. Jaccard function computes the ratio of
intersection over the union of vix and viy.

SQL Structure Similarity To take advantage of
the tree-structure of SQL queries, we first parse
each SQL query ox into a SQL tree Gx as illus-
trated in Figure 3. Given two SQL trees Gx and
Gy for SQL queries ox and oy, we leverage the
Weisfeiler-Lehman sub-tree kernel (Shervashidze
et al., 2011) to compute the SQL tree-structure sim-
ilarity score ftree(ox, oy) as follows:

ftree(ox, oy) = Norm(KWL(Gx,Gy)) (8)

KWL(Gx,Gy) =

h∑

i=0

K(Gi
x,G

i
y) (9)

where Norm() is a normalization function, KWL()
is the Weisfeiler-Lehman subtree kernel function
and K() is the base kernel on graphs. Gi

x denotes
the Weisfeiler-Lehman graph at height i of the tree
Gx and h is the number of Weisfeiler-Lehman iter-
ations. We refer the readers to Shervashidze et al.
(2011) for the implementation details of Weisfeiler-
Lehman sub-tree kernel.

Overall, we define the final similarity score of
two SQL queries ox and oy as follows:

fSQL(ox, oy) =λ · fsemantic(ox, oy)

+ (1− λ) · ftree(ox, oy)
(10)

where λ is a hyper-parameter controlling the impact
of the two kinds of similarity.

Weighted Contrastive Loss After obtaining the
SQL similarity, we employ weighted contrastive
learning (Oord et al., 2018) to pull together
two semantically similar NL utterances and push
away the representations of semantically dissim-
ilar NL utterances within each conversation. We
first convert the input sequence It = [x1t , . . . , x

L
t ]

into a sequence of contextualized vectors ht =
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SELECT accelerate FROM cars_data ODER BY accelerate DESC LIMIT 1

SELECT weight FROM cars_data ODER BY weight DESC LIMIT 1

What is the highest accelerate ?

What is the highest weight in the cars_data table ?🧑💻

🧑💻

🤖

🤖

Slot Value
cars_data SELECT 

FROMweight ORDER BY
… NONE

Slot Value
cars_data SELECT 

FROMaccelerate ORDER BY
… NONE

SQL Semantic Similarity: 0.3 SQL Structure Similarity: 0.8

ROOT

SELECT ORDER BY 

cars_data weight …

cars_data accelerate …

ROOT

SELECT ORDER BY 

Figure 3: Two metrics for calculating SQL similarity, including semantic similarity and structure similarity.

[h1
t , . . . ,h

L
t ], where L represents the length of the

input sequence. We leverage an attention mecha-
nism to learn the input representation h̃t as:

βi
t = Softmax (tanh(hi

tW3)v
⊤
3 ) (11)

h̃t =
L∑

i=1

βi
th

i
t (12)

where v3 and W3 are trainable parameters.
Specifically, we minimize a weighted contrastive

loss function LUDT to optimize the network as:

LUDT = −
∑

x∈D

∑

p∈D+
x

fSQL(ox, op)∑
k∈D fSQL(ox, ok)

· log esim(h̃x,h̃p)/τ

esim(h̃x,h̃p)/τ +
∑

m∈D−
x
esim(h̃x,h̃m)/τ

(13)

where τ is a temperature hyper-parameter. D =
{1, . . . , N} denotes the index set of the training
utterances. D+

x denotes the index set of positive
utterances that co-occurs in the same conversation
with utterance x. D−

x denotes the index set of pos-
itive utterances other than x and p, and negative
utterances chosen from other conversations.

3.3 Masked Language Modeling
In order to jointly learn the contextual represen-
tation of utterances and schema, we retain the
masking mechanism in the pre-training stage. Con-
cretely, given the input It (defined in Eq.1) of the
t-th turn, masked language modeling (MLM) se-
lects a random set of positions and replaces these
positions with [MASK], and then learns to predict
the original tokens of the masked-out tokens. We
follow the hyperparameters of prior work (Devlin
et al., 2019), which randomly masks utterances
and schema tokens with a 15% probability. We de-
note the MLM loss as LMLM, which is computed
by minimizing the cross-entropy function on the
masked tokens.

3.4 Joint Pre-training Objective
In this paper, we combine three pre-training objec-
tives to learn a pre-training framework for context-
dependent text-to-SQL parsing. Instead of combin-

ing the objectives by simply performing a weighted
linear sum of individual losses, we jointly learn
three objectives by considering the homoscedastic
uncertainty of each objective (Kendall et al., 2018).
In this way, we can avoid the huge expense to tune
weight hyper-parameters. We define the joint loss
function based on homoscedastic uncertainty as:

Ljoint =
1

2σ2
1

LSST +
1

2σ2
2

LUDT +
1

2σ2
3

LMLM

+ log(1 + σ1) + log(1 + σ2) + log(1 + σ3)

(14)

where σ1, σ2, σ3 represent the model’s observation
noise parameters, capturing how much noise we
have in the outputs.

4 Data Construction for Pre-training

The cost of expensive SQL annotation poses a
challenge to the construction of large scale pre-
training data. Previous work (Yu et al., 2021a,b)
resort to data augmentation to address this is-
sue. Typically in a conversational setting, context-
dependent data augmentation techniques require
two steps: (1) single-turn context-free grammar for
utterance-SQL pair generation, and (2) a follow-up
context-free grammar to expand single-turn data
into context-dependent conversations. SCORE syn-
thesized a total of 435k text-to-SQL conversations
following this setup, and we noticed two limita-
tions with it. Firstly, it relies on the template-filling
construction to convert SQL to utterances, resulting
in rather rigid generated utterances in step (1). Sec-
ondly, SPARC is the only data resource employed
to induce the follow-up context-free grammar in
step (2). Nevertheless, the contextual diversity in
SPARC is insufficient to simulate complex contex-
tual dependencies.

To this end, we propose a new pre-training data
construction method. Inspired by the SNOWBALL
framework (Shu et al., 2021), we harness a genera-
tive model, i.e., BART, to bring more diversity to
the generated utterances. For the follow-up conver-
sational context-free grammar induction, we con-
sider both COSQL and SPARC datasets and man-
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Model
SPARC COSQL

QM IM QM IM
Dev Test Dev Test Dev Test Dev Test

Previous Parsing Systems.

GAZP + BERT 48.9 45.9 29.7 23.5 42.0 39.7 12.3 12.8
EditSQL + BERT 47.2 47.9 29.5 25.3 39.9 40.8 12.3 13.7
IGSQL + BERT 50.7 51.2 32.5 29.5 44.1 42.5 15.8 15.0
IST-SQL + BERT 47.6 - 29.9 - 44.4 41.8 14.7 15.2
R2SQL + BERT 54.1 55.8 35.2 30.8 45.7 46.8 19.5 17.0
DELTA + BART 58.6 59.9 35.6 31.8 51.7 50.8 21.5 19.7
RAT-SQL + SCORE 62.2 62.4 42.5 38.1 52.1 51.6 22.0 21.2
T5-3B + PICARD - - - - 56.9 54.6 24.2 23.7
HIE-SQL + GRAPPA 64.7 64.6 45.0 42.9 56.4 53.9 28.7 24.6

Pre-trained Models.

LGESQL 52.4 - 31.3 - 41.2 - 15.0 -
w. BERT 59.8 - 40.5 - 50.7 - 20.8 -
w. ROBERTA 61.6 - 41.2 - 51.9 - 20.8 -
w. GRAPPA 62.5 - 42.4 - 52.6 - 21.5 -
w. SCORE 62.3 - 43.6 - 52.3 - 22.5 -
w. STAR 66.9 67.4 (↑ 2.8) 46.9 46.6 (↑ 3.7) 59.7 57.8 (↑ 3.9) 30.0 28.2 (↑ 3.6)

Table 1: Experimental results of various methods in terms of question match (QM) accuracy and interaction match
(IM) accuracy on both SPARC and COSQL datasets. “-” means that the test results are not accessible since the test
accuracy needs to be officially evaluated and only two models can be submitted every two months.

Model
SPARC COSQL

QM IM QM IM

STAR 66.9 46.9 59.7 30.0
w/o MLM 66.1 45.7 59.0 28.7
w/o SST 66.8 45.5 57.9 28.3
w/o UDT 66.4 46.1 58.0 28.7
w/o SST+UDT 65.3 45.6 57.0 27.3

Table 2: Ablation study of STAR in terms of question
match accuracy (QM) and interaction match accuracy
(IM) on the dev sets of both SPARC and COSQL.

ually craft 100 templates. Overall, we synthesize
a new large-scale pre-training dataset that consists
of about 480K high-quality context-dependent text-
to-SQL conversations. We provide examples of the
induced grammar rules and synthesized procedure
in detail in Appendix D.

5 Experiment

5.1 Experimental Setup
Downstream Datasets We evaluate STAR on
two context-dependent semantic parsing bench-
marks: SPARC (Yu et al., 2019b) and COSQL
(Yu et al., 2019a). SPARC is a collection of cross-
domain context-dependent dataset, which consists
of about 4.3k question sequences and 12k+ individ-
ual questions annotated with SQL queries. COSQL
is a conversational text-to-SQL corpus, which con-
tains about 3k dialogues and 10k+ annotated SQL
queries. Both SPARC and COSQL query 200
complex databases spanning across 138 domains.
We provide more detailed statistics of these two
datasets in Appendix B.

Evaluation Metrics We employ two official eval-
uation metrics (Yu et al., 2019b,a) to verify the
effectiveness of STAR: question match accuracy
(QM) and interaction match accuracy (IM). Con-
cretely, QM denotes the exact set match accuracy
over SQL templates and IM denotes the ratio of
interactions over all correctly predicted questions.

Implementation Details In pre-training, STAR
is initialized with ELECTRA (Clark et al., 2020).
Similar to ELECTRA, we also employ the replaced
token detection objective to further improve the
text-to-SQL pre-training. The maximum length of
each input sequence is set to 256. The batch size
is set to 80 and an Adam optimizer (Kingma and
Ba, 2015) is employed for optimization with an
initial learning rate of 1e-6. Gradient clipping is
applied to STAR with a maximum gradient value
of 1. For computing the SQL similarity, the impact
factor λ is set to 0.5. We provide more details of
implementation in Appendix A.

Baselines First, we compare STAR with several
state-of-the-art context-dependent parsing methods,
including GAZP (Zhong et al., 2020), EditSQL
(Zhang et al., 2019), IGSQL (Cai and Wan, 2020),
IST-SQL (Wang et al., 2021), R2SQL (Hui et al.,
2021), PICARD (Scholak et al., 2021), DELTA
(Chen et al., 2021) and HIE-SQL (Zheng et al.,
2022). Second, we compare STAR with four strong
pre-training models, including BERT (Devlin et al.,
2019), ROBERTA (Liu et al., 2019), GRAPPA (Yu
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Figure 4: The results of STAR and baselines on SPARC and COSQL dev sets (a-b) by varying the difficulty levels
of the data and (c-d) by varying the conversation turns.

Model
COSQL SPARC

QM IM QM IM

STAR 59.7 30.0 66.9 46.9
STAR w/o structural 59.1 29.0 66.5 46.7
STAR w/o semantic 59.5 29.6 66.8 46.5
STAR w/o UDT 58.0 28.6 66.4 46.1

Table 3: Results of STAR on the dev sets of SPARC and
COSQL by using different metrics for calculating SQL
similarity.

et al., 2021a) and SCORE (Yu et al., 2021b). In
particular, GRAPPA and SCORE are the represen-
tative TaLMs for context-independent and context-
dependent text-to-SQL parsing, respectively.

5.2 Model Comparison on Downstream Tasks

In the experiments, we choose LGESQL (Cao et al.,
2021) as our base model given its superior perfor-
mance. Since LGESQL is originally developed for
single-turn setting, we extend LGESQL to context-
dependent setting by taking as input the concatena-
tion of historical and current utterances. For a fair
comparison, the four compared PLMs also leverage
LGESQL as the base model.

The experimental results on SPARC and COSQL
are summarized in Table 1. STAR outperforms all
the compared methods on the two datasets by a no-
ticeable margin. First, STAR achieves substantially
better results than the four strong PLMs. In partic-
ular, STAR surpasses the well-known SCORE by
7.4% QM score and 7.5% IM score on the COSQL
dev set. Second, LGESQL+STAR achieves bet-
ter results than the compared downstream methods
which use BERT, ROBERTA, SCORE, GRAPPA as
the PLMs, such as the best performing baseline
HIE-SQL+GRAPPA.

5.3 Ablation Study

Effectiveness of Pre-training Objectives We
conduct ablation test to investigate the effective-
ness of each pre-training objective in STAR. We re-
port the results of removing the MLM loss (called
w/o MLM), the SST loss (called w/o SST), the
UDT loss (called w/o UDT), and both SST and

Model
COSQL

QM IM

STAR (w/ MLM) + SCORE data 55.4 25.6
STAR (w/ MLM) + Our data 57.0 27.3
STAR (w/ MLM + SST) + SCORE data 57.3 27.3
STAR (w/ MLM + SST) + Our data 58.0 28.7

Table 4: Results of STAR on the dev set of COSQL
with MLM and SST objectives by using different pre-
training data.

UDT (called w/o SST+UDT) respectively. Table 2
shows the ablation test results on both SPARC and
COSQL. We can observe that removing the SST
or UDT objective bring the most significant perfor-
mance drop. Not surprisingly, combining all the
three objectives achieves the best results on both
datasets.

Effectiveness of SQL Similarity Metrics To an-
alyze the impact of metrics for calculating the SQL
similarity in STAR, we also conduct an ablation
test by removing the structural similarity metric
(called w/o structural), the semantic similarity met-
ric (called w/o semantic), and both (called w/o
UDT), respectively. Table 3 shows the ablation test
results on the dev sets of SPARC and COSQL. As
expected, both similarity metrics contribute great
improvements to STAR.

Effectiveness of Synthesized Pre-training Data
We also analyze the quality of our constructed pre-
training data. We compare our pre-training data
with the data created by SCORE (Yu et al., 2021b)
which to our knowledge is the only existing work
on pre-training for context-dependent text-to-SQL
parsing. Since the pre-training data created by
SCORE is inapplicable to the LUDT objective, we
merely employ LMLM (denoted as STAR w/ MLM)
and LMLM + LSST (denoted as STAR w/ MLM +
SST) as the pre-training objectives in the experi-
ments. As shown in Table 4, our pre-training data
is more effective than the pre-training data created
by SCORE.
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NONE NONE WHERE ODER BY 
ASC LIMIT …
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SELECT
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Schema States

Turn 4 Turn 3 Turn 2 Turn 1
X

UBerance Dependency

Can you list the number of car makers on each conBnent?                     
What about the number of car makers in the country USA?                                        
How about in the country Germany?                                                                              
What about France? 
SELECT * FROM car_makers JOIN countries WHERE countries.CountryName = "value" 
SELECT COUNT(*) FROM countries JOIN car_makers WHERE countries.CountryName = "value"

How many Volvo cars are there? 
Which Volvo car has the least accelerate? 
How many cylinders does that car have? 
SELECT cars_data.Cylinders FROM car_names JOIN cars_data ORDER BY cars_data.Accelerate ASC LIMIT 1 
SELECT cars_data.Cylinders FROM car_names JOIN cars_data WHERE car_names.Model = “value” ORDER BY cars_data.Accelerate ASC LIMIT 1

Figure 5: Two cases on the COSQL dev dataset.

5.4 Discussion
Model Comparison on Samples with Different
Levels of Difficulty The SQL queries in both
SPARC and COSQL can be further divided into
four levels based on the difficulty of the SQL
queries: easy, medium, hard, extra hard, which
can be used to better evaluate the model perfor-
mance on different queries. As shown in Figure
4a-b, STAR achieves better results than the com-
pared methods on the four kinds of data, even on
the extra hard samples.

Model Comparison on Samples at Different
Turns Figure 4c-d illustrate the QM results of
STAR and compared methods along with the
increase of conversation turns on SPARC and
COSQL dev sets. The QM results of baselines
decrease sharply as the conversation turns increase,
while STAR achieves much more stable perfor-
mance even for the third and fourth turns. This
suggests that STAR can better track and explore
the interaction states in history utterances to assist
the models to better parse current utterance.

5.5 Case Study
To evaluate STAR qualitatively, we choose two
exemplary conversations from the CoSQL dev set
and illustrate the generated SQL queries by SCORE

and STAR in Figure 5. In the first case, we observe
that STAR can exploit the usage of table informa-
tion in history queries (e.g., [car_names.Model]
to correctly generate the third SQL query, while
SCORE fails to track this kind of schema state.
In the second case, STAR successfully tracks the
long-term utterance dependency between the first
and fourth utterances, and generates the correct
SQL keyword [SELECT COUNT(*)] in the fourth
SQL query by tracking and referring to the query
“the number of” in the second utterance. However,

SCORE fails to track such long-term dependency
with being disturbed by the third utterance.

5.6 Limitation Analysis

To better analyze the limitations of STAR, we carry
out an analysis of the errors made by STAR on the
CoSQL dev dataset. We reveal several reasons of
the errors, which can be divided into following
categories. First, STAR fails to select the correct
names from table schemas in some hard or extra
hard samples, where NL questions use synonyms to
refer to tables or columns in SQL queries without
the explicit correspondence between NL questions
and table schemas. One possible solution is to ex-
ploit the rich semantic information contained in
PLMs to capture the implicit schema linking infor-
mation via knowledge probing techniques. Second,
for some samples, STAR incorrectly inherits part
of the previous turn SQL query. One possible solu-
tion is to design an additional classifier to predict
the changes (e.g. RETAIN, MODIFY, DELETE) be-
tween the schema state of the current turn and that
of the previous turn. Third, there are some SQL
grammar errors such as the redundancy of [WHERE]
clause, repetition of table names, structure error
of [SELECT NEST]. The reason may be that the
schema state tracking objective only tracks the state
of the database schema in conversation, which do
not consider the overall grammatical structure of
SQL queries. One possible idea is to add an extra
objective to predict the general structure of SQL
(e.g., abstract syntax tree) so as to capture the over-
all grammatical structure information of SQL.

6 Related Work

Context-dependent Text-to-SQL Parsing Most
of previous text-to-SQL works focused on the
context-independent setting. Notably, the graph-
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based parser, e.g., RAT-SQL (Wang et al., 2020),
LGESQL (Cao et al., 2021) , S2SQL (Hui et al.,
2022), and the T5-based parser, e.g., PICARD

(Scholak et al., 2021), achieving the impressive
performance on SPIDER (Yu et al., 2018). In
recent years, context-dependent (multi-turn) text-
to-SQL parsing has attracted increasing attention
due to its broad applications and realistic setting.
SPARC (Yu et al., 2019b) and COSQL (Yu et al.,
2019a) are two benchmark datasets for context-
dependent text-to-SQL parsing. Subsequently, sev-
eral works (Zhang et al., 2019; Cai and Wan, 2020;
Wang et al., 2021; Hui et al., 2021; Chen et al.,
2021; Zheng et al., 2022) were proposed, which
consider contextual information or conversation
history so as to synthesise the correct SQL query.
In particular, Zhang et al. (2019) exploited the con-
versation history by editing the previous predicted
SQL to improve the generation quality. The schema
interaction graph in IGSQL (Cai and Wan, 2020)
and two kinds of interaction states in IST-SQL
(Wang et al., 2021) are designed to capture the his-
torical schema evolution in context. Furthermore,
Zheng et al. (2022) improve contextual accuracy
by incorporating additional SQL encoders to inte-
grate historical SQL into the input. In contrast to
above works, STAR focus on the pre-training stage,
expecting to extract general knowledge from large-
scale unsupervised or self-supervised data that will
be useful for downstream parsing tasks.

Pre-training Models for Text-to-SQL Parsing
In parallel, tabular language models (TaLMs) have
been proposed to simultaneously encode tables and
texts, which further improved the results of down-
stream text-to-SQL parsing tasks. For example,
TABERT (Yin et al., 2020) and TAPAS (Herzig
et al., 2020) jointly encoded texts and tables with
self-supervised or weakly-supervised objectives,
which was trained on a large corpus of tables.
STRUG (Deng et al., 2021) proposed a structured-
grounded pre-training technique and GAP (Shi
et al., 2021) introduced a generation-augmented
pre-training framework to capture the alignment
relationship of utterance and table. Similarly,
GRAPPA (Yu et al., 2021a) introduced a grammar-
augmented pre-training framework for text-to-SQL
parsing, which explored the schema linking by en-
couraging the model to identify table schema com-
ponents that could be grounded to logical form
constituents. SCORE (Yu et al., 2021b) was the
state-of-the-art pre-training approach for context-

dependent text-to-SQL parsing designed to induce
representations that captured the switch between
the adjacency turns. Unlike these TaLMs, STAR is
the first to leverage both historical SQL and com-
plex utterance dependency in the pre-training stage.

7 Conclusion

In this paper, we proposed STAR, a pre-trained
TaLM, which could jointly learn user utterance and
table schema representations for context-dependent
text-to-SQL conversations. STAR contained two
novel pre-training objectives (schema state tracking
and utterance dependency tracking) to explore the
complex context interactions of NL utterances and
SQL queries within each text-to-SQL conversation,
respectively. We constructed a diverse large-scale
context-dependent text-to-SQL conversation cor-
pus to pre-train STAR. Experiments demonstrated
that STAR achieves new state-of-the-art perfor-
mance on SPARC and COSQL.
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A More Implementation Details

In the pre-training, STAR is initialized with ELEC-
TRA (Clark et al., 2020). Similar to ELECTRA
which is consist of a generator G and a discrimina-
tor D, we also employ the replaced token detection
objective to further improve the text-to-SQL pre-
training. Concretely, given the input It (defined in
Eq. (1)) of the t-th turn, the generator with masked
language modeling (MLM) selects a random set of
positions and replaces these positions with [MASK],
and then learns to predict the original tokens of
the masked-out tokens. The chance of each token
being masked out is 15%. We denote the loss func-
tion of the generator as LMLM. In addition, we also
train the discriminator to predict whether the each
token is the same as the original token. We denote
the loss function for training the discriminator as
LDis. Finally, we combine the loss functions of
the generator G and the discriminator D to form
the overall objective function for replaced token
detection (RTD) as:

Loverall = LDis + γLMLM (15)
We refer the readers to (Clark et al., 2020) for
the implementation details of the RTD objective.
γ is a hyperparameter controlling the impact of
LMLM. In this work, the impact factor γ is set to 5.
Our codebase is built on huggingface library (Wolf
et al., 2019).

We use LGESQL as our downstream model. For
a fair comparison, all LGESQL experiments are
trained for 100 epoch. The learning rate is 1e-4 and
weight decay is 0.1. And we adopt a more carefully
optimization for our STAR encoder with layer-wise
learning rate decay coefficient 0.8. Batch size is
10 and the maximum gradient norm is 5. Other
hyperparameters are the same as in (Cao et al.,
2021).

B Details of SPARC and COSQL

We evaluate the effectiveness of STAR on two
context-dependent text-to-SQL parsing bench-
marks: SPARC (Yu et al., 2019b) and COSQL (Yu
et al., 2019a). Concretely, SPARC is a collection
of cross-domain context-dependent dataset, which
consists of about 4.3k question sequences and 12k+
individual questions annotated with SQL queries.
COSQL is a conversational text-to-SQL corpus,
which contains about 3k dialogues and 10k+ an-
notated SQL queries. Both SPARC and COSQL
query 200 complex databases spanning across 138

SPARC COSQL

# Question Sequences 4, 298 3, 007
# Train 3, 034 2, 164
# Dev 422 293
# Test 842 551
# User Questions 12, 726 15, 598
# Databases 200 200
# Domain 138 138
Avg.len 8.1 11.2
Vocab 3, 794 9, 585
System Response no yes

Table 5: Details of SParC and CoSQL Dataset.

Model
SPARC COSQL

QM IM QM IM

ROBERTA 61.6 41.2 51.9 20.8
STAR (init. with ROBERTA) 65.0 45.1 54.1 25.3

Table 6: Results of STAR which is initialized with
ROBERTA on the dev sets of both SPARC and COSQL.

domains. Table 5 reports the statistics of SPARC
and COSQL datasets in detail.

C Generalization of STAR

We also evaluate the generalization of our pre-
training objectives by using ROBERTA as our ini-
tialization model, rather than applying ELECTRA.
The experimental results are shown in Table 6.
In a similar trend, STAR that is initialized with
ROBERTA performs significantly better than the
original ROBERTA, which to some extent verifies
the generalization of the proposed pre-training ob-
jectives, no matter what initialization models are
used to train STAR.

D Details of Data Construction

In this paper, we synthesize a new large-scale
pre-training dataset which consists of about 480K
high-quality context-dependent text-to-SQL con-
versations. Specifically, we first generate single-
turn question-SQL pairs by exploiting the SPIDER,
SPARC and COSQL datasets.

D.1 Single-turn Question-SQL Pairs
To obtain sufficient high-quality single-turn
question-SQL pairs, we carefully examine cur-
rently available sources and generate question-SQL
pairs from SPIDER, SPARC and COSQL datasets.
Specifically, we collect the original single-turn
question-SQL pairs from the dataset SPIDER which
is one of the largest single-turn cross-domain text-
to-SQL corpora. For the context-dependent text-to-
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Templates Synthesized Question-SQL

U"erance: Can you show me the top three highest support rates for the candidates? 
SQL query: SELECT support_rate FROM candidate ORDER BY support_rate DESC LIMIT 3

Turn 1:
U"erance: Can you show me the top three highest support rates for the candidates? 
SQL query: SELECT support_rate FROM candidate ORDER BY support_rate DESC LIMIT 3

U"erance: Arrange this list in descending order replace_order asc 
SQL query: SELECT People_ID, poll_source FROM candidate ORDER BY support_rate ASC 
LIMIT 3

Turn 2:

Turn 3:

Turn 4:

Turn 5:

U"erance: Arrange this list in descending order.
SQL query: SELECT People_ID, poll_source FROM candidate ORDER BY support_rate ASC 
LIMIT 3 

U"erance: Which of those have a COLUMN2 OP0 VALUE0? 
Switch Rule: Add Where Clause

U"erance: And can you add a column showing their COLUMN1?   
Switch Rule: Replaced Select Column 

U"erance: Could you please tell me the COLUMN0 of those?  
Switch Rule: Replaced Select Column 

U"erance: Could you please tell me the poll_source of those?  
SQL query: SELECT poll_source FROM candidate ORDER BY support_rate DESC LIMIT 3
U"erance: And can you add a column showing their People_ID?  
SQL query: SELECT People_ID, poll_source FROM candidate ORDER BY support_rate DESC 
LIMIT 3

U"erance: Which of those have a Oppose_rate > 60%?
SQL query: SELECT People_ID, poll_source FROM candidate WHERE Oppose_rate > 60% 
ORDER BY support_rate ASC LIMIT 3  

Figure 6: An example of synthetic text-to-SQL conversation.

SQL datasets SPARC and COSQL, we generate a
new question for each SQL query instead of using
the original NL questions since they may contain
ellipsis and anaphora that refers to earlier items in
the conversations, resulting in low-quality question-
SQL pairs. In particular, we employ the SNOW-
BALL framework (Shu et al., 2021) with BART
to generate the question based on each SQL query,
which employs an iterative training procedure by
recursively augmenting the training set with quality
control.

D.2 Context-dependent Text-to-SQL
Conversations

To expand the single-turn question-SQL pairs
to context-dependent text-to-SQL conversations,
we first convert SQL queries into their struc-
tured formats. For example, we convert the SQL
query “SELECT support_rate FROM candidate
ORDER_BY support_rate LIMIT 3” into a set of
SQL states as {SELECT: [support_rate], FROM:
[candidate], ORDER_BY: [support_rate], other
SQL keywords: [NONE]}.

Then, following (Yu et al., 2021b), we study 600
examples from the training set of both SPARC and
CoSQL datasets, and induce about 100 follow-up
question-grammar templates. Each template con-
sists of a pair of (i) a context-free question template
(e.g., “Could you please tell me the [COLUMN0]
of those?”) where the typed slot [COLUMN0] rep-
resents the mention of schema, and (ii) its corre-
sponding operation grammar (e.g., “replaced select
column”) that contains context switch labels of the
question templates.

Finally, for a single-turn question-SQL pair con-
structed in Section D.1 with database d, we ran-
domly choose a created question-grammar tem-
plate. We sample the values for typed slots in the
template and get the synthesized NL question as
well as its corresponding SQL query if the pre-
vious SQL query satisfies the constraints in the
sampled template (e.g., the SQL query contains the

mentioned schema); otherwise, another question-
grammar temple is sampled until we successfully
synthesize the next question-SQL pair. Then, we
consider the synthesized question-SQL pair as a
new start and repeat the above process until we
obtain the context-dependent text-to-SQL conver-
sation consisting of T turns of question-SQL pairs.
Figure 6 shows an example of synthetic text-to-
SQL conversation with five turns.
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